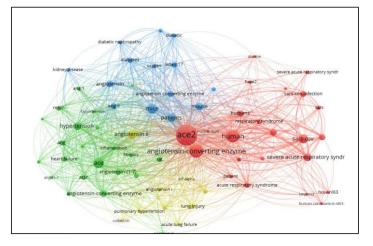


NeutronOrch: Rethinking Sample-based GNN Training under CPU-GPU Heterogeneous Environments

Xin Ai, Qiange Wang, Chunyu Cao, Yanfeng Zhang, Chaoyi Chen, Hao Yuan, Yu Gu, Ge Yu School of Computer Science and Engineering Northeastern University, Shenyang, China

Graph Neural Network

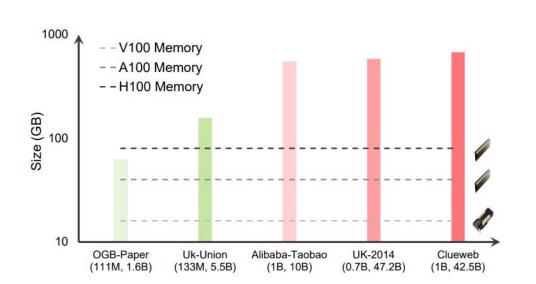
(a) Social Networks



(b) Knowledge Graph

(c) Biological networks

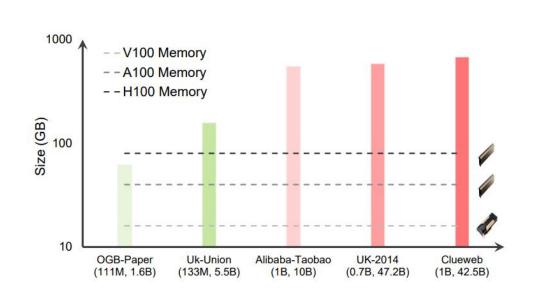
Challeng from Industry

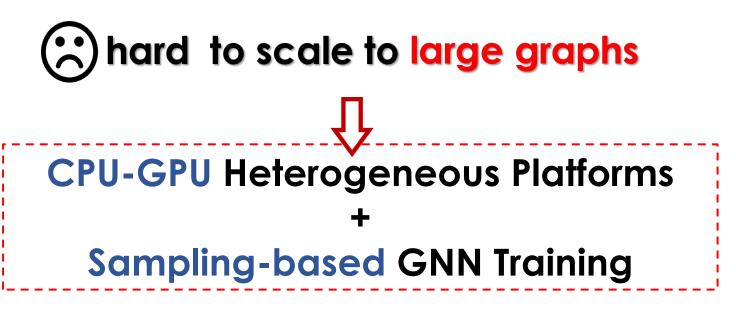


GNN dataset size and current GPU capacities [Legion:ATC'23]

hard to scale to large graphs

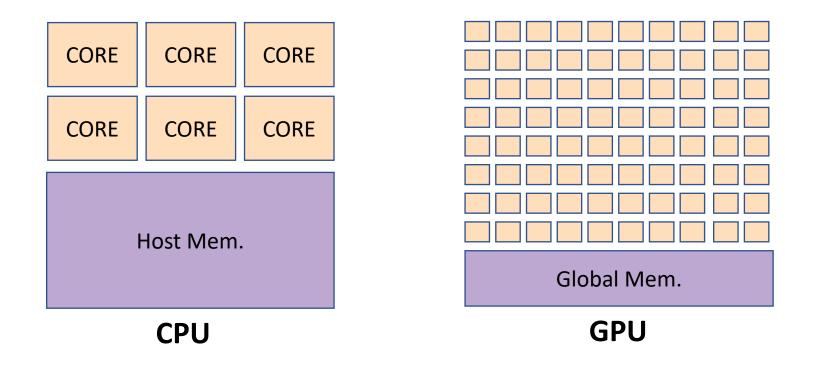
Challeng from Industry





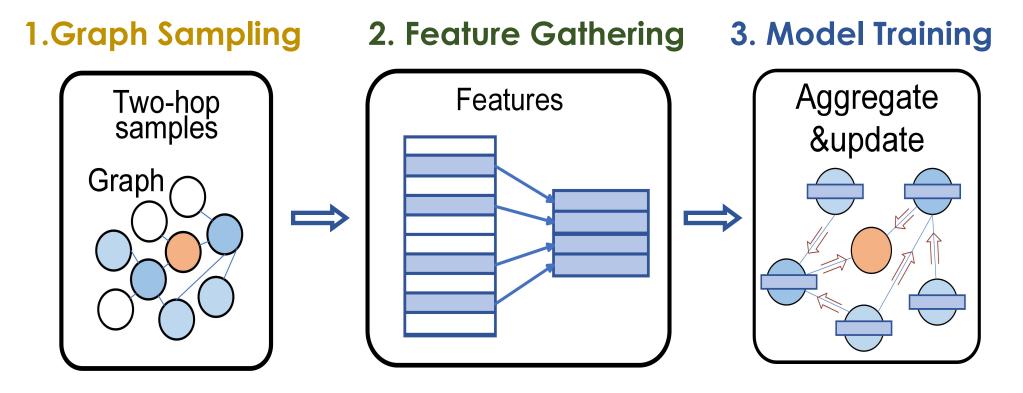
GNN dataset size and current GPU capacities [Legion:ATC'23]

CPU and GPU



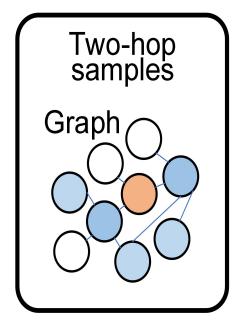
CPU: Large Memory Capacity(main memory); Low Parallelism
 GPU: Limited Memory Capacity; High Parallelism

• Three Key Steps:

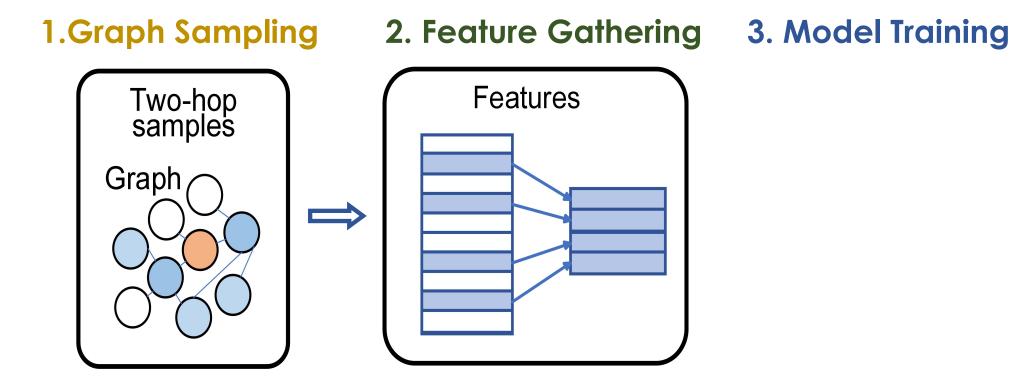


- Three Key Steps:
 - 1.Graph Sampling

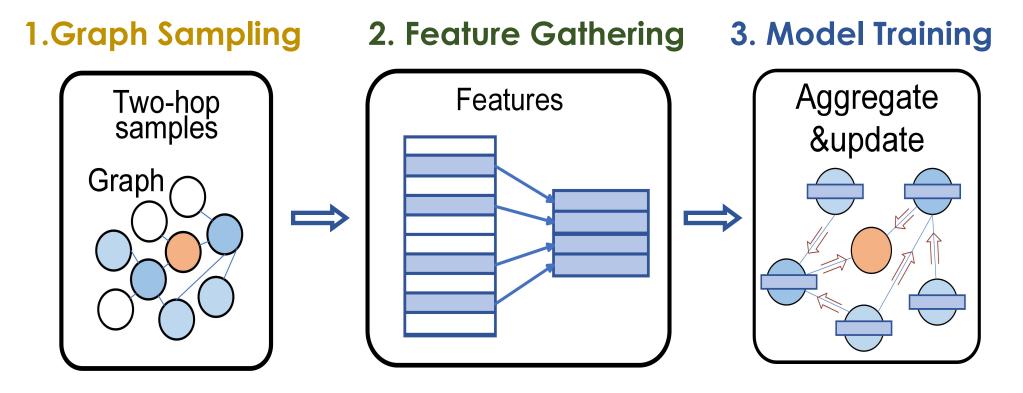
2. Feature Gathering 3. Model Training



• Three Key Steps:

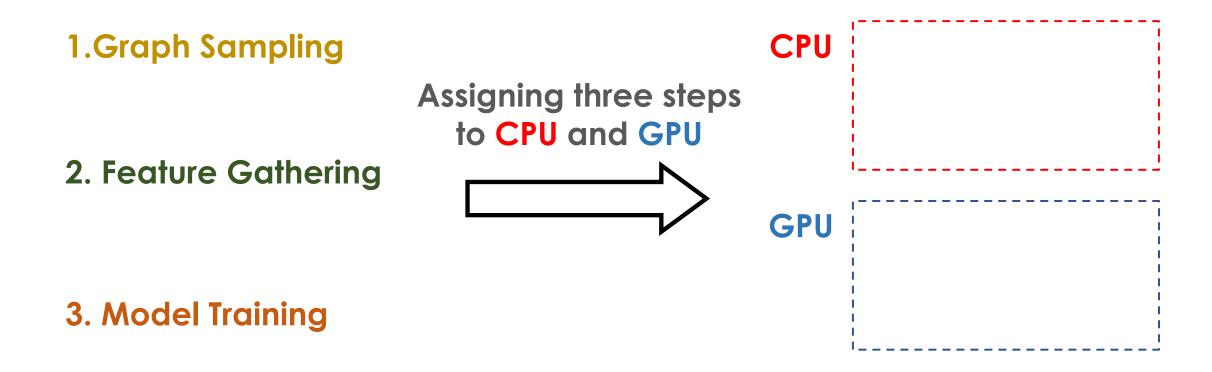


• Three Key Steps:



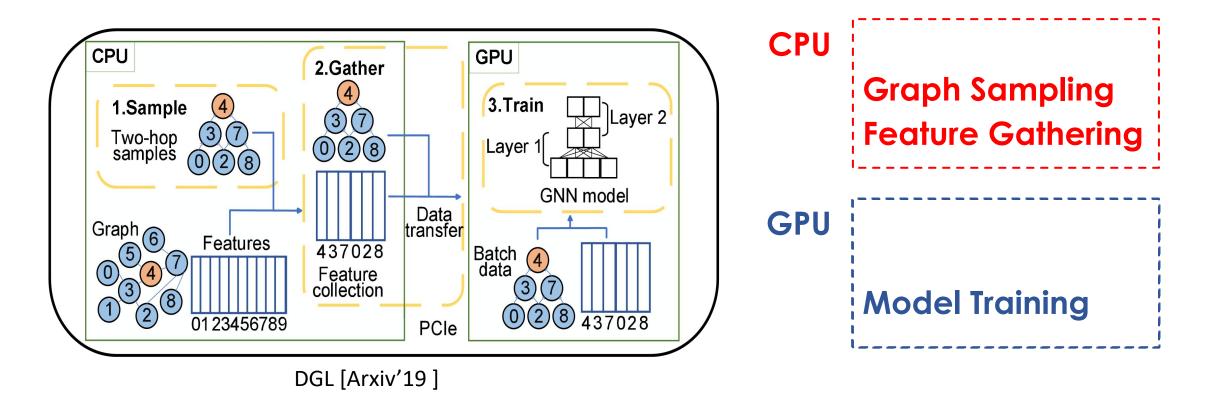
Existing GNN Systems

Step-based task orchestrating methods

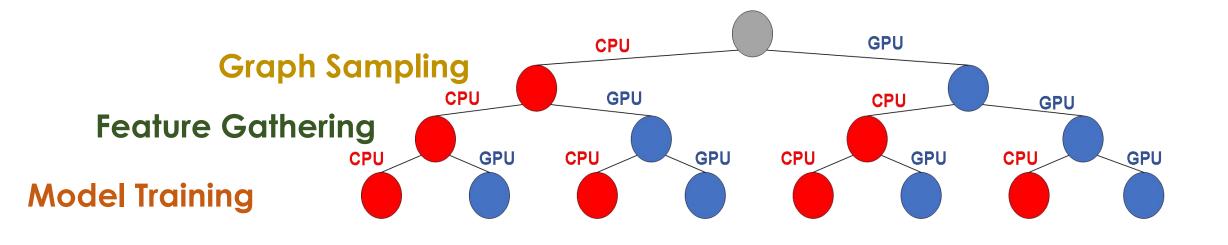


Existing GNN Systems

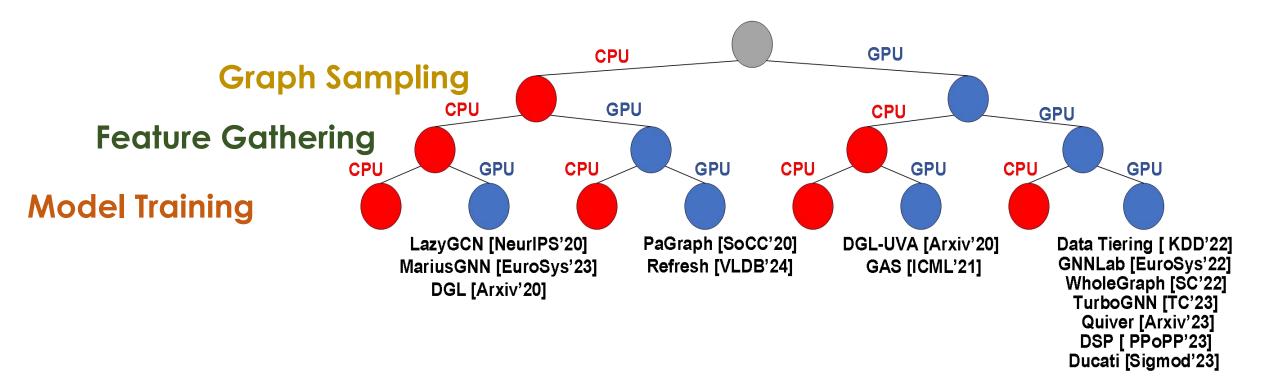
Step-based task orchestrating methods



Task Orchestrating Method Classification

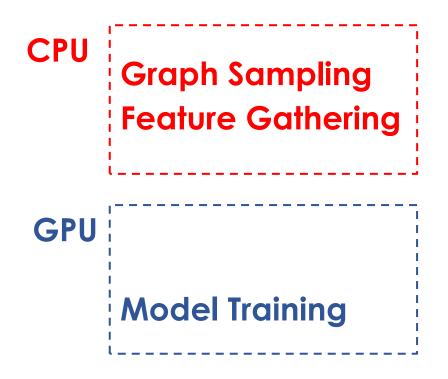


Task Orchestrating Method Classification



Existing task orchestrating methods contain mainly four cases

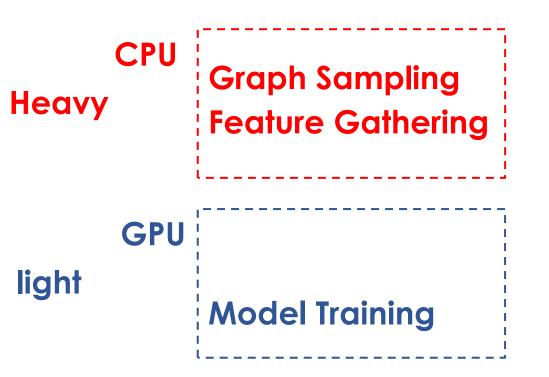
Case 1: Placing Sample and Gather on CPUs



Graph Sampling and Feature Gather occupy 80.5 % of the total runtime

Dataset	Sample	Gather (FC)	Gather (FT)	Total
Reddit	2.7/11%	9.1/38%	6.0/25%	23.7
Lj-large	128.8/14%	384.4/41%	252.5/27%	935.3
Orkut	78.8/10%	384.3/48%	249.1/31%	813.3
Wikipedia	209.4/12%	651.8/40%	570.9/33%	1669.1
Products	9.9/37%	7.2/27%	4.1/15%	26.8
Papers100M	11.5/32%	8.6/24%	6.4/18%	36.84

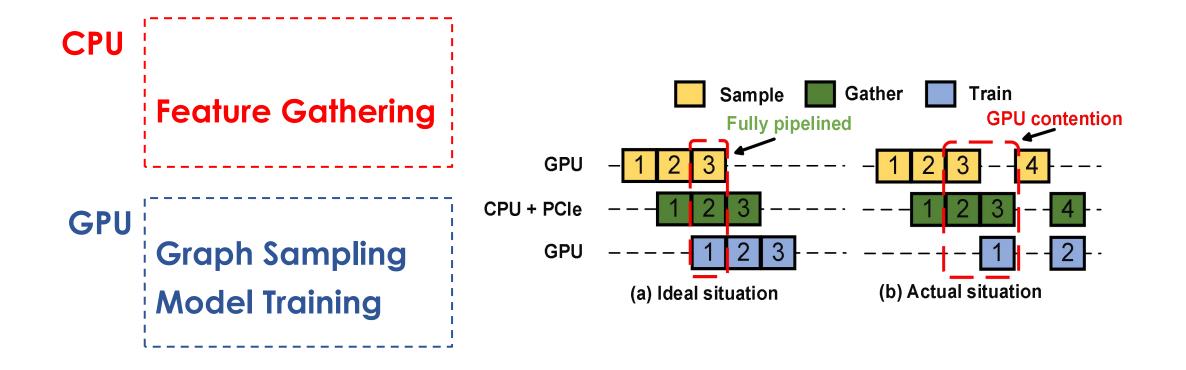
Case 1: Placing Sample and Gather on CPUs

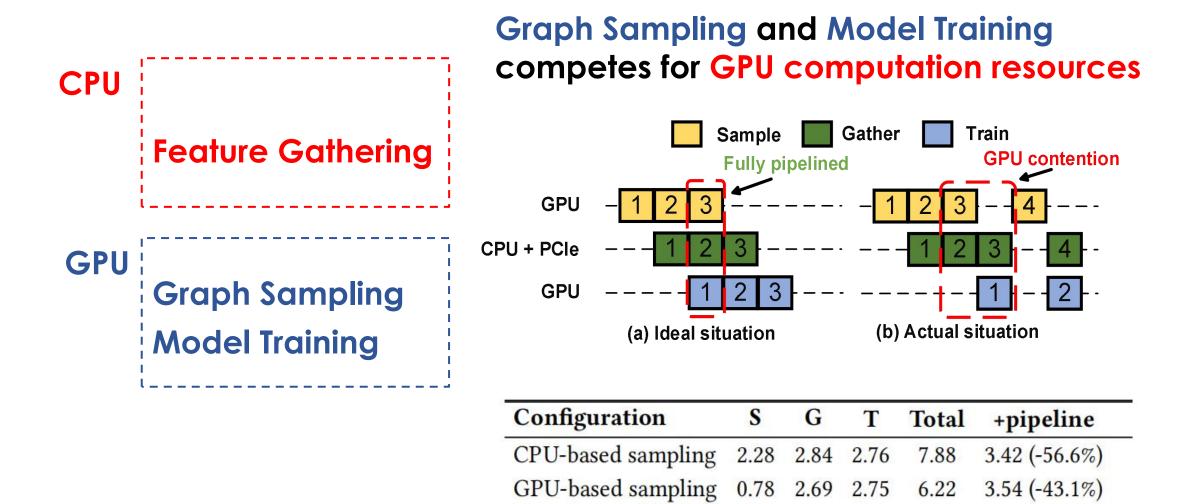


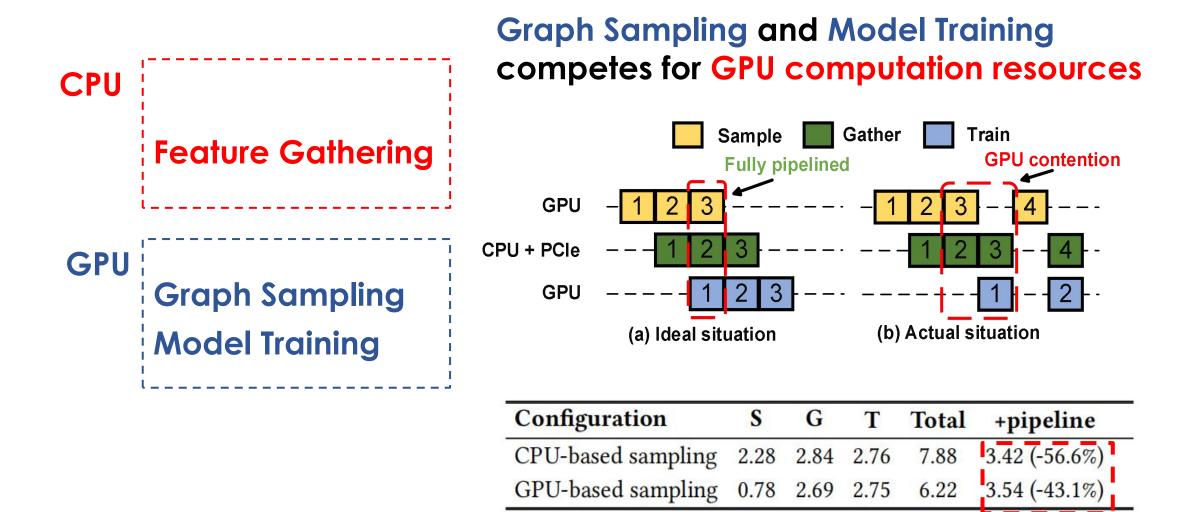
Dataset	Sample	Gather (FC)	Gather (FT)	Total
Reddit	2.7/11%	9.1/38%	6.0/25%	23.7
Lj-large	128.8/14%	384.4/41%	252.5/27%	935.3
Orkut	78.8/10%	384.3/48%	249.1/31%	813.3
Wikipedia	209.4/12%	651.8/40%	570.9/33%	1669.1
Products	9.9/37%	7.2/27%	4.1/15%	26.8
Papers100M	11.5/32%	8.6/24%	6.4/18%	36.84

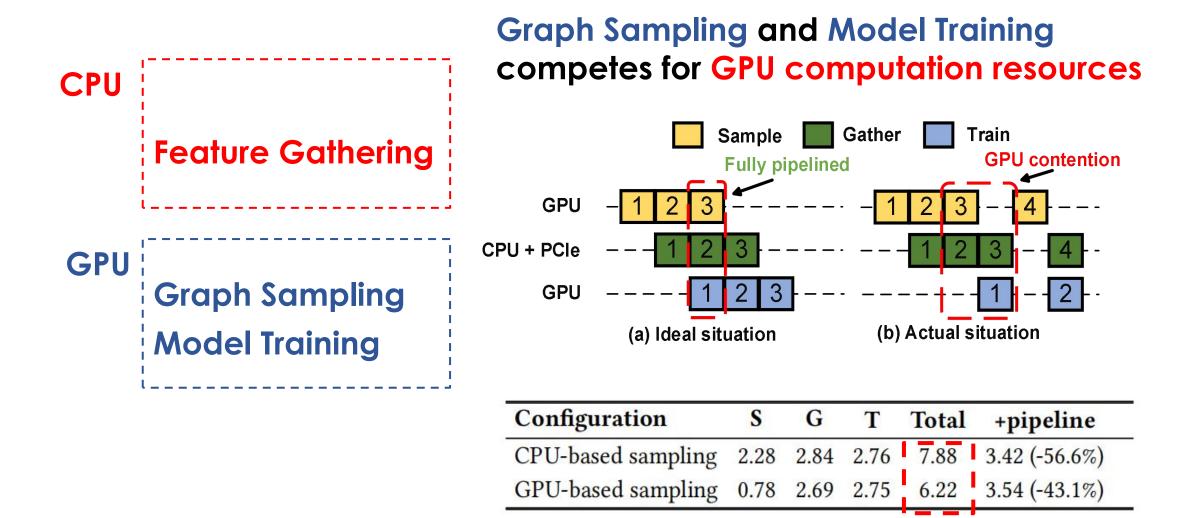
Issues: • inefficient CPU processing

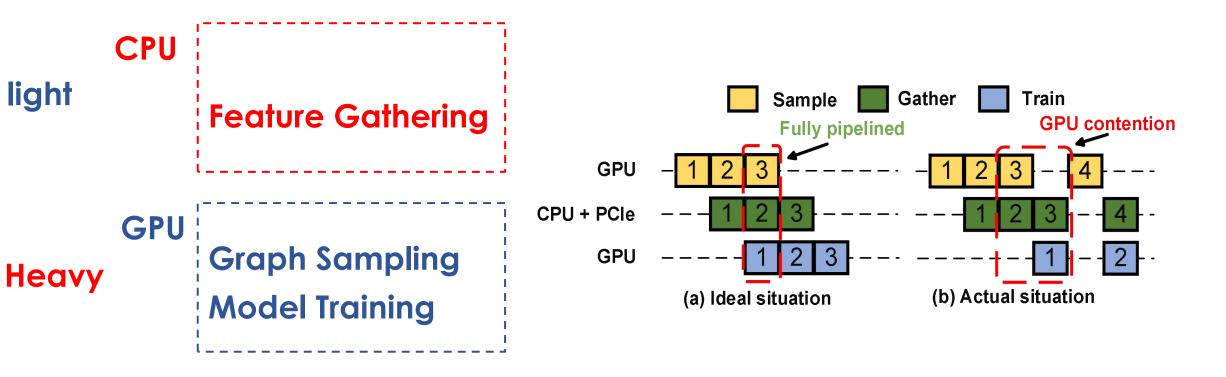
• Low GPU utilization



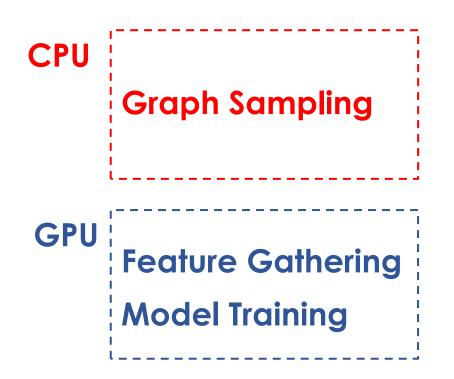




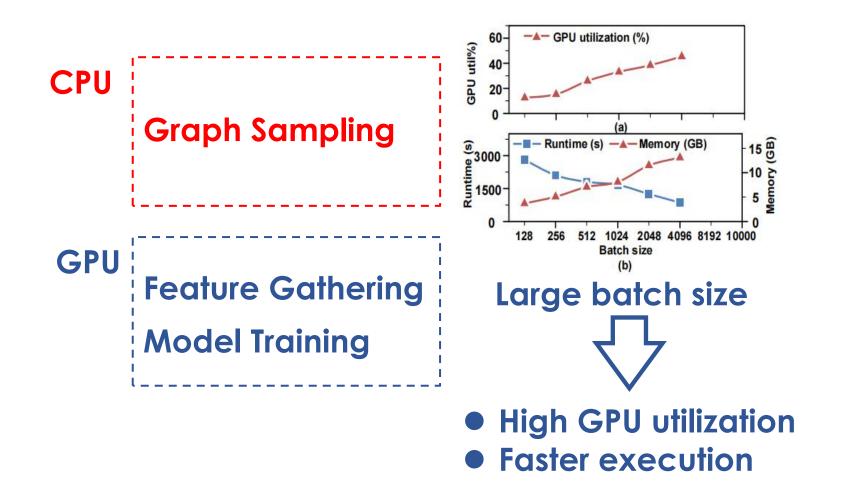


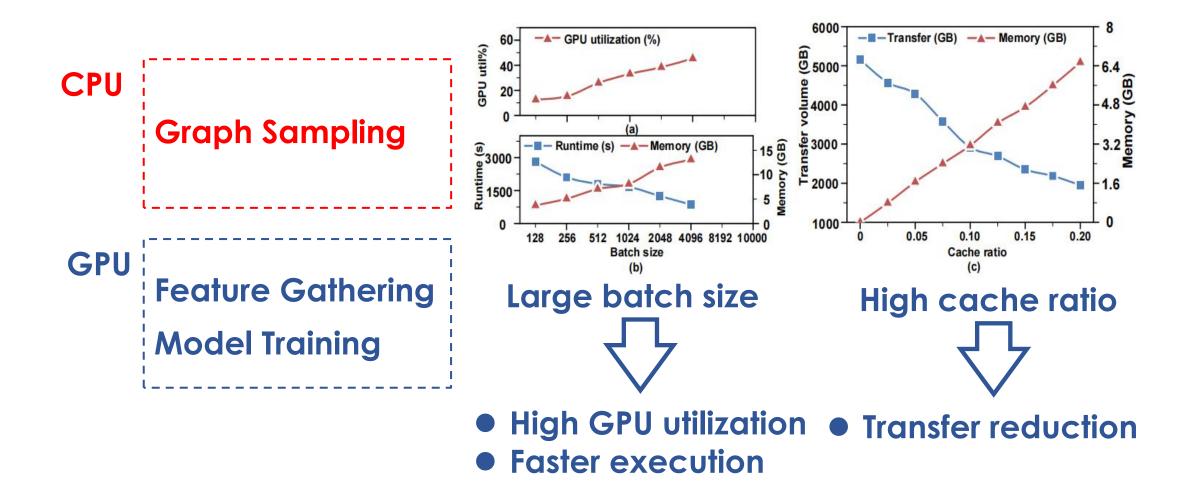


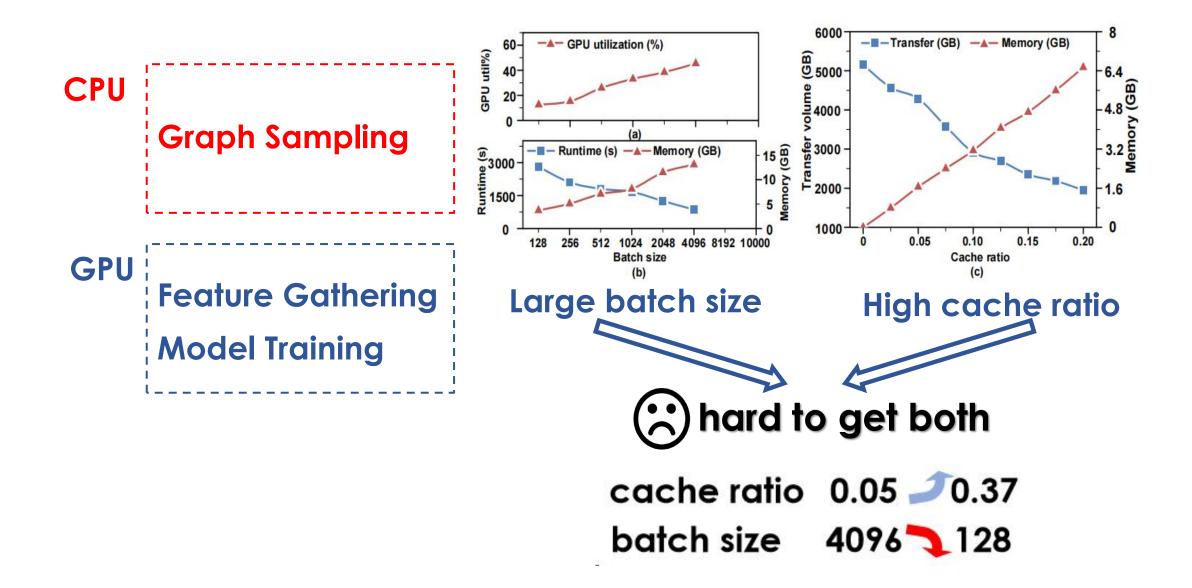
ISSUES: • GPU resource contention

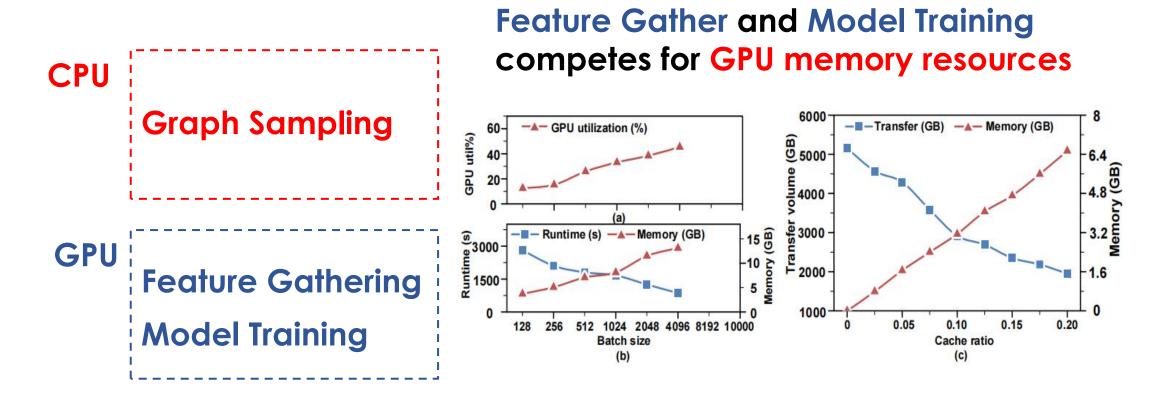


Feature Gather and Model Training competes for GPU memory resources



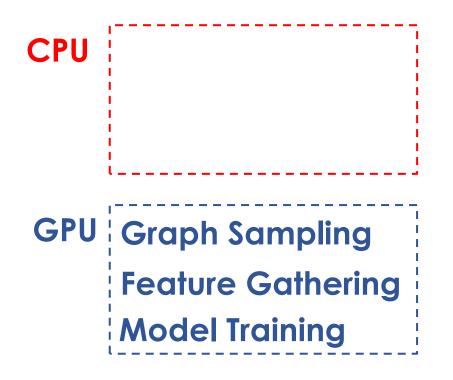






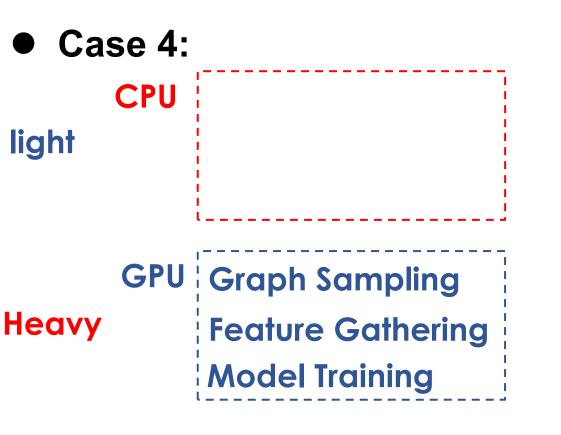
ISSUES: • GPU memory contention

Case 4: Placing Sample and Gather on GPUs



Placing all three steps on the GPU suffers from GPU memory and resource contention in case 3 and case 4

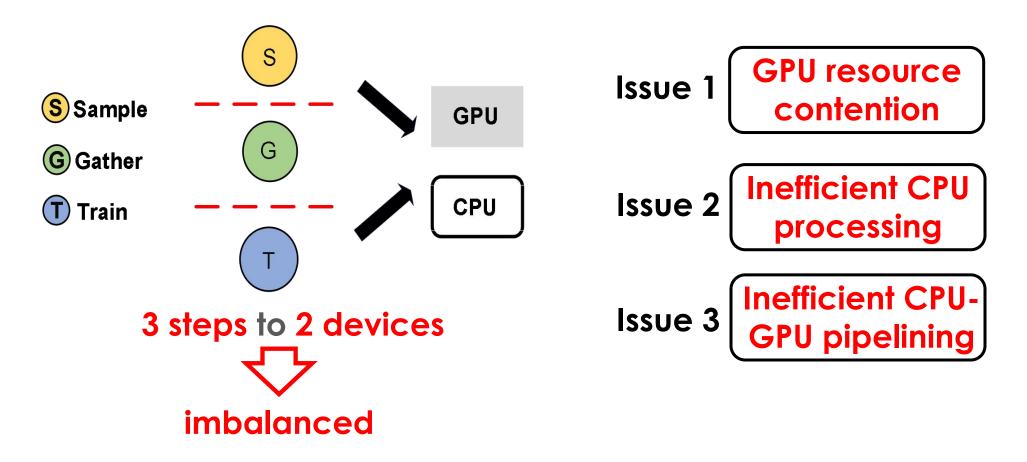
Case 4: Placing Sample and Gather on GPUs



Placing all three steps on the GPU suffers from GPU memory and resource contention in case 3 and case 4

Issues: GPU memory and resource contention
CPU idle

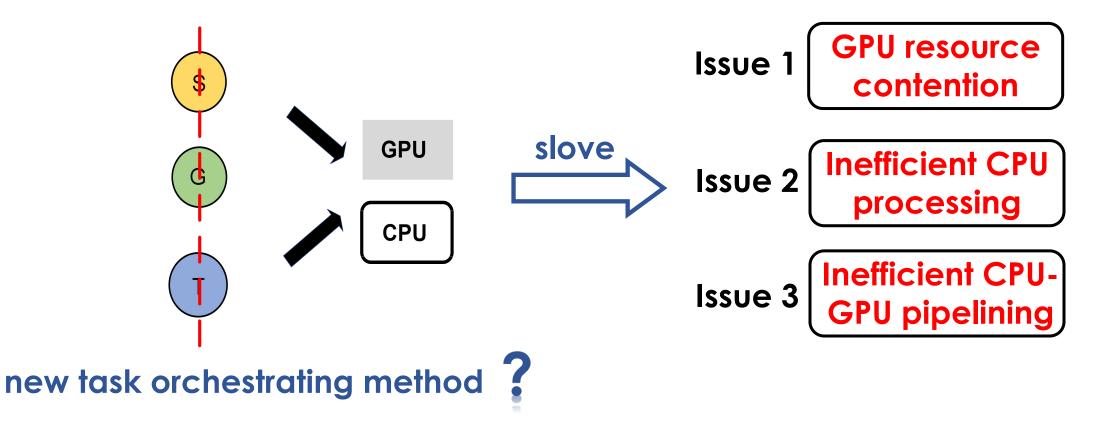
Step-based task orchestrating leads to an imbalanced allocation of computational and memory resources



NeutronOrch

Goal:

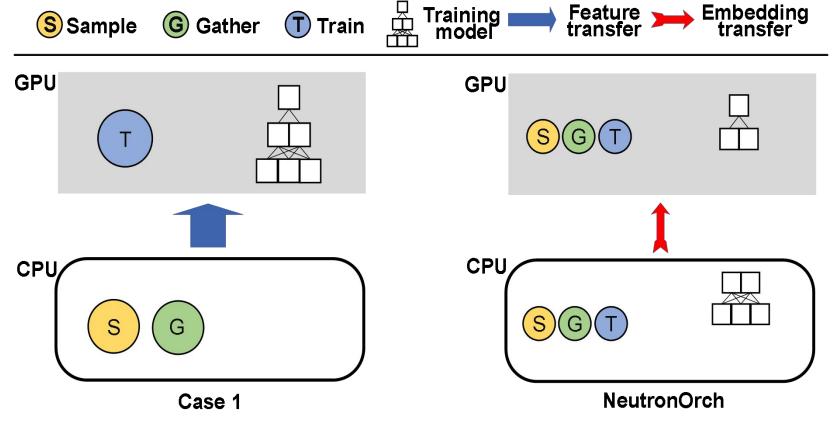
 Design a new task orchestrating method that avoids dividing takes by step and fully utilizes heteogeneous resources



NeutronOrch

Contributions:Issue 1GPU resource
contention1: Hotness-aware layer-based
task OrchestratingIssue 1Inefficient CPU
processing2: Super-batch pipelined
trainingIssue 3Inefficient CPU-
GPU pipelining

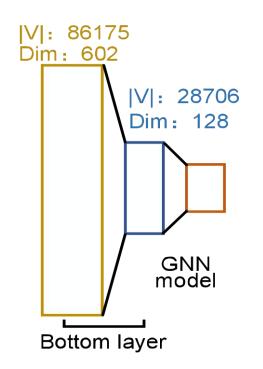
We decouple the training task by layers and employ the computation of each sub-task (sample-gather-train) to a specific device



Offload bottom layer to CPU based on two observations:

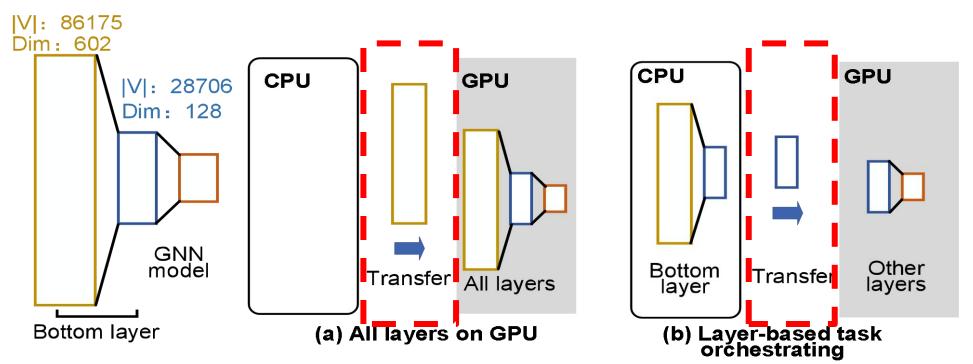
Offload bottom layer to CPU based on two observations:

 vertices grows exponentially across layers and bottom layer constitutes over 50% of the training workload

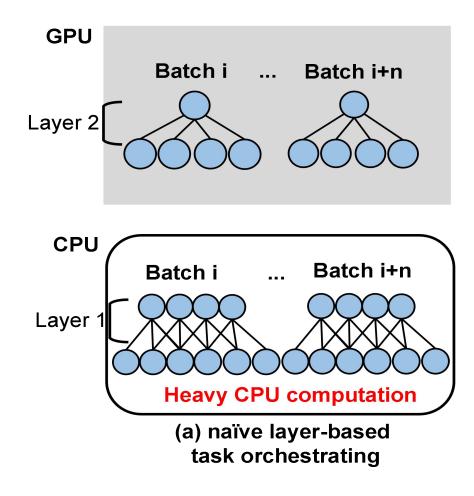


Offload bottom layer to CPU based on two observations:

- vertices grows exponentially across layers and bottom layer constitutes over 50% of the training workload
- CPU-GPU transfer overhead decreases as transferring computed embeddings instead of raw features



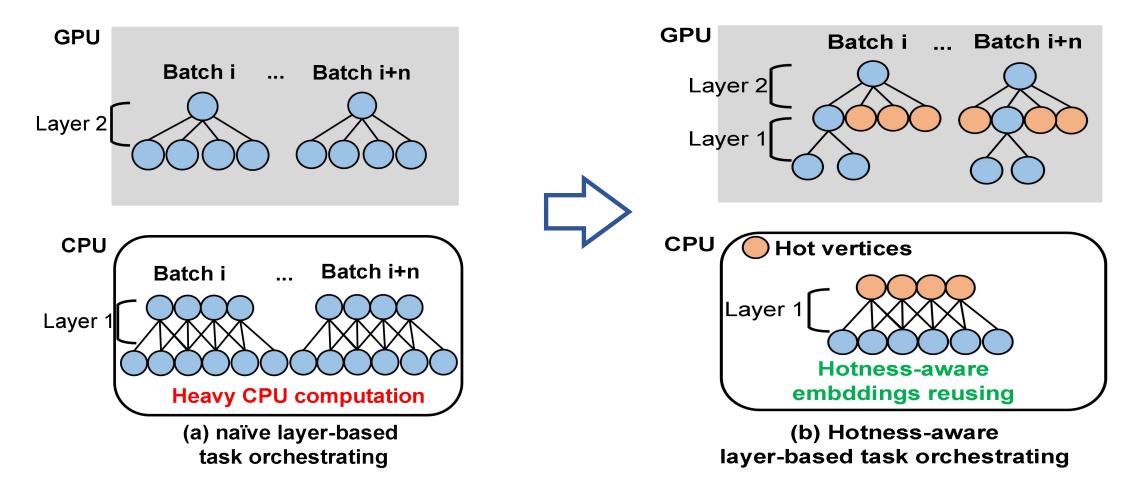
Executing a complete bottom layer in the CPU may cause the CPU processing a new bottleneck



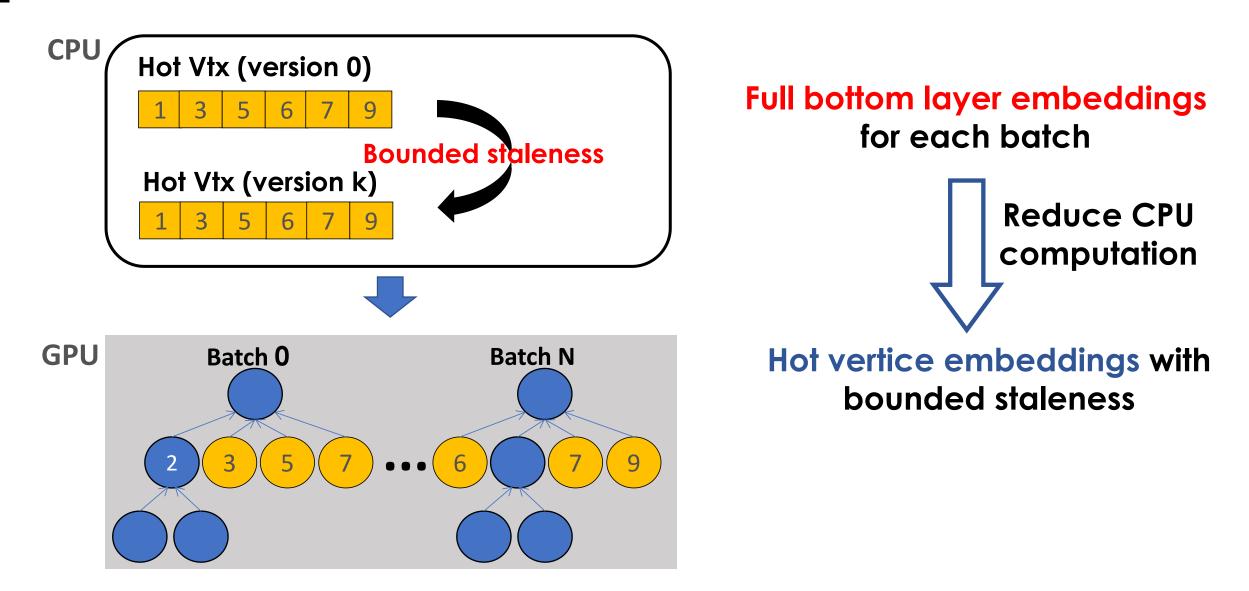
Hotness-aware Embedding Reusing

Issue 2 Inefficient CPU processing

Selectively compute the embedding of frequently accessed vertices and reusing them across batches



Hotness-aware Embedding Reusing



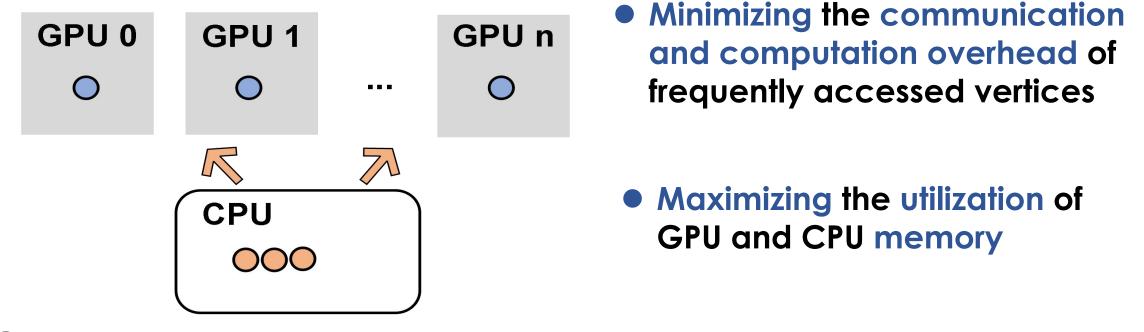
Hybrid Hot Vertices Processing

When GPU resources are significantly powerful than CPU resources, CPU computation can only provide limited contribution

multiple powerful GPUs GPU 0 GPU 0 **GPU1** GPU n ... $\overline{\lambda}$ CPU CPU provide limited hot vertices embeddinas $\bigcirc\bigcirc\bigcirc$ Hot vertices ratio 20% Hot vertices ratio 5%

Hybrid Hot Vertices Processing

Assigning hot vertices to both CPU computation and GPU feature caching

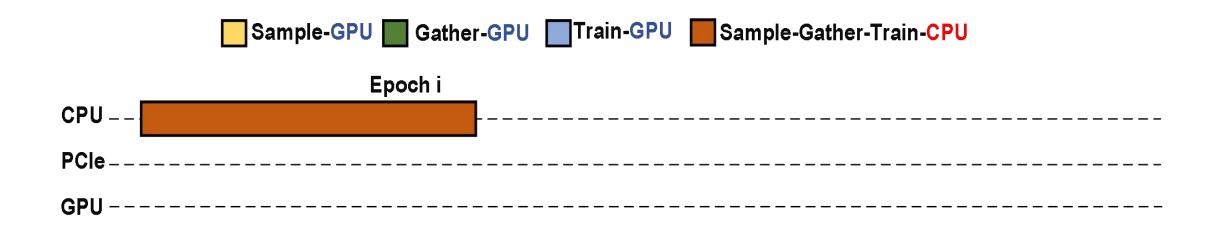


Hot vertices to CPU computation 5%

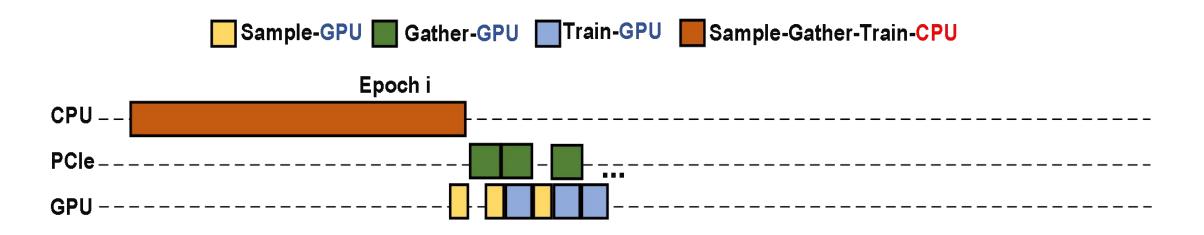
OHot vertices to GPU feature cache 15%

Overlapping tasks across diverse computing resources is essential to achieve high performance on heterogeneous systems

Overlapping tasks across diverse computing resources is essential to achieve high performance on heterogeneous systems

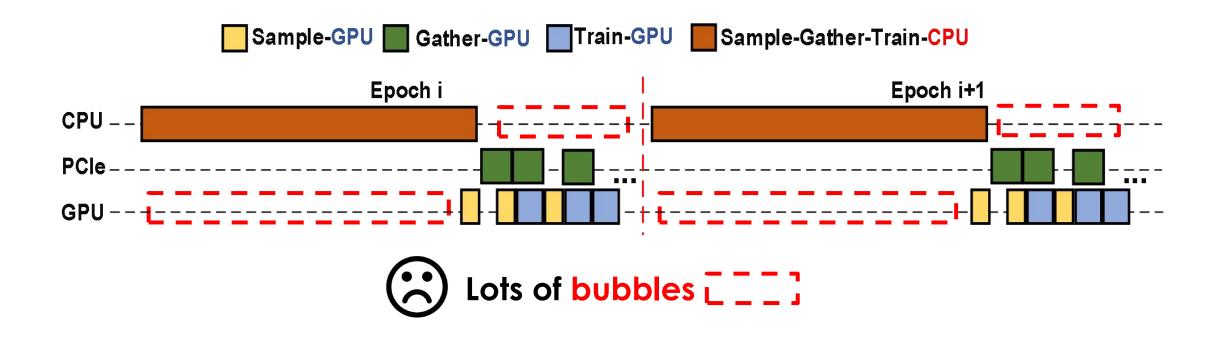


Overlapping tasks across diverse computing resources is essential to achieve high performance on heterogeneous systems

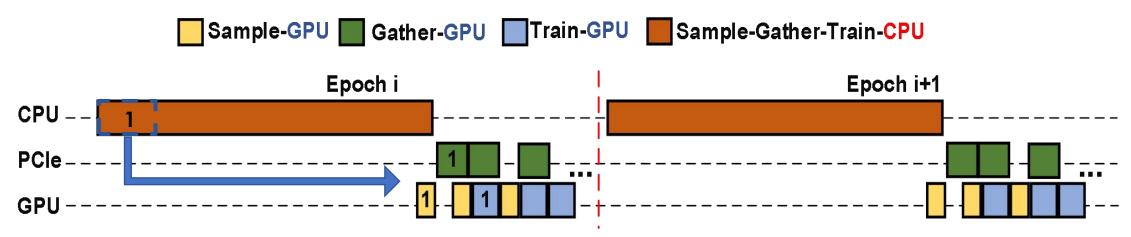


GPU training must wait for the CPU to finish the embedding computation for hot vertices

Overlapping tasks across diverse computing resources is essential to achieve high performance on heterogeneous systems

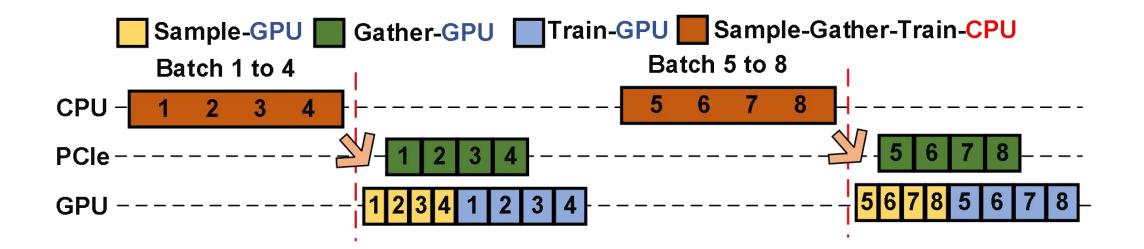


Overlapping tasks across diverse computing resources is essential to achieve high performance on heterogeneous systems

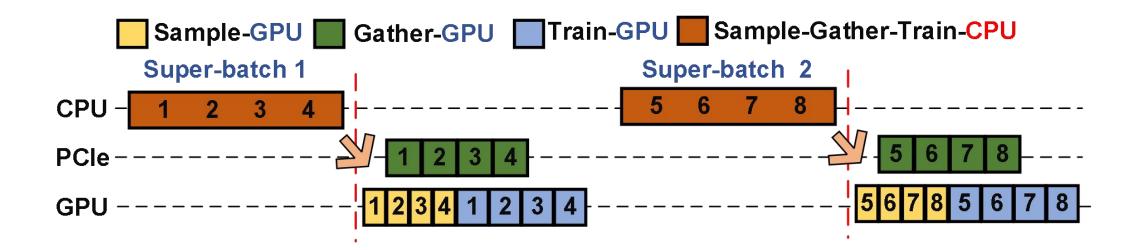


If the hot vertice embeddings required for Batch 1 are ready, GPU trianing for Batch 1 can be started earlier

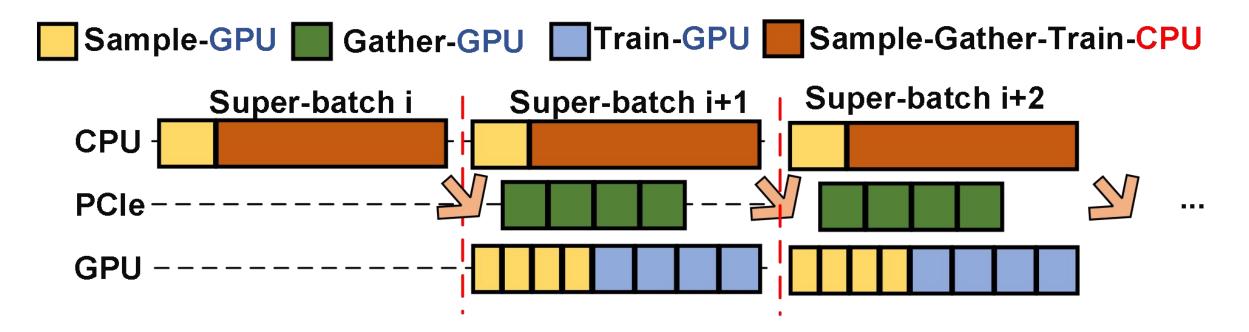
We partition CPU computation within each epoch into multiple sub-tasks to explore pipelining opportunities



We partition CPU computation within each epoch into multiple sub-tasks to explore pipelining opportunities



Overlapping GPU and CPU computation tasks while strictly control the staleness of reused embeddings among super-batches



Experimental Setting

Competitors: DGL [Arxiv'20], **GNNLab** [Eurosys'22], **PaGraph** [Socc'20], **GNNAutoScale** [ICML'19], **DSP** [PPoPP'23]

Test Platforms:

Intel Xeon Platinum 8163 CPU (96 cores and 736 GB main memory) and eight NVIDIA V100 (16GB) GPUs

Algorithms and Datasets:

- 3 Graph Neural Networks GCN, GIN, GAT
- □ 6 real world graphs

Softeware Environment:

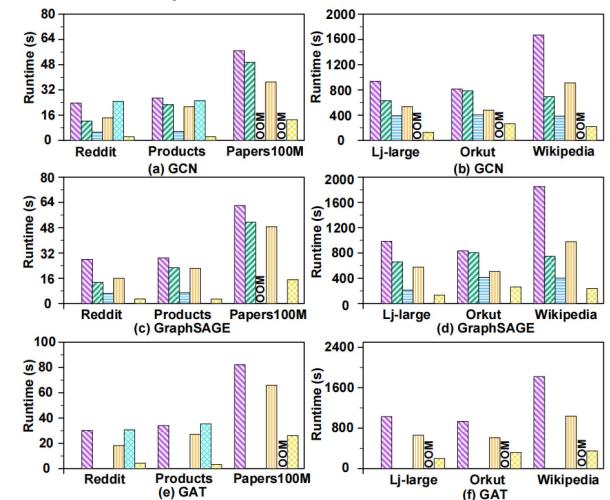
- Ubuntu 18.04 LTS
- CUDA 10.1 (418.67 driver)

Table 4: Dataset description.

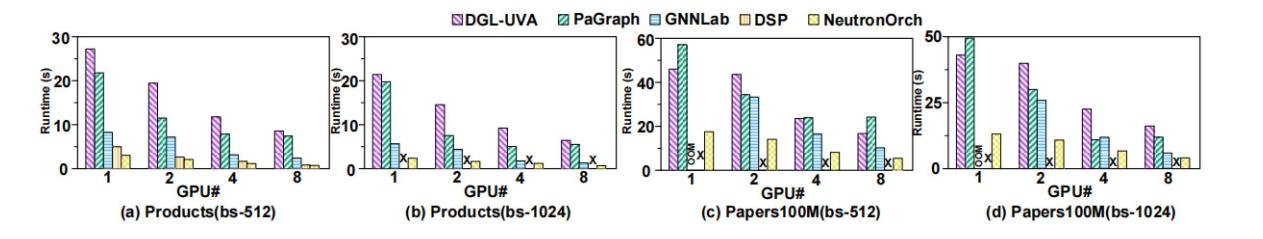
Dataset	$ \mathbf{V} $	 E	ftr. dim	#L	hid. dim
Reddit [12]	232.96K	114.61M	602	41	256
Lj-large [1]	10.69M	224.61M	400	60	256
Orkut [51]	3.1M	117M	600	20	160
Wikipedia [23]	13.6M	437.2M	600	16	128
Products (PR) [14]	2.4M	61.9M	100	47	64
Papers100M (PA) [14]	111M	1.6B	128	172	64

Overall Results

- NeutronOrch shows better performance than the competitors
- 2.91X-11.51X faster than DGL
- 2.68X-9.72X faster than PaGraph
- 1.52X-2.43X faster than GNNLab
- 1.81-9.18X faster than DGL-UVA
- □ 7.08-11.05X faster than GNNAutoScale



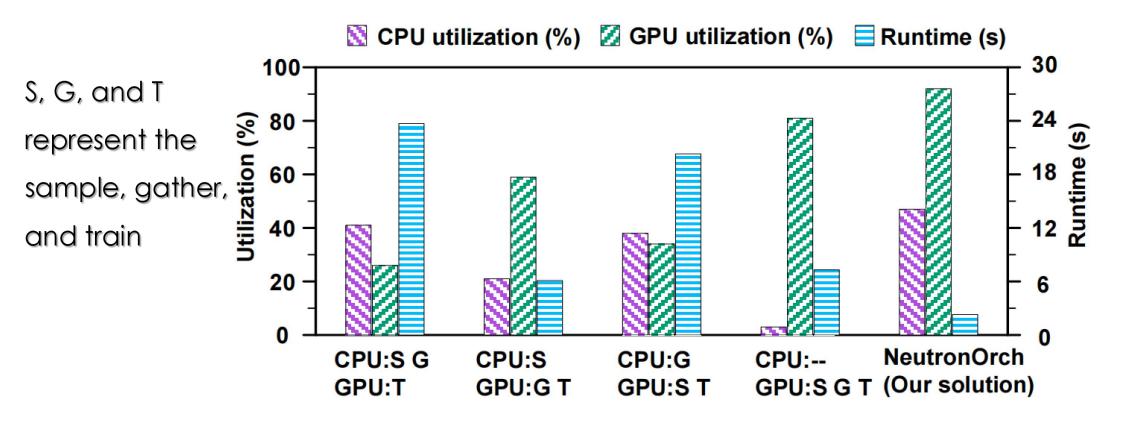
Multi-GPU Performance



 Compared with DGL-UVA, PaGraph,
 GNNLab and DSP, NeutronOrch achieves on average 6.33X, 5.20X,
 2.28X, and 1.36X speedups

NeutronOrch effectively trains large-scale GNNs by offloading computations to the CPU

CPU and GPU Utilization



- NeutronOrch fully utilizes
 - heterogeneousresources and
 - achieves better performance

High GPU utilization ensures shorter runtime, while CPU offloading boosts

performance

NeutronOrch: Rethinking Sample-based GNN Training under CPU-GPU Heterogeneous Environments

Providing insight into the four existing approaches

We provide a comprehensive analysis of resource utilization issues associated with the task orchestrating methods for sample-based GNN systems on GPU-CPU heterogeneous platforms

NeutronOrch: Rethinking Sample-based GNN Training under CPU-GPU Heterogeneous Environments

Providing insight into the four existing approaches

We provide a comprehensive analysis of resource utilization issues associated with the task orchestrating methods for sample-based GNN systems on GPU-CPU heterogeneous platforms

Proposing a hotness-aware layer-based task orchestrating method

We propose a hotness-aware layer-based task orchestrating method that effectively leverages the computation and memory resources of the GPU-CPU heterogeneous system

NeutronOrch: Rethinking Sample-based GNN Training under CPU-GPU Heterogeneous Environments

Providing insight into the four existing approaches

We provide a comprehensive analysis of resource utilization issues associated with the task orchestrating methods for sample-based GNN systems on GPU-CPU heterogeneous platforms

Proposing a hotness-aware layer-based task orchestrating method

We propose a hotness-aware layer-based task orchestrating method that effectively leverages the computation and memory resources of the GPU-CPU heterogeneous system

Proposing a super-batch pipelined task scheduling method

We propose a super-batch pipelined task scheduling method that seamlessly overlaps different tasks on heterogeneous resources and efficiently achieves strict bounded staleness

NeutronOrch: Rethinking Sample-based GNN Training under CPU-GPU Heterogeneous Environments

Providing insight into the four existing approaches

We provide a comprehensive analysis of resource utilization issues associated with the task orchestrating methods for sample-based GNN systems on GPU-CPU heterogeneous platforms

Proposing a hotness-aware layer-based task orchestrating method

We propose a hotness-aware layer-based task orchestrating method that effectively leverages the computation and memory resources of the GPU-CPU heterogeneous system

ISKS

Proposing a super-batch pipelined task scheduling method

We propose a super-batch pipelined task scheduling method that seamlessly on heterogeneous resources and efficiently achieves strict bounded staleness Questions

The codes are publicly available on github

https://github.com/Aix-im/Sample-based-GNN