
NeuChain: A Fast Permissioned Blockchain System with 
Deterministic Ordering

Zeshun Peng, Yanfeng Zhang, Qian Xu, Haixu Liu,
Yuxiao Gao, Xiaohua Li, Ge Yu

Northeastern University, China



High Throughput Blockchain

(b) Internet of things(a) Financial applications (c) Industrial supply chain

Motivation System design Implementation Evaluation

Ø Existing blockchain systems cannot meet the demand of high throughput applications.

2



Architecture: Order-Execute-Validate (OEV)
Motivation System design Implementation Evaluation

Ø Examples: Bitcoin, Ethereum, Quorum, ResilientDB [VLDB’20], etc.

client

�1
�2
�3

3



Architecture: Order-Execute-Validate (OEV)
Motivation System design Implementation Evaluation

Ø Examples: Bitcoin, Ethereum, Quorum, ResilientDB [VLDB’20], etc.

orderclient

�1
�2
�3

Workflow:
Ø The consensus leader receives clients' transactions.

4



Architecture: Order-Execute-Validate (OEV)

Workflow:
Ø The consensus leader receives clients' transactions.
Ø The leader orders transactions into blocks.

orderclient

�1
�2
�3

Block�
�1|���
�2|���
�3|���

Motivation System design Implementation Evaluation

Ø Examples: Bitcoin, Ethereum, Quorum, ResilientDB [VLDB’20], etc.

5



Architecture: Order-Execute-Validate (OEV)

Workflow:
Ø The consensus leader receives clients' transactions.
Ø The leader orders transactions into blocks.
Ø Broadcasts the block to other peers.

Motivation System design Implementation Evaluation

Ø Examples: Bitcoin, Ethereum, Quorum, ResilientDB [VLDB’20], etc.

orderclient

execute & validate

�1
�2
�3

Block�
�1|���
�2|���
�3|���

Block�

Block�

Block�

6



Architecture: Order-Execute-Validate (OEV)

Workflow:
Ø The consensus leader receives clients' transactions.
Ø The leader orders transactions into blocks.
Ø Broadcasts the block to other peers.
Ø Validate the block by re-executing in that order.

Motivation System design Implementation Evaluation

Ø Examples: Bitcoin, Ethereum, Quorum, ResilientDB [VLDB’20], etc.

orderclient

execute & validate

�1
�2
�3

Block�
�1|���
�2|���
�3|���

Block�

Block�

Block�

7



Architecture: Order-Execute-Validate (OEV)

However:
Ø Serial execution (and validation) limits throughput.
Ø Consensus leader could be a network bottleneck.

Motivation System design Implementation Evaluation

Advantage:
Ø Simple and widely used.
Ø Low abort rate due to sequential execution.

Ø Examples: Bitcoin, Ethereum, Quorum, ResilientDB [VLDB’20], etc.

Workflow:
Ø The consensus leader receives clients' transactions.
Ø The leader orders transactions into blocks.
Ø Broadcasts the block to other peers.
Ø Validate the block by re-executing in that order.

orderclient

execute & validate

�1
�2
�3

Block�
�1|���
�2|���
�3|���

Block�

Block�

Block�

8



Architecture: Execute-Order-Validate (EOV)

orderclient

validate

�1
�2
�3

Block�

Block�

execute

�1|���

�2|���

�3|���

Block�
�1|���
�2|���
�3|���

Motivation System design Implementation Evaluation

Ø Examples: Fabric [EuroSys’18], Fabric++ [SIGMOD’19], Fabric# [SIGMOD’20], etc.

Workflow:
Ø Peers execute transactions concurrently.
Ø The ordering leader orders transactions into blocks.
Ø Peers validate the read-write sets in a block in that order.

Block�
�1|���
�2|���
�3|���

9



Architecture: Execute-Order-Validate (EOV)
Motivation System design Implementation Evaluation

Ø Examples: Fabric [EuroSys’18], Fabric++ [SIGMOD’19], Fabric# [SIGMOD’20], etc.

orderclient

validate

�1
�2
�3

Block�

Block�

execute

�1|���

�2|���

�3|���

Block�
�1|���
�2|���
�3|���

However:
Ø High abort rates due to additional inter-block conflicts.
Ø Explicit order among transactions.

Advantage:
Ø Tolerating non-deterministic transactions.
Ø Allow concurrent execution of transactions.

Workflow:
Ø Peers execute transactions concurrently.
Ø The ordering leader orders transactions into blocks.
Ø Peers validate the read-write sets in a block in that order.

Block�
�1|���
�2|���
�3|���

10



Architecture: Order-Execute-Parallel-Validate (OEPV)

order

client

validate

�1
�2
�3 Block�

�1
�2
�3

Block�

Block�

execute

�1|���
�2|���
�3|���

Motivation System design Implementation Evaluation

[1] Senthil Nathan, et, al. Blockchain Meets Database: Design and Implementation of a Blockchain Relational Database, VLDB’20

Ø Examples: FabricSSI [1], BIDL [SOSP’21], etc.

Workflow:
Ø Execute transactions while ordering.
Ø Validate based on the ordering result.

However:
Ø Inherits the ordering phase of the EOV architecture.

Advantage:
Ø Reduce overall latency.

Block�
�1|���
�2|���
�3|���

11



Summary of Blockchain Architectures
Motivation System design Implementation Evaluation

12



Drawbacks of the Explicit Ordering Phase
Motivation System design Implementation Evaluation

Traditional blockchains all have an ordering phase, which could limit the throughput.

Ø The ordering leader must replicate blocks to all followers. 

Replicate a block to followers

Ordering 
leader

Block�
�1
�2
�3
�4

�1

�2

�3

�4

������

������

������

Ø The maximum bandwidth of the leader could be a bottleneck.

13



Drawbacks of the Explicit Ordering Phase
Motivation System design Implementation Evaluation

Traditional blockchains all have an ordering phase, which could limit the throughput.

Ø The ordering leader must replicate blocks to all followers. 

Bandwidth consumption of FabricReplicate a block to followers

Ordering 
leader

Block�
�1
�2
�3
�4

�1

�2

�3

�4

������

������

������

Ø The maximum bandwidth of the leader could be a bottleneck.
Ø E.g. the outbound bandwidth of orderer #2 becomes a bottleneck.

14



Drawbacks of the Explicit Ordering Phase
Motivation System design Implementation Evaluation

Ø Execute (or validate) serially based on the explicit order.

Traditional blockchains all have an ordering phase, which could limit the throughput.

Validate serially to ensure determinism

Ø Serial execution (or validation) could be a bottleneck.

Time

�1 �2 �3 �4
������

15



Drawbacks of the Explicit Ordering Phase
Motivation System design Implementation Evaluation

Ø Execute (or validate) serially based on the explicit order.

Traditional blockchains all have an ordering phase, which could limit the throughput.

Runtime breakdown of FabricValidate serially to ensure determinism

Ø Serial execution (or validation) could be a bottleneck.
Ø E.g. Validate the rw-set serially in a block limit the parallelism.

Time

�1 �2 �3 �4
������

16



The deterministic execution technique
Motivation System design Implementation Evaluation

Ø Use the deterministic execution technique to eliminate the ordering phase.

17



The deterministic execution technique
Motivation System design Implementation Evaluation

Ø Use the deterministic execution technique to eliminate the ordering phase.

Ø Concurrent execution does not affect the result.

�� ��

��Peer #1

Peer #2

��

Worker #1

Worker #2

�� ��

�� ��

Worker #1

Worker #2

��|������

��|�����

��|�����

��|������

��|������

��|�����

��|�����

��|������

Ø The two peers execute the transactions in a different order.
Ø The final execution result is the same.

18



Eliminate the Explicit Ordering Phase
Motivation System design Implementation Evaluation

Ø Use the deterministic execution technique to eliminate the ordering phase.

Replace the explicit order (specified by the ordering node) with an implicit (rule-based) order.

19



Eliminate the Explicit Ordering Phase
Motivation System design Implementation Evaluation

Eliminate the ordering service

Ø Use the deterministic execution technique to eliminate the ordering phase.

Replace the explicit order (specified by the ordering node) with an implicit (rule-based) order.

Ø Independently broadcast their collected requests (with their own consensus instance).

������

������

������

�1

�2

�3

20



Eliminate the Explicit Ordering Phase
Motivation System design Implementation Evaluation

Time

�2 �3

�1 �4

��� = ���ℎ < ���, ����ℎ >

Deterministic execution based on tids

Ø Use the deterministic execution technique to eliminate the ordering phase.

Replace the explicit order (specified by the ordering node) with an implicit (rule-based) order.

Ø Independently broadcast their collected requests (with their own consensus instance).

Ø Allow concurrent execution of transactions.

Eliminate the ordering service

������

������

������

�1

�2

�3

21



Eliminate the Explicit Ordering Phase
Motivation System design Implementation Evaluation

How to determine the implicit (rule-based) ordering of transactions in an untrusted environment?

v Inter-block order v Intra-block order

22



Eliminate the Explicit Ordering Phase
Motivation System design Implementation Evaluation

How to determine the implicit (rule-based) ordering of transactions in an untrusted environment?

v Inter-block order: global epoch number. v Intra-block order

Ø Transactions with the same epoch form into a block.

Ø Increase the epoch through consensus.

Epoch server cluster

�1

 …

����� = �

����� = �

� + 1 identical epoch number

…

���������1|����ℎ = �

���������2|����ℎ = �

����������+1|����ℎ = �

23



Motivation System design Implementation Evaluation

Eliminate the Explicit Ordering Phase

How to determine the implicit (rule-based) ordering of transactions in an untrusted environment?

v Inter-block order: global epoch number. v Intra-block order

Ø Transactions with the same epoch form into a block.

Ø Increase the epoch through consensus.

Ø Collect f + 1 valid replies for each transaction batch.

Epoch server cluster

�1

 …

����� = �

����� = �

����� = �

� + 1 identical epoch number

…

���������1|����ℎ = �

���������2|����ℎ = �

����������+1|����ℎ = �

24



Motivation System design Implementation Evaluation

Eliminate the Explicit Ordering Phase

How to determine the implicit (rule-based) ordering of transactions in an untrusted environment?

v Inter-block order: global epoch number. v Intra-block order: unique transaction ID.

Ø Transactions with the same epoch form into a block.

Ø Increase the epoch through consensus.

Ø Collect f + 1 valid replies for each transaction batch.

Epoch server cluster

�1

 …

����� = �

����� = �

����� = �

� + 1 identical epoch number

…

���������1|����ℎ = �

���������2|����ℎ = �

����������+1|����ℎ = �

��� = ���ℎ < ���,  ��� ����ℎ >

Ø Transactions are scheduled based on tids.

Ø The tids are generated using a hash function.

Ø Immutable and unpredictable.

25



Eliminate the Explicit Ordering Phase
Motivation System design Implementation Evaluation

How to validate the execution result in a block?

v Collect f+1 valid block signatures.

Ø The signature can only be verified if the execution results are the same.

Ø Following this idea, we propose the execute-validate (EV) blockchain architecture.

…

Block�

�1|���

�2|���

�3|���

���������1

���������2
Receive from 
other peers

f+1 valid 
signatures

����������+1

Created locally

26



Ordering-Free Execute-Validate (EV) Execution Flow
Motivation System design Implementation Evaluation

client

�1

�2

�3

…

Epoch server cluster

Client proxy

�1
�2
�3
�4

�4

Ø Groups transactions into batches.
Ø Gets f+1 valid epoch numbers.

v Workflow of the EV architecture:

27



Ordering-Free Execute-Validate (EV) Execution Flow
Motivation System design Implementation Evaluation

client

�1

�2

�3

…

Epoch server cluster

Client proxy

�1
�2
�3
�4

�4

Ø Groups transactions into batches.
Ø Gets f+1 valid epoch numbers.
Ø Broadcasts to other client proxies.

v Workflow of the EV architecture:

28



Ordering-Free Execute-Validate (EV) Execution Flow
Motivation System design Implementation Evaluation

client

Block�

Block�

�1

�2

�3

Block�
�1|���
�2|���
�3|���

…

Epoch server cluster

Client proxy Block server

�1
�2
�3
�4

�4

deterministic 
execution

deterministic 
execution

deterministic 
execution

deterministic 
execution

Block�
′

Ø Groups transactions into batches.
Ø Gets f+1 valid epoch numbers.
Ø Broadcasts to other client proxies.
Ø Executes all transactions deterministically.

v Workflow of the EV architecture:

29



Ordering-Free Execute-Validate (EV) Execution Flow
Motivation System design Implementation Evaluation

client Exchange
Signature

Block�

Block�

�1

�2

�3

Block�
�1|���
�2|���
�3|���

…

Epoch server cluster

Client proxy Block server

�1
�2
�3
�4

�4

deterministic 
execution

deterministic 
execution

deterministic 
execution

deterministic 
execution

Block�
′

Valid

Valid

Valid

Invalid

Ø Groups transactions into batches.
Ø Gets f+1 valid epoch numbers.
Ø Broadcasts to other client proxies.
Ø Executes all transactions deterministically.
Ø Exchange block signatures.

v Workflow of the EV architecture:

30



Motivation System design Implementation Evaluation

Experimental Setups

Platforms:
4 regions (each region: 1 epoch server, 1 peer)

(16 vCPUs, 32GB RAM, 100Mbps cross-region / 5Gbps local bandwidth)

• geo-distributed cluster:

4 epoch servers, 8 peers• local cluster:

Baseline: Fabric, FastFabric, Meepo, ResilientDB, Basil, and NeuChain variants (OEV, EOV, and OEPV).

Workload:
YCSB: Zipfian skewness factor 0.99; 10 columns and 1,000,000 rows; 100 bytes per column.

YCSB-A (50% read and 50% write), YCSB-B (95% read and 5% write), and YCSB-C (100% read)

Smallbank: uniform distribution; 100,000 accounts.

Questions:
• The effectiveness of the EV architecture.
• The effectiveness of optimizations.
• The robustness of NeuChain under malicious attacks

31



Motivation System design Implementation Evaluation

Effectiveness of the EV Architecture

On geo-distributed cluster, where network is the bottleneck, the EV architecture 
utilizes the bandwidth of all nodes.

On local cluster, where transaction processing is the bottleneck, the deterministic 
execution increases the concurrency.

Bandwidth consumption on geo-distributed cluster Breakdown on local cluster

32



Motivation System design Implementation Evaluation

Overall Performance on Geo-distributed Cluster

On geo-distributed cluster, NeuChain exhibits the highest throughput under all workloads.
Ø No need to re-execute transactions (compared with OEV architecture).
Ø Blocks only contain user transactions (compared with EOV architecture).
Ø All peers can propose transactions (compared with OEPV architecture).

However, cross-range epoch number acquisition requires an additional RTT (20ms).

33



Motivation System design Implementation Evaluation

Overall Performance on Local Cluster

On local cluster, the performance of NeuChain mainly benefits from concurrent execution.

However, NeuChain only allows writing one value once in each block, which cause a higher abort rate.

34



Motivation System design Implementation Evaluation

Robustness under Malicious Attacks

Failure comparison

We provide three kinds of failures:
• Block server BFT: A block server provides others with a fake block signature.
• Client proxy BFT: A client proxy sends fake messages to others.
• Client proxy CFT: We kill a client proxy to simulate crash failure.

Ø NeuChain is robust against these failures.
Ø The malicious client proxy is forbidden to submit 

transactions, reducing overall throughput.

35



Motivation System design Implementation Evaluation

Summary
l Providing insight into the existing blockchain architectures

36



Motivation System design Implementation Evaluation

Summary

l Proposing an ordering-free EV architecture

l Providing insight into the existing blockchain architectures

37



Motivation System design Implementation Evaluation

Summary

l Delivering a fast permissioned blockchain system

l Proposing an ordering-free EV architecture

l Providing insight into the existing blockchain architectures

38



Motivation System design Implementation Evaluation

Summary

l Providing robustness under malicious attacks

l Delivering a fast permissioned blockchain system

l Proposing an ordering-free EV architecture

l Providing insight into the existing blockchain architectures

39



Motivation System design Implementation Evaluation

Summary

l Providing robustness under malicious attacks

l Delivering a fast permissioned blockchain system

l Proposing an ordering-free EV architecture

l Providing insight into the existing blockchain architectures

Questions

40



Deterministic Transaction Processing
Motivation System design Implementation Evaluation

• A reserve table[2] records write operation.
• 4 kinds of transaction read-write orders.
• Transaction abort if stale read or lost update.

Based on the deterministic reservation result, 
the execution is deterministic.

[2] Yi Lu, et, al., Aria: a fast and practical deterministic OLTP database. VLDB’20

��� � ; � � ��� � ;� � 
Key TID

x ��
y -

Key TID
x ��
y ��

��� � ;� � 
Key TID

x ��
y ��

��|������

��|����� ����

��|���� ������

��� � ;� � ��� � ;� � 
Key TID

x ��
y ��

Key TID
x ��
y ��

��� � ; � � 
Key TID

x ��
y ��

��|������

��|����� ����

��|���� ������

Block server #1

Block server #2

41



Motivation System design Implementation Evaluation

Effectiveness of Optimizations

(a) The asynchronous block generation has greatly improved the performance.

(b) The pipelining technique further reduced the latency.

Effect of optimizations

42



Motivation System design Implementation Evaluation

Performance when varying epoch length

(a) The frequent data exchanges (due to short epoch) are expensive.

(b) The cost of Merkle tree generation is exponentially increased with the 
increase of block size (due to long epoch).

Effect of optimizations

43


