
Comprehensive Evaluation of GNN Training Systems: A
Data Management Perspective

VLDB 2024

Hao Yuan, Yajiong Liu, Yanfeng Zhang, Xin Ai,
Qiange Wang, Chaoyi Chen, Yu Gu, Ge Yu

Northeastern University, China

Conventional CNN Model

Irregular data in non-Euclidean space
(Learning information: Relationship)

Emerging GNN Model

Regular data in Euclidean space
(Learning information: Euclidean distance)

2

Graph Neural Network (GNN)
why is it emerging?

Image source: A Comprehensive Survey on Graph Neural Networks (TNNLS'20)

Graph Neural Network (GNN)
GNN algorithm

3

1

2 3 4

0
1
2
3

Input data

Graph Neural Network (GNN)
GNN algorithm

4

1

2 3 4 1

2 3 40
1
2
3

#1 Graph operationInput data

Graph Neural Network (GNN)
GNN algorithm

5

Neural Network
(MLP)

1 1

#1 Graph operation

1

2 3 4 1

2 3 40
1
2
3

Input data #2 NN operation

Graph Neural Network (GNN)
Dependency of GNN data samples

6

DNN inputs GNN inputs

Independence between data samples Complex dependencies between data samples

Graph Neural Network (GNN)
Dependency of GNN data samples

7

GNNs require additional
data management steps

GNN inputs

Complex dependencies between data samples

End-to-End GNN training
Distributed GNN training processing

8

Data partitioning
Batch preparation
Data transferring
NN computation

1
2
3
4

Data management

Actual computation

4
6

7

9

8

5

1 2

3

6
75

1 2

3

4
6

7

9

8

3

63

6

5

94

7

CPU

1
2
3
4
5
6
7
8
9

1
2
3
5

4
6
7
8
9

5
6
7

3
4
5
6

Worker 1 Worker N

1

5

3

87

6

5

7

3 3

3

…

1

9

10

1
0

8

Graph Data
10

10 CPU

2 22

1

4 4GPU GPU
1

5
3

87
6

63

6
5

94
7

End-to-End GNN training
Distributed GNN training processing

Data partitioning
Batch preparation
Data transferring
NN computation

1
2
3
4

Data management

4
6

7

9

8

5

1 2

3

6
75

1 2

3

4
6

7

9

8

3

63

6

5

94

7

CPU

1
2
3
4
5
6
7
8
9

1
2
3
5

4
6
7
8
9

5
6
7

3
4
5
6

Worker 1 Worker N

1

5

3

87

6

5

7

3 3

3

…

1

9

10

1
0

8

Graph Data
10

10 CPU

2 22

1

4 4GPU GPU
1

5
3

87
6

63

6
5

94
7

Actual computation

9

End-to-End GNN training
Distributed GNN training processing

10

Data partitioning
Batch preparation
Data transferring
NN computation

1
2
3
4

Data management

4
6

7

9

8

5

1 2

3

6
75

1 2

3

4
6

7

9

8

3

63

6

5

94

7

CPU

1
2
3
4
5
6
7
8
9

1
2
3
5

4
6
7
8
9

5
6
7

3
4
5
6

Worker 1 Worker N

1

5

3

87

6

5

7

3 3

3

…

1

9

10

1
0

8

Graph Data
10

10 CPU

2 22

1

4 4GPU GPU
1

5
3

87
6

63

6
5

94
7

Actual computation

End-to-End GNN training
Distributed GNN training processing

11

Data partitioning
Batch preparation
Data transferring
NN computation

1
2
3
4

Data management

Actual computation

4
6

7

9

8

5

1 2

3

6
75

1 2

3

4
6

7

9

8

3

63

6

5

94

7

CPU

1
2
3
4
5
6
7
8
9

1
2
3
5

4
6
7
8
9

5
6
7

3
4
5
6

Worker 1 Worker N

1

5

3

87

6

5

7

3 3

3

…

1

9

10

1
0

8

Graph Data
10

10 CPU

2 22

1

4 4GPU GPU
1

5
3

87
6

63

6
5

94
7

End-to-End GNN training
Distributed GNN training processing

12

Data partitioning
Batch preparation
Data transferring
NN computation

1
2
3
4

Data management

4
6

7

9

8

5

1 2

3

6
75

1 2

3

4
6

7

9

8

3

63

6

5

94

7

CPU

1
2
3
4
5
6
7
8
9

1
2
3
5

4
6
7
8
9

5
6
7

3
4
5
6

Worker 1 Worker N

1

5

3

87

6

5

7

3 3

3

…

1

9

10

1
0

8

Graph Data
10

10 CPU

2 22

1

4 4GPU GPU
1

5
3

87
6

63

6
5

94
7

Actual computation

End-to-End GNN training
Step-level time breakdown

13

4
6

7

9

8

5

1 2

3

6
75

1 2

3

4
6

7

9

8

3

63

6

5

94

7

CPU

1
2
3
4
5
6
7
8
9

1
2
3
5

4
6
7
8
9

5
6
7

3
4
5
6

Worker 1 Worker N

1

5

3

87

6

5

7

3 3

3

…

1

9

10

1
0

8

Graph Data
10

10 CPU

2 22

1

4 4GPU GPU
1

5
3

87
6

63

6
5

94
7

$����& ��(��"'
$!�� �����!�% �����$�� �!)���

���!�%

	

�	

		

�
"$

���
*�
�'
&�
��
�
��
��
�

���

	���

���

	�
�

���

	�
�

���

	���

���

	���

��&����$&�&�"!�!�
�&����$�#�$�&�"!

��&���$�!%��$$�!�
����" #'&�&�"!

End-to-End GNN training
Step-level time breakdown

14

%����'
 �)��#(%"� �� �"�& �� �%��

�"*���� �"�&

	

	

		

�
#%

!
���

+�
�(

'�
��

�!
��

��
�

���

	���

���

	�
�

���

	�
�

���

	��

���

	���

���

	���

���

	���

���

	���

���

	���

���

	���

��'����%'�'�#"�"�
��'����%�$�%�'�#"

��'���%�"&��%%�"�
����#!$('�'�#"

End-to-End GNN training
Step-level time breakdown

15

%����'
 �)��#(%"� �� �"�& �� �%��

�"*���� �"�&

	

	

		

�
#%

!
���

+�
�(

'�
��

�!
��

��
�

���

	���

���

	�
�

���

	�
�

���

	��

���

	���

���

	���

���

	���

���

	���

���

	���

���

	���

��'����%'�'�#"�"�
��'����%�$�%�'�#"

��'���%�"&��%%�"�
����#!$('�'�#"

NN computation dominates DNN training

End-to-End GNN training
Step-level time breakdown

16

%����'
 �)��#(%"� �� �"�& �� �%��

�"*���� �"�&

	

	

		

�
#%

!
���

+�
�(

'�
��

�!
��

��
�

���

	���

���

	�
�

���

	�
�

���

	��

���

	���

���

	���

���

	���

���

	���

���

	���

���

	���

��'����%'�'�#"�"�
��'����%�$�%�'�#"

��'���%�"&��%%�"�
����#!$('�'�#"

NN computation dominates DNN training

End-to-End GNN training
Step-level time breakdown

17

%����'
 �)��#(%"� �� �"�& �� �%��

�"*���� �"�&

	

	

		

�
#%

!
���

+�
�(

'�
��

�!
��

��
�

���

	���

���

	�
�

���

	�
�

���

	��

���

	���

���

	���

���

	���

���

	���

���

	���

���

	���

��'����%'�'�#"�"�
��'����%�$�%�'�#"

��'���%�"&��%%�"�
����#!$('�'�#"

%����'
 �)��#(%"� �� �"�& �� �%��

�"*���� �"�&

	

	

		

�
#%

!
���

+�
�(

'�
��

�!
��

��
�

���

	���

���

	�
�

���

	�
�

���

	��

���

	���

���

	���

���

	���

���

	���

���

	���

���

	���

��'����%'�'�#"�"�
��'����%�$�%�'�#"

��'���%�"&��%%�"�
����#!$('�'�#"

Data management dominates GNN training

NN computation dominates DNN training

End-to-End GNN training
Step-level time breakdown

18

%����'
 �)��#(%"� �� �"�& �� �%��

�"*���� �"�&

	

	

		

�
#%

!
���

+�
�(

'�
��

�!
��

��
�

���

	���

���

	�
�

���

	�
�

���

	��

���

	���

���

	���

���

	���

���

	���

���

	���

���

	���

��'����%'�'�#"�"�
��'����%�$�%�'�#"

��'���%�"&��%%�"�
����#!$('�'�#"

Data management dominates GNN training

NN computation dominates DNN training

GNN Training Systems
GNN training system: development history

19

[1] DGL
[2] PyG
[3] AliGraph
[4] NeuGraph

[5] AGL
[6] DistDGL
[7] ROC
[8] PaGraph

[9] P3
[10] DistGNN
[11] DGCL
[12] Dorylus
[13] Pytorch-direct

[14] GNNLab
[15] ByteGNN
[16] BNS-GCN
[17] DistDGLv2
[18] NeutronStar
[19] Sancus
[20] SALIENT

[21] Betty
[22] MariusGNN
[23] Legion
[24] SALIENT++
[25] BGL

2020 2021 2022 20232019

[1]M Wang et al., Deep graph library: A graph-centric, highly-performant package for graph neural networks. arXiv 1009.01315
[2] M Fey et al., PyG: Fast graph representation learning with PyTorch Geometric. arXiv 1903.02428
[3] R Zhu et al., Aligraph: A comprehensive graph neural network platform VLDB'19
[4] L Ma et al., NeuGraph: Parallel deep neural network computation on large graphs. ATC'19
[5] D Zhang et al., AGL: a scalable system for industrial-purpose graph machine learning. VLDB'20.
[6] D Zheng et al., DistDGL: Distributed graph neural network training for billion-scale graphs. Arxiv 2010.05337.
[7] Z Jia et al., Improving the accuracy, scalability, and performance of graph neural networks with roc. MLSys'20
[8] Z Lin et al., Pagraph: Scaling gnn training on large graphs via computation-aware caching. SC'20
[9] S Gandhi et al., P3: Distributed deep graph learning at scale. OSDI'21
[10] V Md et al., Distgnn: Scalable distributed training for large-scale graph neural networks. SC'21
[11] Z Cai et al., DGCL: An efficient communication library for distributed GNN training. EuroSys'21
[12] J Thorpe et al., Dorylus: Affordable, scalable, and accurate GNN training with distributed CPU servers and serverless threads. OSDI'21

[13] SW Min et al., Large graph convolutional network training with GPU-oriented data communication architecture. VLDB'21
[14] J Yang et al., GNNLab: a factored system for sample-based GNN training over GPUs. EuroSys '22
[15] C Zheng et al., ByteGNN: efficient graph neural network training at large scale. VLDB'22
[16] C Wan et al., Bns-gcn: Efficient full-graph training of graph convolutional networks with partition-parallelism and random boundary node sampling. MLSYS'22
[17] D Zheng et al., Distributed hybrid cpu and gpu training for graph neural networks on billion-scale heterogeneous graphs. KDD'22
[18] Q Wang et al., Neutronstar: distributed GNN training with hybrid dependency management. SIGMOD'22
[19] J Peng et al., Sancus: sta le n ess-aware c omm u nication-avoiding full-graph decentralized training in large-scale graph neural networks. VLDB'22
[20] T Kaler et al., Accelerating training and inference of graph neural networks with fast sampling and pipelining. MLSYS'22
[21] S Yang et al., Betty: Enabling large-scale gnn training with batch-level graph partitioning. ASPLOS'23
[22] R Waleffe et al., Mariusgnn: Resource-efficient out-of-core training of graph neural networks. EuroSys'23
[23] J Sun et al., Legion: Automatically Pushing the Envelope of Multi-GPU System for Billion-Scale GNN Training. ATC'23
[24] Tim Kaler et al., Communication-Efficient Graph Neural Networks with Probabilistic Neighborhood Expansion Analysis and Caching. MLSYS'23
[25] T Liu et al., BGL: GPU-Efficient GNN training by optimizing graph data I/O and preprocessing. NSDI'23

GNN Training Systems
GNN training system: development history

20

[1] DGL
[2] PyG
[3] AliGraph
[4] NeuGraph

[5] AGL
[6] DistDGL
[7] ROC
[8] PaGraph

[9] P3
[10] DistGNN
[11] DGCL
[12] Dorylus
[13] Pytorch-direct

[14] GNNLab
[15] ByteGNN
[16] BNS-GCN
[17] DistDGLv2
[18] NeutronStar
[19] Sancus
[20] SALIENT

[21] Betty
[22] MariusGNN
[23] Legion
[24] SALIENT++
[25] BGL

2020 2021 2022 20232019

Partitioning

Mini-batch

Full-batch

Pipelining Zero-copy

Unified memory

Sampling

Cache

Fanout

Dependency Management

Lots of optimization techniques

GNN Training Systems
High-level summary of our work

21

Data Partitioning Data Transferring

System Evaluation: Data Management Perspective

[3] AliGraph
[6] DistDGL
[9] P3

[15] ByteGNN
[24] SALIENT++
[25] BGL

[9] P3
[6] DistDGL
[8] PaGraph
[14] GNNLab

[15] ByteGNN
[16] BNS-GCN
[24] SALIENT++

[8] PaGraph
[13] Pytorch-direct
[14] GNNLab
[15] ByteGNN
[17] DistDGLv2

[21] Betty
[22] MariusGNN
[23] Legion
[24] SALIENT++
[25] BGL

[1] DGL
[2] PyG
[3] AliGraph
[4] NeuGraph

[5] AGL
[6] DistDGL
[7] ROC
[8] PaGraph

[9] P3
[10] DistGNN
[11] DGCL
[12] Dorylus
[13] Pytorch-direct

[14] GNNLab
[15] ByteGNN
[16] BNS-GCN
[17] DistDGLv2

[18] NeutronStar
[19] Sancus
[20] SALIENT

[21] Betty
[22] MariusGNN
[23] Legion
[24] SALIENT++
[25] BGL

2020 2021 2022 20232019

Batch Preparation

Experimental Setup
Platforms, algorithms, graph dataset, and environment

22

Platforms:
A 4-node Aliyun ECS cluster1 (Each: 40 vCPUs, 155GB RAM, 1 NVIDIA-T4 GPU)

Algorithms and graphs:
□ 2 Graph Neural Networks

GCN, GraphSAGE
□ 9 real-world graphs.

Environment
□ Ubuntu 20.04 LTS
□ CUDA 11.3

1 Clusters are connected via 10GigE

Data Partitioning

23

Part1: Data Partitioning

4
6

7

9

8

5

1 2

3

6
75

1 2

3

4
6

7

9

8

3

63

6

5

94

7

CPU

1
2
3
4
5
6
7
8
9

1
2
3
5

4
6
7
8
9

5
6
7

3
4
5
6

Worker 1 Worker N

1

5

3

87

6

5

7

3 3

3

…

1

9

10

1
0

8

Graph Data
10

10 CPU

2 22

1

4 4GPU GPU
1

5
3

87
6

63

6
5

94
7

All vertices + 1-hop neighbors

Data Partitioning
Compute Patterns in Graph Computations and GNNs

24

(b) Computation pattern of GNNs

A
B

(a) Computation pattern of
graph computation

GNN and graph computation have different compute patterns

Labeled vertices + L-hop subgraphs

Data Partitioning
Traditional graph partitioning is not suitable for GNN training

25

(a) Minimum edge-cut partitioning for
graph computation

M
ac

hi
ne

1
M

ac
hi

ne
2

Data Partitioning
Traditional graph partitioning is not suitable for GNN training

26

M
ac

hi
ne

1
M

ac
hi

ne
2

✅

(a) Minimum edge-cut partitioning for
graph computation

p Balanced computational load

p Minimized communication volume

Data Partitioning
Traditional graph partitioning is not suitable for GNN training

27

M
ac

hi
ne

1
M

ac
hi

ne
2

✅

(b) Minimum edge-cut partitioning
for GNNs

(a) Minimum edge-cut partitioning for
graph computation

M
ac

hi
ne

1
M

ac
hi

ne
2 A

B

p Balanced computational load

p Minimized communication volume

Data Partitioning
Traditional graph partitioning is not suitable for GNN training

28

M
ac

hi
ne

1
M

ac
hi

ne
2

✅

(b) Minimum edge-cut partitioning
for GNNs

M
ac

hi
ne

1
M

ac
hi

ne
2 A

B

(a) Minimum edge-cut partitioning for
graph computation

p Balanced computational load

p Minimized communication volume

p Imbalanced computational load

Data Partitioning
Traditional graph partitioning is not suitable for GNN training

29

M
ac

hi
ne

1
M

ac
hi

ne
2

✅

M
ac

hi
ne

1
M

ac
hi

ne
2 A

B❌

(a) Minimum edge-cut partitioning for
graph computation

p Imbalanced computational load

p High communication volume

(b) Minimum edge-cut partitioning
for GNNs

p Balanced computational load

p Minimized communication volume

Data Partitioning
Existing methods

30

(1) Hash: randomly assign vertices or edges.

(2) Metis-extend: extends Metis by adding
additional constraints to balance vertices and
edges.

(3) Streaming: Dynamically partitions the
graph by setting different scoring functions.

Summary of evaluated partitioning methods

Method Strategy Representative
System

Hash Randomly assign vertices or edges P3

Metis-V Extend Metis by adding constraints on
training vertex masks. N/A

Metis-VE
Extend Metis by adding constraints on
training vertex masks and vertex
degrees.

DistDGL

Metis-
VET

Extend Metis by adding constraints on
training/validation/test vertex masks and
vertex degrees.

SALIENT++

Stream-
V

Assign vertex v to a partition P that has
the most edges connected to v. while
balancing the number of train vertices
and caching L-hop neighbors.

PaGraph

Stream-
B

Assign a block B of vertices to a partition
P that has the most edges connected to
B. while balancing the number of
train/val/test vertices.

ByteGNNS Gandhi et al., P3: Distributed deep graph learning at scale. OSDI’21
D Zheng et al., DistDGL: Distributed graph neural network training for billion-scale graphs. Arxiv 2010.05337.
Tim Kaler et al., Communication-Efficient Graph Neural Networks with Probabilistic Neighborhood Expansion Analysis and Caching. MLSYS'23
Z Lin et al., Pagraph: Scaling gnn training on large graphs via computation-aware caching. SC'20
C Zheng et al., ByteGNN: efficient graph neural network training at large scale. VLDB'22

Data Partitioning
Computational and communication load analysis

31

(a) Amazon (b) Products (a) Amazon (b) Products
Computational load of different partitioning methods. Communication load of different partitioning methods.

p Hash partitioning achieves optimal load balancing, but it also has the highest workload.
p Metis-extend achieves minimal computational and communication load.
p Streaming partitioning suffers from workload imbalance on power-law graphs.

Data Partitioning
Computational and communication load analysis

32

p Hash partitioning achieves optimal load balancing, but it also has the highest workload.
p Metis-extend achieves minimal computational and communication load.
p Streaming partitioning suffers from workload imbalance on power-law graphs.

Computational load of different partitioning methods. Communication load of different partitioning methods.
(a) Amazon (b) Products (a) Amazon (b) Products

Ø Partitioning densely connected vertices into the same partition can
significantly reduce computational and communication load.

Ø Existing graph partitioning methods all suffer from an imbalanced
communication load.

Data Partitioning
Effect to accuracy

Model accuracy under different partition methods.

Graph partitioning does not affect the accuracy.

33

The accuracy difference across different partitioning methods is less than 1%.

Time-to accuracy

Batch Preparation

34

Part2: Batch Preparation

4
6

7

9

8

5

1 2

3

6
75

1 2

3

4
6

7

9

8

3

63

6

5

94

7

CPU

1
2
3
4
5
6
7
8
9

1
2
3
5

4
6
7
8
9

5
6
7

3
4
5
6

Worker 1 Worker N

1

5

3

87

6

5

7

3 3

3

…

1

9

10

1
0

8

Graph Data
10

10 CPU

2 22

1

4 4GPU GPU
1

5
3

87
6

63

6
5

94
7

Batch Preparation
Batch size

35

4
6

7
9

8

5

1
2

3

10

Input Graph
5

1

3

6

7

4

6

7

7

93

batch size = 1

5

1

3

6

7

4

7

9

batch size = 2

1 update per epoch2 updates per epoch

p Small batch size has higher model update frequency
p Large batch size contain more information.

Batch Preparation
Batch size

36

Accuracy and convergence speed with varying batch size
(a) Reddit (b) Products

p Small batch sizes converges quickly but have low accuracy.
p Large batch sizes converges slowly but have high accuracy.

Batch Preparation
Batch size

37

Ø Small batch size: larger gradients, faster descent direction finding.
Ø Large batch size: smaller gradients, better convergence to optimal point.

Accuracy and convergence speed with varying batch size
(a) Reddit (b) Products

p Small batch sizes converges quickly but have low accuracy.
p Large batch sizes converges slowly but have high accuracy.

Batch Preparation
Sampling

38

Sampling significantly reduces the training graph size

4
6

7

9

8

5

1
2

3

10

Input Graph

1

3

6

4

5

8

5 6 7 8

1

3

5

6

5 7 8

Computational graph for
vertex 5

Sampled subgraph for
vertex 5 (fanout = 2)

Batch Preparation
Fanout

39

p Small fanout converges quickly but has low accuracy.
p Large fanout converges slowly but has high accuracy.

Accuracy and convergence speed with varying fanout

Batch Preparation
Fanout

40

p Small fanout converges quickly but has low accuracy.
p Large fanout converges slowly but has high accuracy.

Accuracy of high and low degree vertices

p Low-degree vertices achieve higher accuracy with a
smaller fanout.

p High-degree vertices achieve higher accuracy with a
larger fanout.

Accuracy and convergence speed with varying fanout

41

Fixed fanout is disadvantageous for power-law graphs.

Batch Preparation
Fanout

p Small fanout converges quickly but has low accuracy.
p Large fanout converges slowly but has high accuracy.

Accuracy of high and low degree vertices

Accuracy and convergence speed with varying fanout

p Low-degree vertices achieve higher accuracy with a
smaller fanout.

p High-degree vertices achieve higher accuracy with a
larger fanout.

Batch Preparation
Adaptive batch size and fanout-rate hybrid sampling

Convergence speed Increased by 1.52-1.64x

Performance with adaptive batch size

Performance with fanout-rate hybrid sampling

Convergence speed Increased by 1.74x

Dynamic parameter tuning further improves model training efficiency.

42

Data Transferring

43

Part3: Data Transferring

4
6

7

9

8

5

1 2

3

6
75

1 2

3

4
6

7

9

8

3

63

6

5

94

7

CPU

1
2
3
4
5
6
7
8
9

1
2
3
5

4
6
7
8
9

5
6
7

3
4
5
6

Worker 1 Worker N

1

5

3

87

6

5

7

3 3

3

…

1

9

10

1
0

8

Graph Data
10

10 CPU

2 22

1

4 4GPU GPU
1

5
3

87
6

63

6
5

94
7

Data Transferring
Data transferring process

44

4
6

7

9

8

5

1
2

3

10

GPU
1

5

3

87

6

Feature Extraction: Irregular memory access
Data Transfer: Redundant communication overhead

Sampled subgraph

Extracted features

Graph Data

1
2
3
4
5
6
7
8
9

10

6
1
7

3
5

8

1

Batch Data

2

1

2

Data Transferring
Existing methods

45

Implicit Transfer

CPU Memory

Cache-based Data Reusing

CPU

Sample

1
PCIe
GPU

1
1

Transfer Train

2
2

2

Vanilla Version

CPU 1
PCIe
GPU

1
1

2
2

2

Pipeline Version
3

3
3

Fully pipelined
from this point

Time

…

main-memory

GPU

Unified Memory Zero-copy

Task Pipeling

1

5

3

87

6

… …

Cached Data

GPU Memory

…… ……6
1
7

3
5

8

SW Min et al., Large graph convolutional network training with GPU-oriented data communication architecture. VLDB'21
Q Wang, et al., HyTGraph: GPU-Accelerated Graph Processing with Hybrid Transfer Management. ICDE'23
J Yang et al., GNNLab: a factored system for sample-based GNN training over GPUs. EuroSys '22
Z Lin et al., Pagraph: Scaling gnn training on large graphs via computation-aware caching. SC'20
T Kaler et al., Accelerating training and inference of graph neural networks with fast sampling and pipelining. MLSYS'22
R Waleffe et al., Mariusgnn: Resource-efficient out-of-core training of graph neural networks. EuroSys’23

Data Transferring
Implicit transfer method

46

Unified memory unsuitable for large-scale datasets due to
high page migration overhead.

Unified memory is 1.21x faster on small-scale and
10.59x slower on large-scale datasets for per-epoch
runtime compared to zero-copy.

reddit arxiv products lj-large enwikilj-links
Per-epoch runtime comparison: zero-copy vs. unified memory.

Data Transferring
Cache-based data reusing

47

The pre-sampling-based caching method offers
better performance and robustness.

Performance comparison of caching policies.

Data Transferring
Task pipelining

48

Opportunity: orchestrate CPU and GPU workloads for
improved pipeline performance.

Pipeline training ablation study.

The effect of pipeline optimization is not outstanding (less than 50% improvement)

Comprehensive Evaluation of GNN Training Systems: A Data Management Perspective.
□ Evaluation of optimization techniques in GNN systems

we conduct a comprehensive evaluation of the optimization techniques adopted by existing GNN systems
from a data management perspective.

Summary

49

Comprehensive Evaluation of GNN Training Systems: A Data Management Perspective.
□ Evaluation of optimization techniques in GNN systems

we conduct a comprehensive evaluation of the optimization techniques adopted by existing GNN systems
from a data management perspective.

□ Lessons learned for designing future GNN training systems
We provide some practical tips learned from the experiment results, which are helpful for designing GNN
training systems in the future.

Summary

50

Comprehensive Evaluation of GNN Training Systems: A Data Management Perspective.
□ Evaluation of optimization techniques in GNN systems

we conduct a comprehensive evaluation of the optimization techniques adopted by existing GNN systems
from a data management perspective.

□ Lessons learned for designing future GNN training systems
We provide some practical tips learned from the experiment results, which are helpful for designing GNN
training systems in the future.

Summary

• Partitioning densely connected vertices together can effectively reduce computation but may disrupt load
balancing.

• There are significant differences in the accuracy and convergence speed of GNN under different
parameter settings.

• Adaptive batch size and hybrid sampling training methods can accelerate convergence without sacrificing
accuracy.

• There is an opportunity to improve pipeline performance by orchestrate CPU and GPU workloads.

51

Comprehensive Evaluation of GNN Training Systems: A Data Management Perspective.
□ Evaluation of optimization techniques in GNN systems

we conduct a comprehensive evaluation of the optimization techniques adopted by existing GNN systems
from a data management perspective.

□ Lessons learned for designing future GNN training systems
We provide some practical tips learned from the experiment results, which are helpful for designing GNN
training systems in the future.

□ The codes are publicly available on github.
https://github.com/iDC-NEU/NeutronBench

Summary

• Partitioning densely connected vertices together can effectively reduce computation but may disrupt load
balancing.

• There are significant differences in the accuracy and convergence speed of GNN under different
parameter settings.

• Adaptive batch size and hybrid sampling training methods can accelerate convergence without sacrificing
accuracy.

• There is an opportunity to improve pipeline performance by orchestrate CPU and GPU workloads.

52

https://github.com/iDC-NEU/NeutronBench

Questions

Thanks for your listening

53

