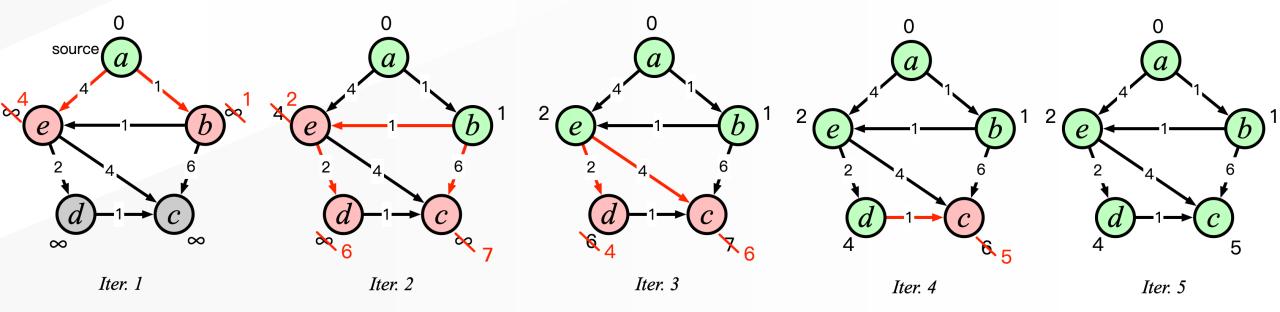
Fast Iterative Graph Computing with Updated Neighbor States

 Yijie Zhou¹, Shufeng Gong¹, Feng Yao¹, Hanzhang Chen¹, Song Yu¹, Pengxi Liu¹, Yanfeng Zhang¹, Ge Yu¹, Jeffrey Xu Yu²
Northeastern University¹, The Chinese University of Hong Kong²

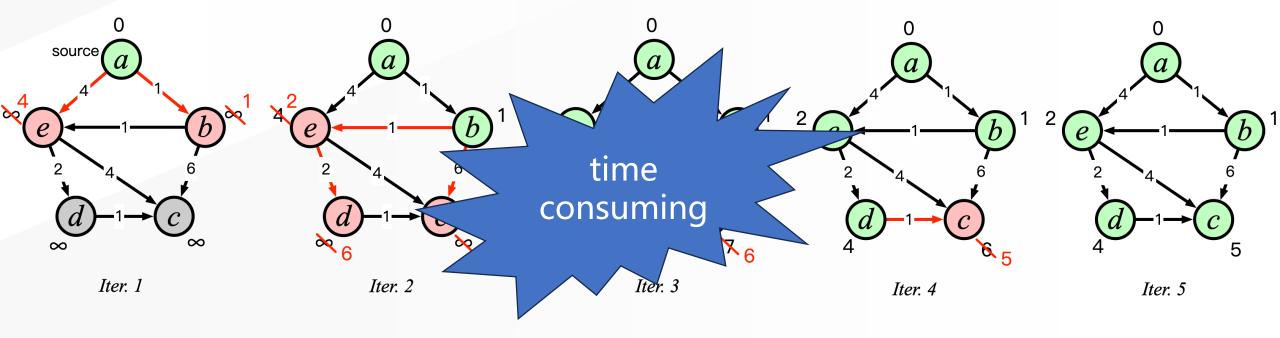
Iterative Computation

- PageRank, SSSP, BFS,
- Traversing the entire graph multiple times



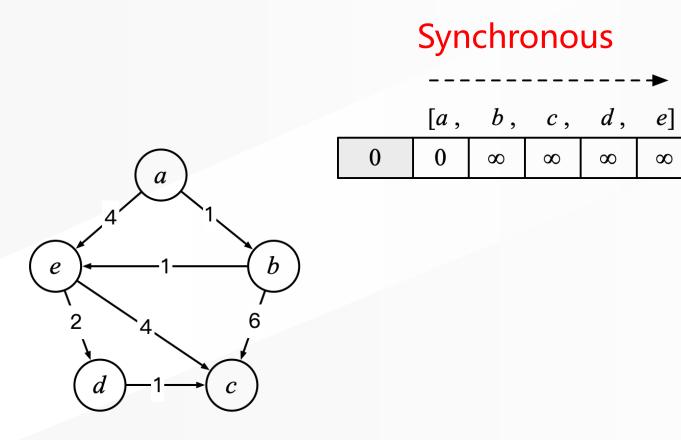
Iterative Computation

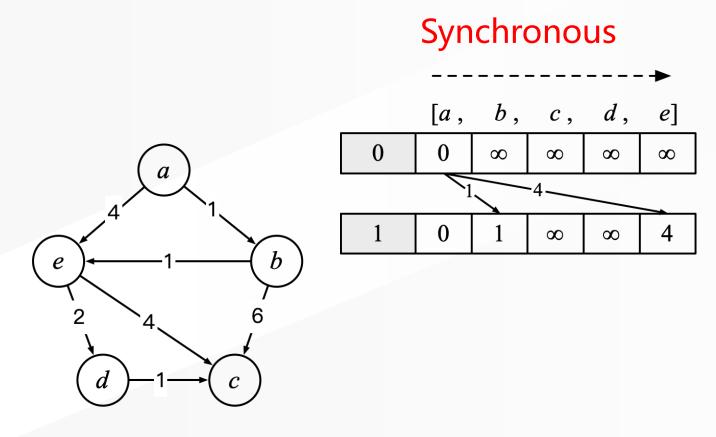
- PageRank, SSSP, BFS,
- Traversing the entire graph multiple times

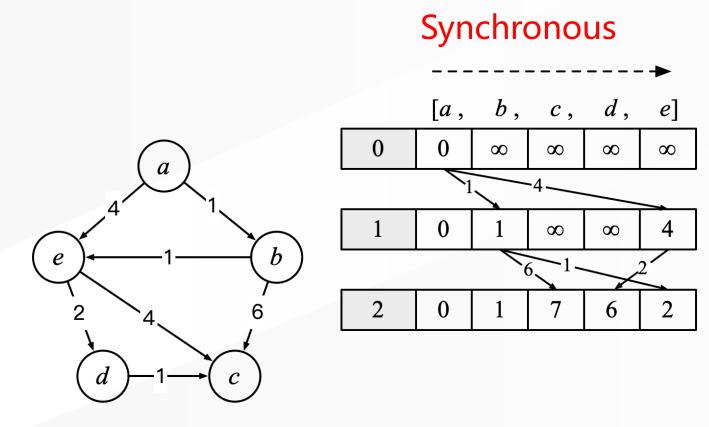


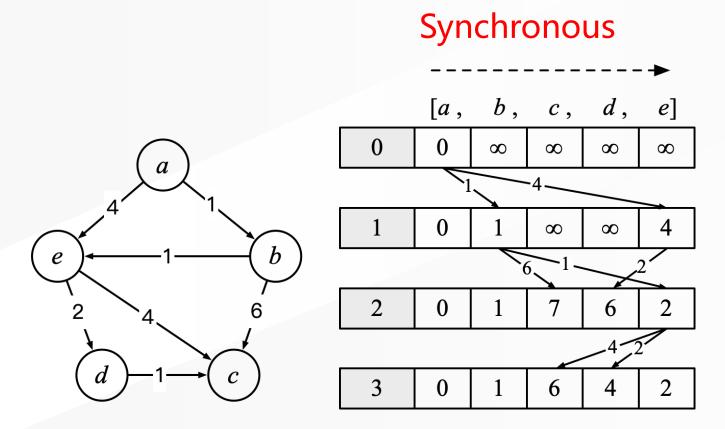
Accelerate Iterative Computation

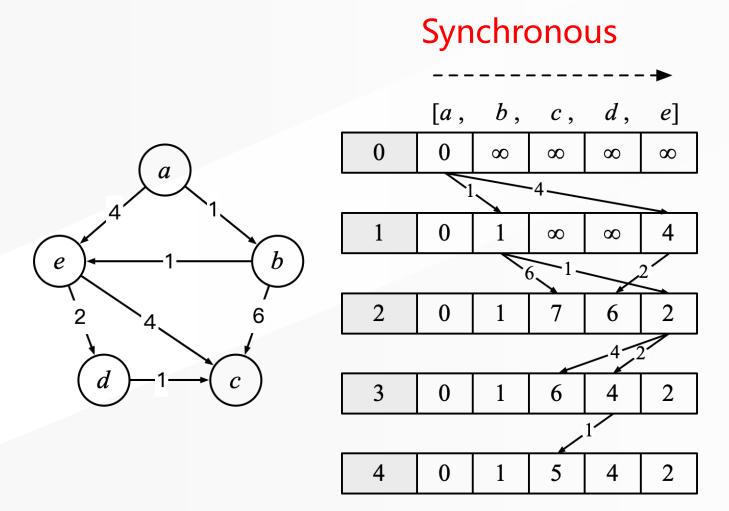
- How to accelerate iterative computation?
 - Reduce the time per iteration
 - Decrease the number of iterations

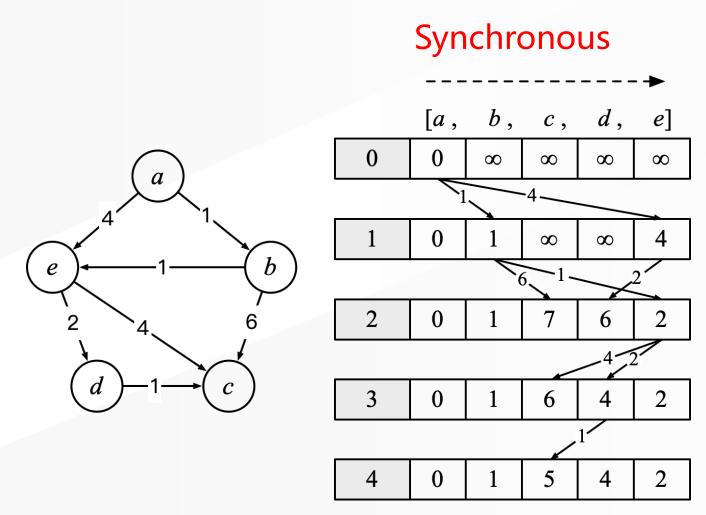


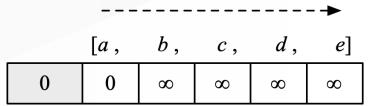


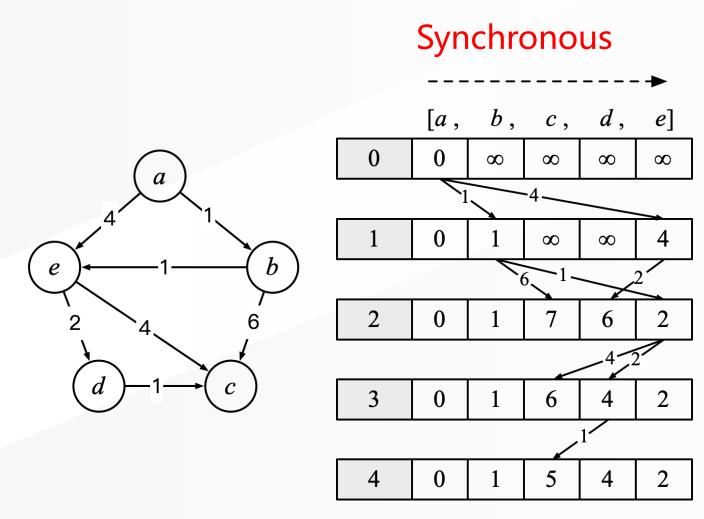


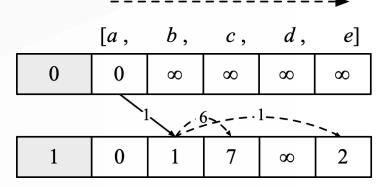


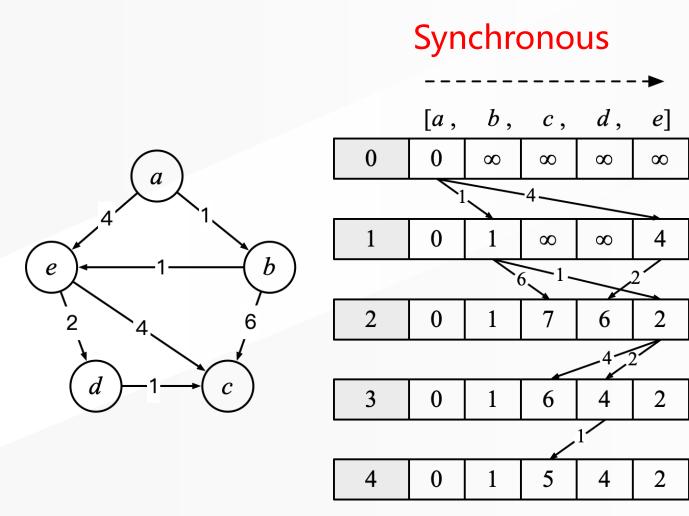


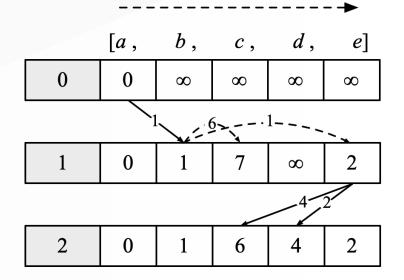


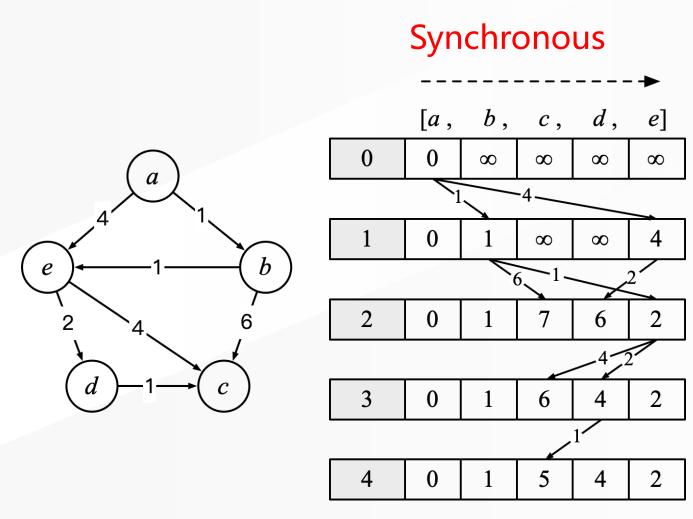


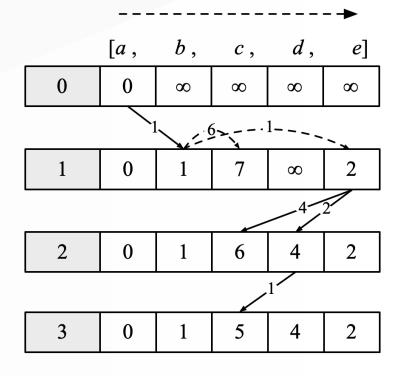












00

00

6

4

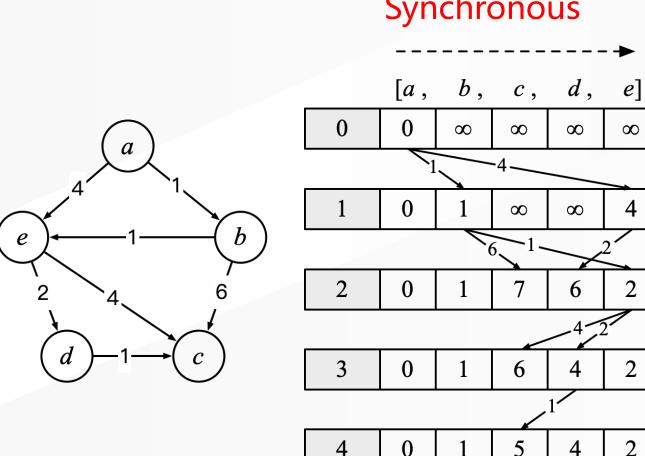
 ∞

4

2

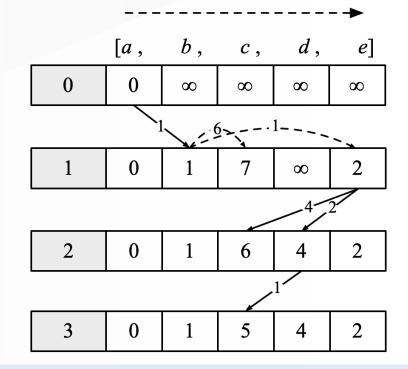
2

2

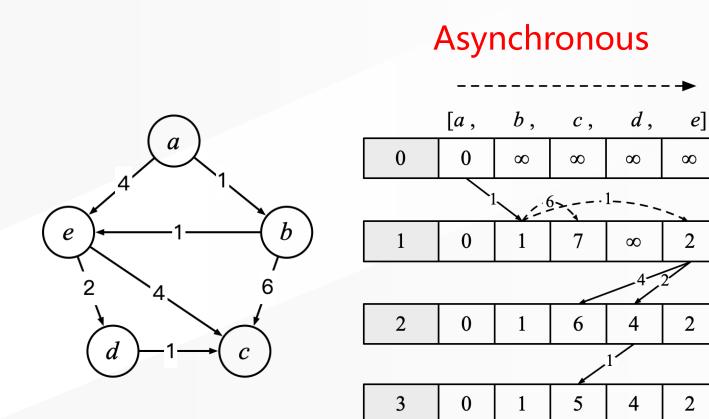


Synchronous

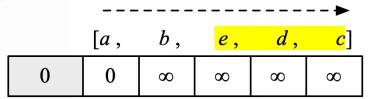
Asynchronous

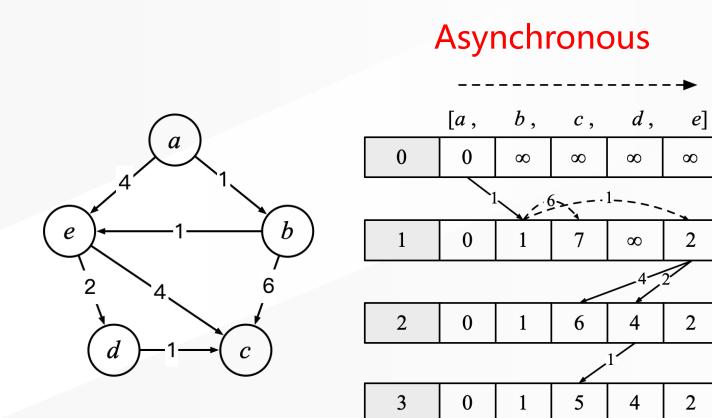


Asynchronous iteration reduces the number of rounds because each vertex can immediately use the latest state value.

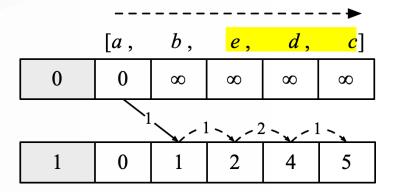


Asynchronous with reordered order

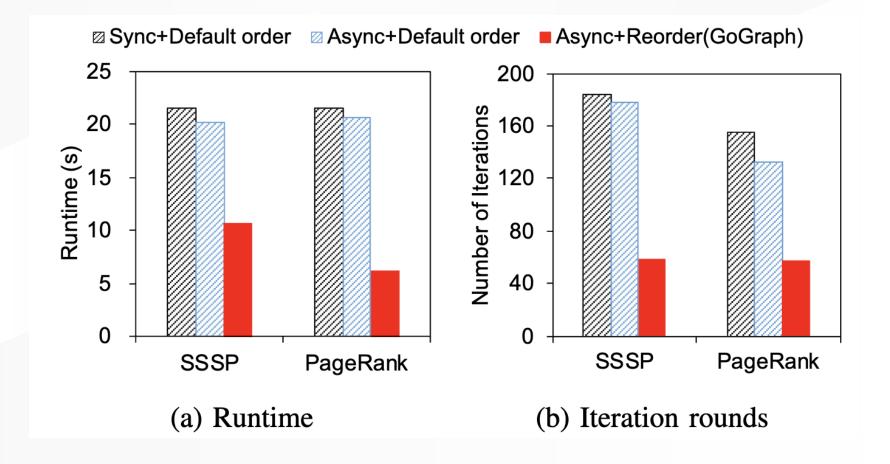


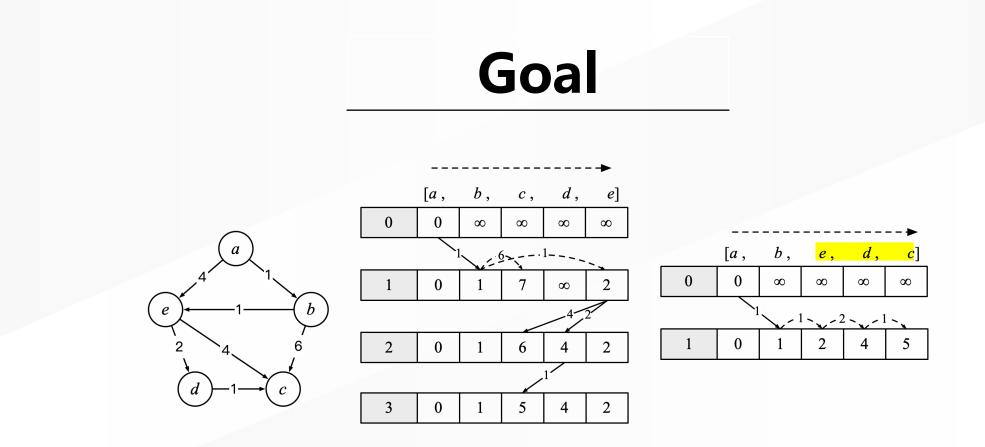


Asynchronous with reordered order



Converging Quicker After Reordering





Construct an efficient vertex processing order to accelerate the iterative computation.

Challenges

- Which processing order is better?
 - Challenge 1. Design a metric to measure the quality of the processing order.
- How to reorder the vertex to make the iterations converge faster?
 - Challenge 2. Design a vertex reordering method.

Positive/Negative Edge

For an existing edge: $u \rightarrow v$

- Processing order 1: $O_V = [a, b, ..., u, ..., v, ..., z]$
 - <u,v> is a positive edge, since v can use u's latest state in the same round.
- Processing order 2: $O_V = [a, b, ..., v, ..., u], ..., z]$
 - <u,v> is a negative edge, since v can only use u's latest state in the next round.

Metric Funtion

Intuition: as mentioned before, the more positive edges, the more vertex state values can be utilized per round, speeding up convergence.

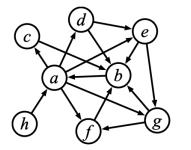
• Counts the number of positive edges ($u \rightarrow v$, u is processed prior to v)

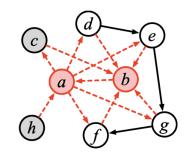
$$M(O_V) = n(e_{pos}) = \sum_{(u,v)\in E} \chi(u,v)$$

 $\chi(u,v) = \begin{cases} 1, & if (u,v) \text{ is positive,} \\ 0, & if (u,v) \text{ is negative.} \end{cases}$

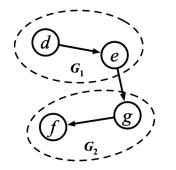
• The goal of our reordering method: maximize the quantity of positive edges

- 1) Extract high-degree and isolated vertices
- 2) Divide other vertices
- 3) Reorder vertices within subgraphs
- 4) Reorder subgraphs
- 5) Insert high-degree and isolated vertices





(a) The initial graph.



(c) Divide the remaining

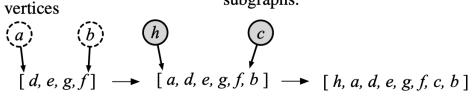
(b) Extract high-degree vertices.

$$O_{V_1} = [d, e] \quad O_{V_2} = [g, f]$$

(d) Reordering vertices intrasubgraphs.

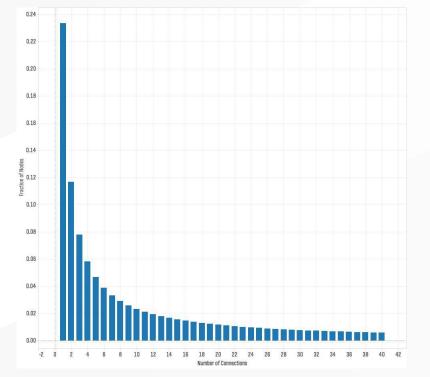
$$[[d, e], [g, f]] \longrightarrow O_V = [d, e, g, f]$$

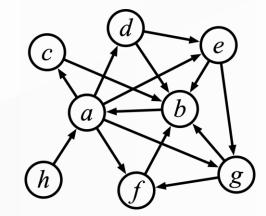
(e) Reordering vertices intersubgraphs.

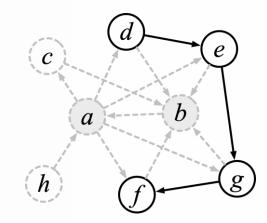


(f) Inserting high-degreed/isolated vertices into the processing order.

1) Extract high-degree and isolated vertices





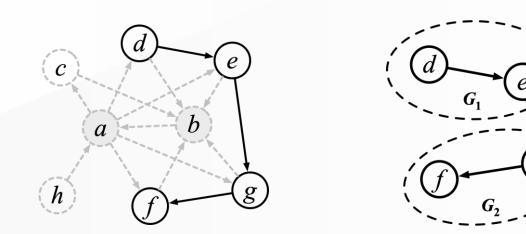


 $O_V^1 = [d, e, c, b, h, a, g, f] \qquad O_V^2 = [h, a, c, d, e, g, f, b]$ $M(O_V^1) = 10 \qquad M(O_V^2) = 14$

Distribution of vertices of different degrees for scale-free graphs

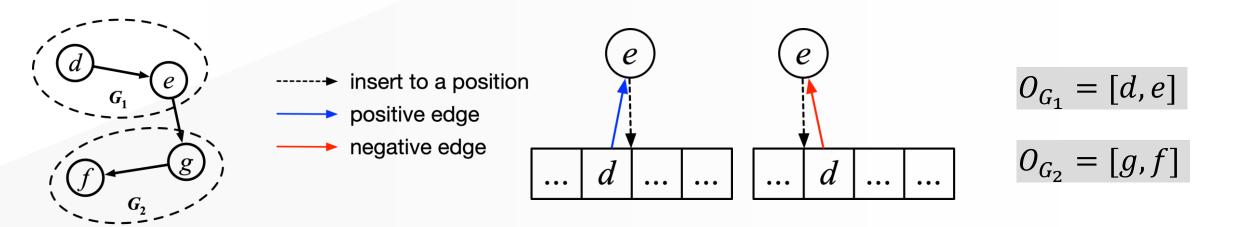
2) Divide other vertices

• Louvain, Metis, ...



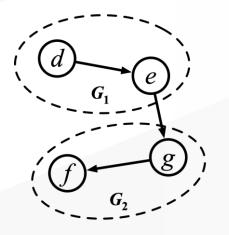
3) Reorder vertices within subgraphs

- Calculate the *M* value based on where the vertices are inserted;
- Find the position that maximizes *M* (maximize the number of positive edges and minimize the number of negative edges).

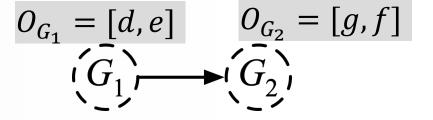


4) Reorder subgraphs

- Consider each subgraph as a super vertex;
- Perform the same operation in step 3.

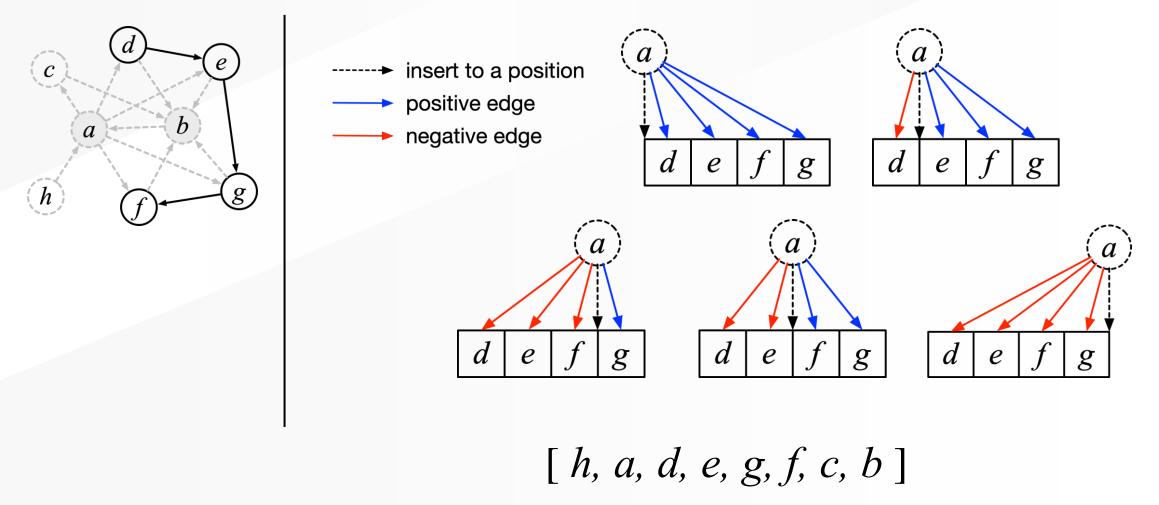


 $w_{G_{1},G_{2}} = |\{\{u,v\} | u \in G_{i}, v \in G_{j}\}|$ $M(O_{G}) = \sum_{(G_{i},G_{j}) \in P} \chi(G_{i},G_{j})$ $\chi(G_{i},G_{j}) = \begin{cases} w_{G_{1},G_{2}}, & \text{if } e_{(G_{i},G_{j})} \text{ is positive,} \\ 0, & \text{if } e_{(G_{i},G_{j})} \text{ is negative.} \end{cases}$



 $O_G = [d, e, g, f]$

5) Insert high-degree and isolated vertices



Experiments

• Competitors

Degree Sorting, Hub Sorting, Hub Clustering, Rabbit, Gorder

Workloads

PageRank, SSSP, BFS, PHP

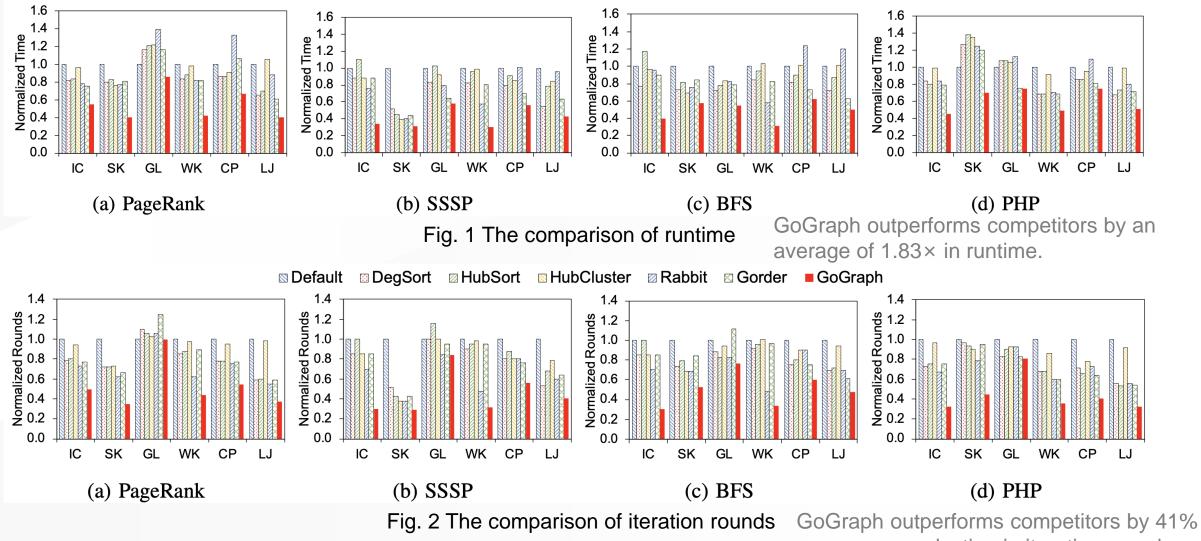
Environment

Linux server, 98 GB RAM, Ubuntu 22.04 (64-bit), GCC 7.5

• Datasets

Dataset	Vertices	Edges	Abbreviation
Indochina [16]	11,358	49,138	IC
SK-2005 [16]	121,422	36,7579	SK
Google [46]	875,713	5,241,298	GL
Wiki-2009 [16]	1,864,433	4,652,358	WK
Cit-Patents [47]	3,774,768	18,204,371	CP
LiveJournal [16]	4,033,137	27,972,078	LJ

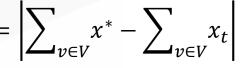
Overall performance



on average reduction in iteration rounds.

Convergence comparison

The distance from the state value at time t to the converged state value: $dist_t = \left| \sum_{v \in V} x^* - \sum_{v \in V} x_t \right|$



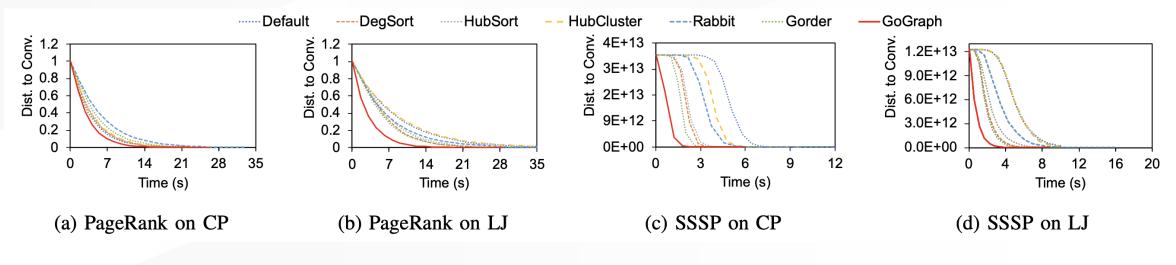


Fig. 3 The comparison of convergence speed

GoGraph algorithm consumes 59% of the average time used by competitors (with a minimum requirement of 37%) to reach convergence.

CPU cache miss

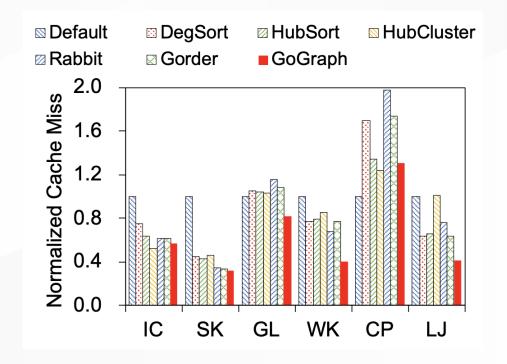


Fig. 4 The comparison of CPU cache miss

GoGraph can reduce the cache miss by 30% on average.

Conclusion

- We propose GoGraph, a graph reordering algorithm
- We propose a metric to measure the efficiency of the

vertex processing order

Thank you for listening!