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Conventional CNN Model

Irregular data in non-Euclidean space
(Learning information: Relationship)

Emerging GNN Model

Regular data in Euclidean space
(Learning information: Euclidean distance)
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Graph Neural Network (GNN)
why is it emerging?

Image source: A Comprehensive Survey on Graph Neural Networks (TNNLS'20)
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Graph Neural Network (GNN)
GNN algorithm
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Graph Neural Network (GNN)
Dependency of GNN data samples
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DNN inputs GNN inputs

Independence between data samples Complex dependencies between data samples



Graph Neural Network (GNN)
Dependency of GNN data samples
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GNNs require additional 
data management steps

GNN inputs

Complex dependencies between data samples



End-to-End GNN training
Distributed GNN training processing
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Data partitioning 
Batch preparation
Data transferring
NN computation
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End-to-End GNN training
Step-level time breakdown
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End-to-End GNN training
Step-level time breakdown
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End-to-End GNN training
Step-level time breakdown
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End-to-End GNN training
Step-level time breakdown
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Step-level time breakdown
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GNN Training Systems
GNN training system: development history
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[1] DGL
[2] PyG
[3] AliGraph
[4] NeuGraph

[5] AGL
[6] DistDGL
[7] ROC
[8] PaGraph

[9] P3
[10] DistGNN
[11] DGCL
[12] Dorylus
[13] Pytorch-direct

[14] GNNLab
[15] ByteGNN
[16] BNS-GCN
[17] DistDGLv2
[18] NeutronStar
[19] Sancus
[20] SALIENT

[21] Betty
[22] MariusGNN
[23] Legion
[24] SALIENT++
[25] BGL

2020 2021 2022 20232019

[1]M Wang et al., Deep graph library: A graph-centric, highly-performant package for graph neural networks. arXiv 1009.01315
[2] M Fey et al., PyG: Fast graph representation learning with PyTorch Geometric. arXiv 1903.02428
[3] R Zhu et al., Aligraph: A comprehensive graph neural network platform VLDB'19
[4] L Ma et al., NeuGraph: Parallel deep neural network computation on large graphs. ATC'19
[5] D Zhang et al., AGL: a scalable system for industrial-purpose graph machine learning. VLDB'20.
[6] D Zheng et al., DistDGL: Distributed graph neural network training for billion-scale graphs. Arxiv 2010.05337.
[7] Z Jia et al., Improving the accuracy, scalability, and performance of graph neural networks with roc. MLSys'20
[8] Z Lin et al., Pagraph: Scaling gnn training on large graphs via computation-aware caching. SC'20
[9] S Gandhi et al., P3: Distributed deep graph learning at scale. OSDI'21
[10] V Md et al., Distgnn: Scalable distributed training for large-scale graph neural networks. SC'21
[11] Z Cai et al., DGCL: An efficient communication library for distributed GNN training. EuroSys'21
[12] J Thorpe et al., Dorylus: Affordable, scalable, and accurate GNN training with distributed CPU servers and serverless threads. OSDI'21

[13] SW Min et al., Large graph convolutional network training with GPU-oriented data communication architecture. VLDB'21
[14] J Yang et al., GNNLab: a factored system for sample-based GNN training over GPUs. EuroSys '22
[15] C Zheng et al., ByteGNN: efficient graph neural network training at large scale. VLDB'22
[16] C Wan et al., Bns-gcn: Efficient full-graph training of graph convolutional networks with partition-parallelism and random boundary node sampling. MLSYS'22
[17] D Zheng et al., Distributed hybrid cpu and gpu training for graph neural networks on billion-scale heterogeneous graphs. KDD'22
[18] Q Wang et al., Neutronstar: distributed GNN training with hybrid dependency management. SIGMOD'22
[19] J Peng et al., Sancus: sta le n ess-aware c omm u nication-avoiding full-graph decentralized training in large-scale graph neural networks. VLDB'22
[20] T Kaler et al., Accelerating training and inference of graph neural networks with fast sampling and pipelining. MLSYS'22
[21] S Yang et al., Betty: Enabling large-scale gnn training with batch-level graph partitioning. ASPLOS'23
[22] R Waleffe et al., Mariusgnn: Resource-efficient out-of-core training of graph neural networks. EuroSys'23
[23] J Sun et al., Legion: Automatically Pushing the Envelope of Multi-GPU System for Billion-Scale GNN Training. ATC'23
[24] Tim Kaler et al., Communication-Efficient Graph Neural Networks with Probabilistic Neighborhood Expansion Analysis and Caching. MLSYS'23
[25] T Liu et al., BGL: GPU-Efficient GNN training by optimizing graph data I/O and preprocessing. NSDI'23
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Partitioning

Mini-batch

Full-batch

Pipelining Zero-copy

Unified memory

Sampling

Cache

Fanout

Dependency Management

Lots of optimization techniques



GNN Training Systems
High-level summary of our work
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Data Partitioning Data Transferring

System Evaluation: Data Management Perspective
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Experimental Setup
Platforms, algorithms, graph dataset, and environment
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Platforms:
A 4-node Aliyun ECS cluster1 (Each: 40 vCPUs, 155GB RAM, 1 NVIDIA-T4 GPU)

Algorithms and graphs:
□ 2 Graph Neural Networks

GCN, GraphSAGE
□ 9 real-world graphs.

Environment
□ Ubuntu 20.04 LTS
□ CUDA 11.3

1 Clusters are connected via 10GigE
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Part1: Data Partitioning
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All vertices + 1-hop neighbors

Data Partitioning
Compute Patterns in Graph Computations and GNNs 

24

(b) Computation pattern of GNNs

A
B

(a) Computation pattern of 
graph computation

GNN and graph computation have different compute patterns

Labeled vertices + L-hop subgraphs



Data Partitioning
Traditional graph partitioning is not suitable for GNN training
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(a) Minimum edge-cut partitioning for 
graph computation
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Data Partitioning
Traditional graph partitioning is not suitable for GNN training
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(a) Minimum edge-cut partitioning for 
graph computation

p Balanced computational load

p Minimized communication volume
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Data Partitioning
Traditional graph partitioning is not suitable for GNN training
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Data Partitioning
Traditional graph partitioning is not suitable for GNN training
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graph computation

p Imbalanced computational load

p High communication volume

(b) Minimum edge-cut partitioning 
for GNNs

p Balanced computational load

p Minimized communication volume



Data Partitioning
Existing methods
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(1) Hash: randomly assign vertices or edges.

(2) Metis-extend: extends Metis by adding 
additional constraints to balance vertices and 
edges.

(3) Streaming: Dynamically partitions the 
graph by setting different scoring functions.

Summary of evaluated partitioning methods

Method Strategy Representative
System

Hash Randomly assign vertices or edges P3

Metis-V Extend Metis by adding constraints on 
training vertex masks. N/A

Metis-VE
Extend Metis by adding constraints on 
training vertex masks and vertex 
degrees.

DistDGL

Metis-
VET

Extend Metis by adding constraints on 
training/validation/test vertex masks and 
vertex degrees.

SALIENT++

Stream-
V

Assign vertex v to a partition P that has 
the most edges connected to v. while 
balancing the number of train vertices 
and caching L-hop neighbors.

PaGraph

Stream-
B

Assign a block B of vertices to a partition 
P that has the most edges connected to 
B. while balancing the number of 
train/val/test vertices.

ByteGNNS Gandhi et al., P3: Distributed deep graph learning at scale. OSDI’21
D Zheng et al., DistDGL: Distributed graph neural network training for billion-scale graphs. Arxiv 2010.05337.
Tim Kaler et al., Communication-Efficient Graph Neural Networks with Probabilistic Neighborhood Expansion Analysis and Caching. MLSYS'23
Z Lin et al., Pagraph: Scaling gnn training on large graphs via computation-aware caching. SC'20
C Zheng et al., ByteGNN: efficient graph neural network training at large scale. VLDB'22



Data Partitioning
Computational and communication load analysis
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(a) Amazon (b) Products (a) Amazon (b) Products
Computational load of different partitioning methods. Communication load of different partitioning methods.

p Hash partitioning achieves optimal load balancing, but it also has the highest workload.
p Metis-extend achieves minimal computational and communication load.
p Streaming partitioning suffers from workload imbalance on power-law graphs.



Data Partitioning
Computational and communication load analysis
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p Hash partitioning achieves optimal load balancing, but it also has the highest workload.
p Metis-extend achieves minimal computational and communication load.
p Streaming partitioning suffers from workload imbalance on power-law graphs.

Computational load of different partitioning methods. Communication load of different partitioning methods.
(a) Amazon (b) Products (a) Amazon (b) Products

Ø Partitioning densely connected vertices into the same partition can 
significantly reduce computational and communication load.

Ø Existing graph partitioning methods all suffer from an imbalanced 
communication load.



Data Partitioning
Effect to accuracy

Model accuracy under different partition methods.

Graph partitioning does not affect the accuracy. 

33

The accuracy difference across different partitioning methods is less than 1%.

Time-to accuracy



Batch Preparation
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Part2: Batch Preparation
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Batch Preparation
Batch size
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p Small batch size has higher model update frequency
p Large batch size contain more information.



Batch Preparation
Batch size
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Accuracy and convergence speed with varying batch size
(a) Reddit (b) Products

p Small batch sizes converges quickly but have low accuracy.
p Large batch sizes converges slowly but have high accuracy.



Batch Preparation
Batch size
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Ø Small batch size: larger gradients, faster descent direction finding.
Ø Large batch size: smaller gradients, better convergence to optimal point.

Accuracy and convergence speed with varying batch size
(a) Reddit (b) Products

p Small batch sizes converges quickly but have low accuracy.
p Large batch sizes converges slowly but have high accuracy.



Batch Preparation
Sampling
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Sampling significantly reduces the training graph size
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Batch Preparation
Fanout
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p Small fanout converges quickly but has low accuracy.
p Large fanout converges slowly but has high accuracy.

Accuracy and convergence speed with varying fanout



Batch Preparation
Fanout
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p Small fanout converges quickly but has low accuracy.
p Large fanout converges slowly but has high accuracy.

Accuracy of high and low degree vertices

p Low-degree vertices achieve higher accuracy with a 
smaller fanout.

p High-degree vertices achieve higher accuracy with a 
larger fanout.

Accuracy and convergence speed with varying fanout
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Fixed fanout is disadvantageous for power-law graphs.

Batch Preparation
Fanout

p Small fanout converges quickly but has low accuracy.
p Large fanout converges slowly but has high accuracy.

Accuracy of high and low degree vertices

Accuracy and convergence speed with varying fanout

p Low-degree vertices achieve higher accuracy with a 
smaller fanout.

p High-degree vertices achieve higher accuracy with a 
larger fanout.



Batch Preparation
Adaptive batch size and fanout-rate hybrid sampling

Convergence speed Increased by 1.52-1.64x

Performance with adaptive batch size

Performance with fanout-rate hybrid sampling

Convergence speed Increased by 1.74x

Dynamic parameter tuning further improves model training efficiency.

42



Data Transferring
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Part3: Data Transferring
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Data transferring process
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Data Transferring
Implicit transfer method
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Unified memory unsuitable for large-scale datasets due to 
high page migration overhead.

Unified memory is 1.21x faster on small-scale and 
10.59x slower on large-scale datasets for per-epoch 
runtime compared to zero-copy.

reddit arxiv products lj-large enwikilj-links
Per-epoch runtime comparison: zero-copy vs. unified memory.



Data Transferring
Cache-based data reusing
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The pre-sampling-based caching method offers 
better performance and robustness.

Performance comparison of caching policies.



Data Transferring
Task pipelining
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Opportunity: orchestrate CPU and GPU workloads for 
improved pipeline performance.

Pipeline training ablation study.

The effect of pipeline optimization is not outstanding (less than 50% improvement)



Comprehensive Evaluation of GNN Training Systems: A Data Management Perspective.
□ Evaluation of optimization techniques in GNN systems                                                                         

we conduct a comprehensive evaluation of the optimization techniques adopted by existing GNN systems 
from a data management perspective. 

Summary
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Summary

• Partitioning densely connected vertices together can effectively reduce computation but may disrupt load 
balancing.

• There are significant differences in the accuracy and convergence speed of GNN under different 
parameter settings. 

• Adaptive batch size and hybrid sampling training methods can accelerate convergence without sacrificing 
accuracy.

• There is an opportunity to improve pipeline performance by orchestrate CPU and GPU workloads.
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□ Evaluation of optimization techniques in GNN systems                                                                         

we conduct a comprehensive evaluation of the optimization techniques adopted by existing GNN systems 
from a data management perspective. 

□ Lessons learned for designing future GNN training systems                                                                    
We provide some practical tips learned from the experiment results, which are helpful for designing GNN 
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□ The codes are publicly available on github. 
https://github.com/iDC-NEU/NeutronBench
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https://github.com/iDC-NEU/NeutronBench


Questions

Thanks for your listening
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