Hammer: A General Blockchain Evaluation Framework

Gang Wang¹, Yanfeng Zhang¹, Chenhao Ying², Xiaohua Li¹, Ge Yu¹ Northeastern University¹, Shanghai Jiao Tong University²

Motivation

- BlockBench, Caliper, Gromit,
- Workload:Synthetic Workload or Replay Historical Workload

Generating Temporal Workloads

- How can we generate workloads with temporal characteristics
- Predefined temporal data distributions, such as Gaussian and power-law.
- Learning the distribution characteristics of real-world workloads

Learning-Based Solution

Learning-Based Solution

Learning-Based Solution

...

...

h,

 \mathbf{x}_{l}

Model Performance Evaluation

Bottlenecks

- Workload Generation Process. (Signature Time and Workload Generation Time)
- Blockchain Monitoring Methods.(Batch vs Transaction)

Asynchronous signature and pipelining

Task Processing Algorithm

Search and Queue Deletion Time Overhead

Experiments

- Competitors BlockBench 、Caliper
- Workloads
 Smallbank
- Environment Linux ecs, 4GB RAM, Ubuntu 22.04 (64-bit)
- Blockchain Systems Ethereum, Fabric, Meepo, Neuchain

Overall performance

Fig2. Comparing the peak performance of the blockchains.

Conclusion

- We develop a general blockchain evaluation framework, namely, Hammer.
- We propose a series of optimization algorithms to enhance the performance of the evaluation framework.
- We propose a learning-based approach to capture the characteristics of temporal workloads.

Thank you for listening!