
JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 1

Towards Communication-Efficient Out-of-Core
Graph Processing on the GPU

Qiange Wang, Xin Ai, Yongze Yan, Shufeng Gong, Yanfeng Zhang, Jing Chen, Ge Yu, Senior Member, IEEE

Abstract—The key performance bottleneck of large-scale graph
processing on memory-limited GPUs is the host-GPU graph data
transfer. Existing GPU-accelerated graph processing frameworks
address this issue by managing the active subgraph transfer at
runtime. Some frameworks adopt explicit transfer management
approaches based on explicit memory copy with filter or com-
paction. In contrast, others adopt implicit transfer management
approaches based on on-demand accesses with the zero-copy
mechanism or unified virtual memory. Having made intensive
analysis, we find that as the active vertices evolve, the perfor-
mance of the two approaches varies in different workloads. Due to
heavy redundant data transfers, high CPU compaction overhead,
or low bandwidth utilization, adopting a single approach often
results in suboptimal performance. Moreover, these methods lack
effective cache management methods to address the irregular and
sparse memory access pattern of graph processing. In this work,
we propose a hybrid transfer management approach that takes
the merits of both two transfer approaches at runtime. Moreover,
we present an efficient vertex-centric graph caching framework
that minimizes CPU-GPU communication by caching frequently
accessed graph data at runtime. Based on these techniques, we
present HytGraph, a GPU-accelerated graph processing frame-
work, which is empowered by a set of effective task-scheduling
optimizations to improve performance. Experiments on real-
world and synthetic graphs show that HytGraph achieves average
speedups of 2.5×, 5.0×, and 2.0× compared to the state-of-the-art
GPU-accelerated graph processing systems, Grus, Subway, and
EMOGI, respectively.

Index Terms—GPU, Graph processing, Communication reduc-
tion, Transfer management, Out-of-core processing

I. INTRODUCTION

H IGH-performance graph processing is crucial for real-
world graph applications, such as geo-information min-

ing and social network analysis. Compared with CPU-based
graph processing frameworks, GPU-based graph processing
frameworks attract increased attention for their ability to lever-
age GPU’s high memory bandwidth and massive parallelism
[23], [37], [42], [46], [51]. However, the limited memory
capacity of GPUs presents challenges in handling large-scale
real-world graphs, especially when their sizes exceed the
available GPU memory.

Recently, research [13], [14], [28], [31], [38], [39], [43],
[50] has been directed toward developing GPU-accelerated
graph processing systems that leverage high-performance GPU
processing and the substantial memory capacity of the CPU.
Similar to that of out-of-core graph processing [25], [36],
[41], [52] on the CPUs, GPU-accelerated graph processing
suffers from low GPU utilization caused by extensive CPU-
to-GPU data movement overhead. Accessing data from the
CPU needs data migration over the low-bandwidth PCIe
interconnect (up to 32GB/s for PCIe 4.0), which can be an

order of magnitude slower than the global memory access.
Moreover, advances in PCIe interconnects have not effectively
bridged the bandwidth gap, as the memory bandwidth of GPUs
also increases simultaneously [34], [35]. This highlights the
necessity of optimizing GPU-CPU data transfer.

Existing GPU-accelerated frameworks [13], [18], [31], [38],
[39], [43], [50] mitigate data communication by tracking the
evolving active vertices throughout iterative computation. In
vertex-centric graph processing, computations are executed in
a sequence of iterations, each processing vertices updated and
marked as active in the prior iteration (i.e., active vertices),
updating the out-going neighbors, and marking any neighbors
with modified values as active vertices for the next iteration. In
this process, it is necessary to access the edge data associated
with active vertices (i.e., active subgraphs) [50]. Following
existing systems [13], [18], [31], [38], [39], [43], [50], we
assume that data related to vertices (such as value, neighbor
index, and activity status) can reside in the GPU memory,
the edge-associated data (including neighbor identities and
weights) is entirely accommodated in the CPU memory, and,
subgraphs comprising active edges are dynamically transferred
to the GPU during iterative processing.

According to the way of reducing CPU-GPU active sub-
graph transfer, existing systems can be classified into two
categories: Explicit Transfer Management (ExpTM)-based
frameworks [18], [38]–[40], [50] and Implicit Transfer
Management (ImpTM)-based frameworks [13], [31], [43]. In
ExpTM-based frameworks, active subgraph communication is
managed by the programmers. The oversized graph is split into
small graph partitions, each of which can fit within the GPU
memory. Before these subgraphs are transferred to the GPU via
the explicit CUDA memory copy (cudaMemcpy), they must
be processed by a CPU-based redundancy removal module to
eliminate inactive edges. Depending on the operation mode,
these approaches can be either light-weight filter-based [18],
[39] or heavy-weight compaction-based [38], [50].

Recently, ImpTM-based approaches that circumvent the
explicit management of data movements for active subgraphs
have emerged [13], [31], [43]. ImpTM-based frameworks
utilize Unified Virtual Addressing (UVA) technique to map
CPU and GPU to the same memory address, allowing GPUs
to directly access the required active edges in the CPU [4],
[5], [13], [31]. Compared with ExpTM, ImpTM requires
less engineering efforts, allowing users to directly extend a
single GPU framework into an out-of-core one by managing
communication through unified virtual memory (UVM) [13],
[43] or zero-copy access [31]. During iterative processing,
memory slices containing active edges can be transferred to the

This article has been accepted for publication in IEEE Transactions on Parallel and Distributed Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2025.3547356

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Northeastern University. Downloaded on April 06,2025 at 07:12:23 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 2

TABLE I: Runtime comparison of Subway and EMOGI on
variable algorithms and datasets.

SK-2005 graph PageRank Algorithm
SSSP PageRank sk-2005 uk-2007

Subway 14.6(s) 8.7(s) 8.7(s) 16.9(s)
EMOGI 7.5(s) 18.6(s) 18.6(s) 12.4(s)

GPU implicitly in a user-transparent manner. Due to the fixed
data migration mechanisms of ImpTM approaches, the transfer
efficiency is highly sensitive to the graph’s access pattern.

Having made extensive analysis, we find that a decision to
choose one or the other approach for the best performance
is determined by the memory access pattern of active edges.
In GPU-accelerated graph processing frameworks based on a
single approach, the performance is often suboptimal. Table I
shows the performance comparison of Subway [38] (a ExpTM-
compaction-based framework) and EMOGI [31] (an ImpTM-
zero-copy-based framework). On sk-2005 graph [3], EMOGI
outperforms the Subway on Single Source Shortest Path al-
gorithm (SSSP) , but it losses on PageRank. In contrast, for
the PageRank algorithm, Subway beats EMOGI on SK dataset
[3], but losses on UK dataset [3]. Moreover, these approaches
focus on reducing redundant active subgraph transmission
and lack efficient mechanisms to reuse transferred graph data
iterations. Existing frameworks [13], [40] based on page-
centric data caching can hardly adapt to graph processing tasks
with irregular and sparse memory access patterns.

We present HyTGraph, a GPU-accelerated Graph process-
ing system that distinguishes itself from previous frameworks
by not exclusively relying on either ExpTM or ImpTM.
Instead, our system employs a Hybrid Transfer Management
method (HyTM) that combines ExpTM and ImpTM to maxi-
mize performance. HyTM splits the graph into small partitions
as ExpTM does. During iterative processing, HyTM esti-
mates ExpTM cost and ImpTM cost on-the-fly by analyzing
the edge access pattern of each partition, and chooses the
most cost-efficient transfer method. Building upon HyTM
method, HyTGraph provides an effective vertex-centric graph
caching method incorporating fine-grained cache manage-
ment and GPU parallel refreshing for efficient graph transfer
reusing across iterations. Furthermore, HyTGraph provides
a contribution-driven asynchronous scheduling to accelerate
convergence. Experimental results on real-world and syn-
thetic graphs demonstrate that HyTGraph achieves an average
speedup of 5.0X over Subway [38], 2.0X over Grus [43], and
2.5X over EMOGI [31].

This work extends the conference version [44], enhanc-
ing the communication efficiency through fine-grained GPU
graph caching: (1) We present a vertex-centric graph caching
framework that reduces CPU-GPU communication through
fine-grained GPU data caching. The framework further incor-
porates a decoupled cache refreshing mechanism along with
GPU parallel processing to achieve low-overhead cache man-
agement (Section VII). (2) We conduct experimental studies
to verify the effectiveness of the caching method in Section
IX. These include: (a) Updates to the overall performance
evaluation and discussion of HyTGraph in Sections IV and

a c

db

e6 2

3 1

1

2
1

f

3 2
4

4 6 8 90 2

c d e fb c c e f

c d e fa b

a

10

column_index:

3 1 2 32 6 1 1 2 4edge_value:

row_offset:

Original graph:

CSR representation:

2 2

5

8

0 00

3

6

9

2

4

3

0

4

8

iter 0 iter 1 iter 2 iter 3

0

b

c

a

e

f

d

∞

∞

∞

∞

∞

∞

∞

∞

iter 4

2

4

3

4

0

6

2

4

3

4

0

6

iter 5
Iterative processing:

source

GPU resident

Host resident

Fig. 1: An example of SSSP computation. The orange box
indicates the active vertices and the green box indicates the
inactive one. The input graph is organized into a CSR format.

IX-G, incorporating the caching optimizations (b) Supplement
data caching components in Sections IX-E and IX-F to assess
the data transfer reduction and consequent performance im-
provement; (c) New experimental evaluations in Section IX-F
to assess the cost and benefit of GPU data caching.

II. BACKGROUND

A. Vertex-Centric Graph Processing

Vertex-centric programming [16], [29] has been widely
adopted in graph processing frameworks for its simplicity and
powerful expression ability. It uses a generic function to define
the behavior of a vertex and its neighbors. Considering the
message passing direction, the function can be either pull- or
push-based [42]. During computation, the function is itera-
tively evaluated on all vertices until the algorithm terminates.
Figure 1 illustrates an example of SSSP, an algorithm to find
the shortest paths from a given source vertex to all the other
vertices. It starts from a source vertex a. In each iteration,
the accessed vertices broadcast their shortest distances to the
outgoing neighbors and update the shortest distance if the new
path is shorter than the old one. The algorithm converges when
no more vertices are updated. During iterative computation,
only the vertices updated by the previous iteration (active
vertices) need to be processed.

GPU graph processing. Recent research explores the massive
parallelism of GPUs [23], [37], [42], [46], [51] to accelerate
graph processing. Despite achieving promising results, the
processing capability of these studies is limited by the GPU
memory. For example, a common 16GB GPU can accom-
modate only about 600 million edges (assuming each edge
occupies 8 bytes). While multi-GPU processing is an intuitive
approach for scaling to large-scale graphs, the cost of expand-
ing GPU memory is prohibitively high, with the price of 1GB
of GPU memory often tens or even hundreds of times that
of 1GB of CPU memory [33], [34]. Fortunately, we observe
that vertex data, which requires frequent random accesses, is
often exponentially smaller than edge data. Although edge data
consumes significant memory, it is read-only and typically
accessed sequentially. Therefore, placing vertex data on GPUs
and offloading large-scale edge data to the CPU provides

This article has been accepted for publication in IEEE Transactions on Parallel and Distributed Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2025.3547356

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Northeastern University. Downloaded on April 06,2025 at 07:12:23 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 3

a cost-effective solution that leverages the high GPU com-
putational power and the affordable host memory resources
[31], [38]. A heterogeneous computing platform with a single
16GB GPU and 320GB of CPU memory can handle large-
scale graphs with hundreds of millions of vertices and tens
of billions of edges. In contrast, achieving this with multi-
GPU in-memory processing could require dozens of such
GPUs, along with the complexity of optimizing inter-GPU
communication. If the input graph scales further, combining
out-of-memory processing with multi-GPUs could provide a
promising solution. This would involve partitioning vertex
data across multiple GPUs and exploring new interconnect
technologies to extend host memory, which is discussed as
future work in Section X. In this work, we focus on opti-
mizing the data communication in CPU-GPU heterogeneous
computing, especially exploring efficient transfer management
modules and caching mechanisms to minimize unnecessary
edge communications.

B. ExpTM Approaches

ExpTM-filter. GraphReduce [39], GTS [24], and Graphie
[18] adopt a filter-based method to reduce the inactive sub-
graph transfer. They monitor the active edges of the partitioned
subgraphs and transfer only those containing active edges.
Figure 2 (a) shows an illustrative example. This method filters
out partitions containing no active edges without additional
processing. Therefore, active partitions will be entirely trans-
ferred to the GPU, even if only one edge is active. When the
proportion of active edges is low, the volume of unnecessary
data transfer will be large.

ExpTM-compaction. In contrast, some other frameworks
[38], [40], [50] introduce CPU-assisted compaction to re-
duce communication. Before transferring a partition containing
active edges to the GPU, these frameworks use CPUs to
remove the inactive subgraph and compact the remaining data
into a continuous memory space to facilitate explicit memory
copy. Figure 2 (b) shows an illustrative example of Subway
[38], a typical ExpTM-compaction-based system. Compared
with the filter-based frameworks [18], [39], compaction-based
frameworks can minimize the data transfers by removing all
inactive edges. But at the cost, it involves additional CPU and
memory manipulation overhead.

C. ImpTM Approaches

ImpTM-unified-memory. Unified-virtual-memory (UVM)
defines a managed memory space where both GPU and CPU
share a single address space, maintaining a coherent memory
image [13], [43]. Figure 2 (c) shows an illustrative example.
During computation, memory pages (4KB in default) contain-
ing requested data are automatically migrated to GPUs. UVM
provides page-centric GPU data caching, enabling subsequent
accesses to the same memory page to be served directly
from the GPU’s global memory, thus avoiding additional data
transfers. However, the “automated migration” cost is not
free. Migrating new pages to the GPU memory triggers page-
fault processing, which requires not only data transfer but

also significant costs in Translation Lookaside Buffer (TLB)
invalidation and page fault updating [31].
ImpTM-zero-copy. Zero-copy memory access offers a more
lightweight approach. The method maps pinned CPU memory
to GPU address spaces, enabling GPUs to directly access
CPU memory through the Transaction Layer Packet (TLP)
of PCIe [31]. Compared to UVM-based method, zero-copy
access provides a finer granularity of CPU-GPU data access.
As per the PCIe 3.0 specification, up to 256 outstanding
memory requests can be processed concurrently by each TLP,
with each request accommodating data payloads of 32, 64,
96, or 128 bytes [31], tailored to the size of the various
adjacency lists. This capability allows zero-copy access to
facilitate simultaneous, fine-grained access to the edge data.
Moreover, zero-copy access incurs lower transfer overhead
than UVM-based approaches as it eliminates the need for
page-fault handling. As a sacrifice, zero-copy access cannot
provide data-reusing functions. Repeat accesses to the same
data will cause multiple separate CPU-GPU data transfers.

III. ANALYSIS OF EXISTING APPROACHES: A
MOTIVATING STUDY

In this section, we conduct an experimental analysis of the
existing approaches using two graph algorithms with diverse
memory access patterns: SSSP and PageRank.

A. Analysis of ExpTM
ExpTM-filter (ExpTM-F). As mentioned above, filter-based
ExpTM has a large amount of redundant transfers even if the
proportion of active edge is low. We run PageRank and SSSP
on friendster-konect [2] graph to explore the redundant data
transfer problem with the partition number set to 256. Figure 3
(a) shows the proportion curves of active edges and partitions
containing active edges (active partitions). We can observe
that the proportion of active partitions does not decrease
immediately with the proportion of active edges. For SSSP and
PageRank algorithms, the active edges account for only 28.3%
and 12.3% of the total transfer volume. Although ExpTM-filter
method shows ineffectiveness with a small number of active
edges, it exhibits advantages when dealing with subgraphs
containing a large proportion of active edges. This is because
it can maximize the utilization of PCIe bandwidth through the
cudaMemcpy() function.
ExpTM-compaction (ExpTM-C). The compaction-based
ExpTM significantly reduces data communication by transfer-
ring compacted active data. However, this approach involves
substantial overhead due to CPU-based compaction process-
ing, particularly when a large proportion of active edges are
involved. As highlighted by Subway [38], in scenarios where
the proportion of active edges is high (e.g., 80%), the overhead
associated with compaction can even outweigh the benefit of
transfer reduction [38]. Figure 3 (b) depicts the per-iteration
runtime breakdown of Subway and showcases instances where
costs exceed benefits. Additionally, Figure 3 (c) shows the
overall performance breakdown of SSSP algorithm on Subway,
with the preprocessing overhead excluded from the execution
time. We can observe that across all five datasets, the com-
paction stage accounts for 34.5% of the overall runtime.

This article has been accepted for publication in IEEE Transactions on Parallel and Distributed Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2025.3547356

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Northeastern University. Downloaded on April 06,2025 at 07:12:23 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 4

GPU

(a) ExpTM-filter

main-memory

GPU

CPU Compact

...

cudaMemCopy

(b) ExpTM-compaction

main-memory

GPUGraph APP

UM Engine

(c) ImpTM-unified-memory

main-memory

GPU

Zero Copy

...

(d) ImpTM-zero-copy

Active
Vertices

...

Graph APPGraph APP Graph APP

main-memory

CPU Filter

...

cudaMemCopy
Active

Vertices

Fig. 2: An example of the four approaches. The thin blue arrow, thin black arrow, and thick blue arrow represent the remote
memory access, local memory access, and host-GPU data transfer, respectively.ExpTM-based approaches need to transfer the
active vertices back to the host side for compaction or filtering.

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60

P
ro

p
o
rt

io
n
 (

%
)

(a) Proportion of active edges and
 active partitions in ExpTM−filter

PR−actEdge
PR−actPrt

SSSP−actEdge
SSSP−actPrt

 0

 2

 4

1 10 20 30 40

T
im

e(
s)

(b) Per−iter. runtime breakdown of
 ExpTM−compaction (Subway)

Compaction
Transfer

Computation

 0

 2

 4

1 20 40 60 80

Pagerank

SSSP

Cost>Benefit

Cost>Benefit

T
im

e(
s)

Compaction
Transfer

Computation

 0

 10

 20

SK TW FK UK FS

T
im

e(
s)

(c) Performance breakdown of
 ExpTM−compaction (Subway)

Compaction
Transfer

Computation

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60

P
ro

p
o
rt

io
n
 (

%
)

(d) Proportion of active edges and
 active pages in ImpTM−UM

PR−actEdge
PR−actPage

SSSP−actEdge
SSSP−actPage

 0

 3

 6

 9

 12

 15

32−B 64−B 96−B 128−B

T
h
ro

u
g
h
p
u
t

(G
B

/s
)

(e) Throughput of zero−copy with
 different access granularity

cudaMemCpy
zero−copy

20

40

60

80

100

SK TW FK UK FS

P
ro

p
o
rt

io
n
 (

%
)

(f) Distribution of vertex degree

[0,8)
[8,16)

[16,24)

[24,32)
[32,)

1

2

3

4

 0 10 20 30 40

E−F

E−C

I−ZC

I−UM

T
im

e(
s)

P
re

fe
rr

ed
 a

p
p

ro
ac

h

(g) Per−iter. runtime of SSSP
 with the four approaches

E−F
E−C

I−ZC

I−UM
Prefer

1

2

3

4

 0 10 20 30 40 50 60 70 80

E−F

E−C

I−ZC

I−UM

T
im

e(
s)

P
re

fe
rr

ed
 a

p
p

ro
ac

h

(h) Per−iter. runtime of PR
 with the four approaches

E−F
E−C

I−ZC

I−UM
Prefer

 0

 10

 20

 30

 40

0%−20%
20%−40%

40%−60%

60%−80%

80%−100%

(i) Average access frequency for PageRank

SortByAccFrq
SortByDeg

 0

 10

 20

 30

0%−20%
20%−40%

40%−60%

60%−80%

80%−100%

FS

TW

SortByAccFrq
SortByDeg

 0

 2

 4

 6

0%−20%
20%−40%

40%−60%

60%−80%

80%−100%

(j) Average access frequency for SSSP

SortByAccFrq
SortByDeg

 0
 3
 6
 9

 12
 15

0%−20%
20%−40%

40%−60%

60%−80%

80%−100%

FS

TW

SortByAccFrq
SortByDeg

Fig. 3: Performance analysis of the four engines using the two algorithms.

B. Analysis of ImpTM
ImpTM-unified-memory (ImpTM-UM). Unified-virtual-
memory provides on-demand memory migration. However,
this method falls short of efficiency in graph processing ap-
plications. On the one hand, recent studies show that the peak
bandwidth of unified-memory can only reach 73.9% of that of
explicit memory copy due to the high “automated migration”
overhead [31]. On the other hand, the migration granularity
of 4K bytes often leads to the inclusion of substantial inactive
data [13], [31] in each memory page. This issue is caused by
the inherent irregularity and poor locality of graph algorithms
[31], [40]. Figure 3 (d) shows the proportion of active edges
and active memory pages of each iteration. For SSSP and
PageRank algorithms, the active edges account for only 54.5%
and 65.0% of the total transfer volume, respectively. Therefore,
ImpTM-unified-memory exhibits suboptimal communication
performance on large graphs, regardless of whether the ratio of
active edges is high or low. Additionally, the page-centric data
caching also contributes little to the performance improvement
due to the low space utilization of active subgraphs in the
memory pages. The UVM-based approach only shows effi-
ciency when the graph size is sufficiently small to be fully
accommodated within the GPU memory.
ImpTM-zero-copy (ImpTM-ZC). Maximizing PCIe band-
width utilization is crucial for improving zero-copy access
performance. As indicated by EMOGI [31], saturating most
of the 256 memory requests in each TLP with 128-byte
data is essential for maximizing the PCIe bandwidth. The
underlying reason is as follows: Each TLP not only carries

the payloads of memory requests but also includes a header
field containing control information. Smaller memory requests
result in a higher number of TLPs for the same data volume,
thus allocating a significant portion of the bandwidth to header
field transfers. Figure 3 (e) shows the throughput of zero-
copy access across various memory request sizes (ranging
from 32 bytes to 128 bytes). We can observe that when
the memory request size is 128 bytes, the zero-copy access
can achieve almost the same performance as cudaMemcpy
(the maximum PCIe utilization). However, when the request
size is set to 32 bytes, the throughput decreases significantly.
To optimize bandwidth usage, EMOGI [31] proposes merged
and aligned optimization with which each warp of threads
access consecutive neighbors of one vertex in a 128-byte
cache line size. Nonetheless, guaranteeing that most memory
requests reach the 128-byte mark is challenging, especially
when considering that each neighbor typically requires 4 bytes,
and real-world graphs, adhering to a power-law distribution,
often feature vertices with fewer than 32 neighbors. As shown
in Figure 3 (f), on average, 74.7% of vertices have fewer than
32 neighbors, with 51.1% having fewer than 8. This leads
to inconsistent performance of zero-copy access across real-
world graphs.

C. Performance Comparison of the Four Approaches

We report the per-iteration runtime of ExpTM-filter,
ExpTM-compaction, ImpTM-unified-memory, and ImpTM-
zero-copy on friendster-konect [2] using two typical graph
algorithms: the graph traversal algorithm SSSP and the

This article has been accepted for publication in IEEE Transactions on Parallel and Distributed Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2025.3547356

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Northeastern University. Downloaded on April 06,2025 at 07:12:23 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 5

iterative algorithm PageRank [42]), illustrated in Fig-
ure 3 (g) and (h). The implementations of ExpTM-
filter, ImpTM-unified-memory, and ImpTM-zero-copy lever-
age the processing kernel of SEP-Graph [42]. The
cudaMemAdviseSetReadMostly optimization is enabled
for ImpTM-unified-memory (the evicted memory pages will
be discarded directly instead of written back to the CPU
memory). For the ExpTM-compaction implementation, We use
Subway [38] due to its highly-optimized compaction engine
and efficient GPU kernel from Tigr [37]. All methods are set
to execute synchronously to maintain a consistent number of
active vertices across iterations. We employ a “Prefer” curve
to indicate the best-performing approach in each iteration. By
examining the proportion curves of active edges for SSSP and
PageRank in Figure 3 (a), we observe that ExpTM-filter excels
when the proportion of active edges is high, attributable to its
efficient utilization of PCIe bandwidth.

When the proportion of active edge is low, ImpTM-zero-
copy outperforms other approaches in most iterations, thanks
to its fine-grained data migration mechanism. However, for
the SSSP algorithm, ExpTM-compaction occasionally out-
performs ImpTM-zero-copy during certain iterations. This
variability can be attributed to the unstable performance of
zero-copy under different vertex degrees. As mentioned above,
zero-copy’s effectiveness is affected not only by the active
edge proportion but also by the average degree. Given a fixed
number of active edges, a higher count of active vertices leads
to a higher number of fragmented edge data accesses and an
increase in partially filled TLP requests, leading to reduced
bandwidth utilization efficiency. ImpTM-unified-memory con-
sistently underperforms across all scenarios, even with GPU
data caching. Its coarse-grained page migration mechanism
falls short of recognizing the irregular and sparse data access
patterns of graph processing, thereby diminishing both cache
and PCIe bandwidth efficiency.

D. Cross-iteration Data Reusing
Existing transfer management approaches primarily focus

on intra-iteration communication optimization. However, du-
plicated vertex accesses across iterations also result in certain
edge data being transferred multiple times. As shown in Figure
3 (i-j), we evaluate the SSSP and PageRank algorithms on
the TW and FS graphs. Vertices are sorted and grouped into
five categories based on their access frequency (red bars) and
vertex degree (blue bars), and the average access frequency for
each group is presented. The results reveal that the top 20%
most frequently accessed vertices exhibit significantly higher
access frequencies than the average (black line) and other
groups, offering considerable opportunities for communication
reuse. Existing data caching mechanisms, however, exhibit cer-
tain limitations. The ImpTM-unified-memory approach, which
employs page-centric dynamic data migration and caching,
fails to adapt effectively to the irregular access patterns of
graph data. Recent studies have explored the significance of
high-degree vertices (i.e., hub vertices) in graph processing,
highlighting their frequent access during computation [27].
Consequently, extracting hub vertices for data caching be-
comes a natural and intuitive solution. However, we observe

C
P

U
G

P
U

Partitioned (logically) edge-associated data

Entire vertex-associated data

Work sets
(Active vertices for the

next iteration)

ExpTM-F
Kernel

ExpTM-C
Kernel

ImpTM-ZC
Kernel

Cost-analyzer&
Engine-selector

Vtx-centric cache
Management

cudaMemCpy

Hot dataCold data

Zero-copy
access

Compaction &
cudaMemCpy

Contribution-
driven

scheduling

Flexible multi-
stream

scheduling
Asynchronous Scheduling

Fig. 4: Overview of HyTGraph.

that high-degree vertices in different graph processing tasks
do not always align with high-frequency accessed vertices.
as shown by the blue columns in Figure 3 (i-j). On the
TW dataset, the bottom 20% low-degree vertices exhibit even
higher access frequencies than the middle groups. Moreover,
the overlap between the top 20% of vertices ranked by degree
and those ranked by access frequency is limited, ranging from
34% to 45%. This inspires us to design a more targeted, access
frequency-guided caching mechanism for efficient data reuse.

E. Summary of Existing Approaches

Having made intensive analysis, we observe that the data
transfer overhead is affected by three primary factors: data
transfer volume, PCIe bandwidth Utilization, and CPU pruning
cost. As depicted in Table II, existing approaches fail to
optimize these factors cooperatively. Adopting a single transfer
management method often limits the system’s effectiveness to
only one or several specific scenarios, as shown in the last
column in Table II. Additionally, existing GPU data caching
mechanisms, which rely on fixed-size memory page migration
or degree-based subgraph pre-selection, are not suited for
handling the irregular data access patterns inherent in graph
processing. In addition to systems [13], [31], [38], [39] men-
tioned above, Scaph [50] adopt ExpTM-compaction. Different
from Subway, Scaph [50] and Ascetic perform compaction
on the partitioned graph. It distinguishes the partitions with
a small proportion of active edges and compacts them for
subsequent GPU processing. In contrast, partitions with a large
proportion of active edges are entirely loaded to the GPU. Grus
[43] is an ImpTM-based framework that manages the edge-
associated data in main memory with priorities, prefetching
high-priority data to the GPU through unified-memory and
accessing low-priority data through zero-copy. In addition,
some frameworks [14], [28] also use CPU-GPU co-processing
to accelerate graph processing. We review them in Section XI.

IV. HYTGRAPH OVERVIEW

We present HyTGraph, a GPU-accelerated graph processing
system based on hybrid transfer management (HyTM) to max-
imize performance. Figure 4 shows an overview. HyTGraph
organizes the graph into a CSR structure. Following [18],
[50], HyTGraph logically splits the edge data into N edge-
balanced partitions {P0, P1 . . . , PN−1}. During computation,

This article has been accepted for publication in IEEE Transactions on Parallel and Distributed Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2025.3547356

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Northeastern University. Downloaded on April 06,2025 at 07:12:23 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 6

TABLE II: Summary of existing approaches and representative systems.

Approach System Transfer Volume Bandwidth Utilization Prune Cost GPU Data Cache Preferred Scenario

ExpTM-F
GraphReduce [39]

High High Low N/A
•Subgraph with a large

Graphie [18] proportion of active edges
GTS [24]

ExpTM-C
Subway [38]

Low High High N/A
•Subgraph with a small

Scaph [50] proportion of active edges
Ascetic [40] and small average degree

ImpTM-UM HALO [13] Medium Low NA Page-
centric

• Small graph that can
Grus [43] fit into GPU memory

ImpTM-ZC EMOGI [31] Low Unstable No N/A
• Subgraph with a small
proportion of active edges
and high average degree

HyTM Our approach Low high Low Vertex-centric • Adapt to subgraph with
various active degree

partitions containing active vertices are processed with their
most cost-efficient engines. HyTGraph provides three func-
tions to achieve efficient HyTM.

Cost-based engine selection. HyTGraph uses a GPU-resides
cost analyzer and engine selector to compute the data transfer
overhead for different approaches and selects the most cost-
efficient one for each partition. Based on the analysis in
section III, we choose ExpTM-F, ExpTM-C, and ImpTM-ZC
as engine candidates. In addition, HyTGraph provides a task
combining optimization to merge small subgraph pieces into
larger tasks to minimize scheduling overhead.

Contribution-driven asynchronous scheduling. HyTGraph
introduces asynchrony to improve computation efficiency.
Rather than simply recomputing the loaded subgraph multi-
ple times [38], [50], HyTGraph adopts a contribution-driven
priority scheduling method to prioritize those partitions that
contribute more to convergence. To further improve resource
utilization, HyTGraph uses multiple CUDA streams to overlap
the computation kernel, data transfer, and CPU-based active
subgraph compaction.

Vertex-centric graph cache. HyTGraph provides a vertex-
centric graph caching method, distinguishing itself from the
page-centric methods in existing GPU graph processing sys-
tems [13], [40]. HyTGraph finely caches the frequently ac-
cessed data and compactly stores them in the GPU to maxi-
mize the cache utilization. Moreover, instead of performing the
heavy-weight individual-vertex data replacement, HyTGraph
uses a batched cache refreshing method that minimizes data
replacement overhead through GPU parallel processing.

V. COST-BASED ENGINE SELECTION

A. Cost Analysis and Engine Selection

Most existing activeness-tracking-based frameworks use the
proportion of active edges as the evaluation metric [18], [28],
[39], [50] to select appropriate processing engines, which
provides an intuitive and lightweight distinguishing method.
However, it is not suitable in HyTM as the proportion of active
edges cannot reflect the cost of different transfer approaches
(as detailed in III-C). In this work, we directly model the over-
head of different transfer management methods and accurately
select the most cost-efficient execution engine.

Cost of ExpTM-filter. The ExpTM-filter-based approach
entirely transfers partitions containing active edges to the GPU

using cudaMemcpy, thus incurring only data transfer over-
head. This overhead can be estimated by the saturated TLPs
(as discussed in Section III, Figure 3 (e)). Given a partition
Pi, the number of memory requests can be calculated with∑

v∈Pi
Do(v)∗d1/m, where

∑
v∈Pi

Do(v) is the edge number
of partition i, Do(v) represents the number of neighbors of
v, d1 represents the memory occupation of a vertex, and m
represents the maximum capacity of an outstanding memory
request (128-bytes in PCIe-3.0 specification). Denote MR as
the maximum number of outstanding memory requests in TLP
(MR = 256 in PCIe 3.0) and ⌈·⌉ as the round-up operation,
we formalize the transfer overhead of each Pi as follow:

Tefi =
⌈(∑

v∈Pi

Do(v)
)
∗ d1/m/MR

⌉
∗RTT, (1)

where
⌈(∑

v∈Pi
Do(v)

)
∗ d1/m/MR

⌉
is the number of

required TLPs, and RTT represents the round trip time for
PCIe to process a saturated TLP request.
Cost of ExpTM-compaction. ExpTM-compaction involves
additional CPU-based compaction, so its cost consists of two
parts: the data transfer overhead and the CPU compaction
overhead. Since the compaction needs to reorganize the active
edges and change their positions, we also need to generate
a vertex index array and transfer it to GPU for addressing
the compacted neighbors. Then the transfer volume can be
formalized as

∑
v∈Ai

Do(v) ∗ d1 + |Ai| ∗ d2, where Ai

represents the active vertex subset of Pi and d2 represents
the memory occupation of each vertex index. The CPU-
based compaction is related to both data transfer volume
and CPU compaction throughput. which can be computed
using

∑
v∈Ai

Do(v) ∗ d1 + |Ai| ∗ d2/Thptcpt, where Thptcpt
represents the CPU compaction throughput. Then, the cost of
ExpTM-compaction can be formalized as:

Teci =
⌈(∑

v∈Ai

Do(v) ∗ d1 + |Ai| ∗ d2
)
/m/MR

⌉
∗RTT

+
∑
v∈Ai

Do(v) ∗ d1 + |Ai| ∗ d2/Thptcpt (2)

Cost of ImpTM-zero-copy. The ImpTM-zero-copy approach
provides vertex-centric on-demand access in the cacheline
size. Therefore, each active vertex v takes one or several
independent memory requests depending on its neighbor size.
Generally, the number of required memory requests of vertex
v can be formalized as ⌈Do(v) ∗ d1/m⌉. Considering that

This article has been accepted for publication in IEEE Transactions on Parallel and Distributed Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2025.3547356

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Northeastern University. Downloaded on April 06,2025 at 07:12:23 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 7

we can hardly guarantee the neighbors of all vertices start
from a cacheline-aligned position, some vertices may have
the misaligned neighbor array and thus require one additional
memory transaction [31]. We introduce a function am(),
which returns 1 for unaligned vertices and 0 for the others1.
Therefore, the transfer overhead of ImpTM-zero-copy can be
formalized as:

Tizi =
⌈(∑

v∈Ai

(
⌈Do(v) ∗ d1/m⌉+ am(v)

))
/MR

⌉
∗RTTzc,

(3)

where
(∑

v∈Pi(V)∩Ai
⌈Do(v) ∗ d1/m⌉ + am(v)

)
is the re-

quired memory transactions of Pi. It should be noted that
the TLP round trip time of zero-copy (RTTzc) is not the
same as that in ExpTM (RTT) because the payload of each
TLP in zero-copy may be unsaturated. This makes RTTzc

always less than the RTT s in ExpTM-filter and ExpTM-
compaction. In this paper, we use a dumpling factor γ to
compute RTTzc for each partition as follows: RTTzc =
γ ∗RTT + (1− γ) ∗ (

∑
v∈Ai

Do(v)/
∑

v∈Pi
Do(v)) ∗RTT ,

where (
∑

v∈Ai
Do(v)/

∑
v∈Pi

Do(v) is the proportion of ac-
tive edge. γ ∗RTT represents the fixed time to process a TLP,
and (1−γ)∗(

∑
v∈Ai

Do(v)/
∑

v∈Pi
Do(v))∗RTT represents

the time related to the size of payload. By referring to [31],
we set γ to 0.625.
Transfer engine selection. HyTGraph compares Tefi, Teci,
and Tizi to choose the most cost-efficient execution en-
gine. However, theoretically modeling the CPU compaction
throughput Thptcpt in Equation 2 is challenging because
ExpTM-compaction introduces parallel and random writes on
the host memory. This makes Thptcpt vary with active edges
nonlinearly. In practice, we compute Teci by considering only
the transfer overhead and compare it with Tefi and Tizi. If
Teci is less than α ∗ Tefi and Teci is less than β ∗ Tizi, we
choose ExpTM-compaction. The first condition comes from
Subway’s observation [38], where α is set to 80%. The second
condition is based on the observation from Section III: when
a partitioned subgraph has few active edges but many active
vertices, and zero-copy requires many unsaturated memory re-
quests to transfer the data, leading to ExpTM-compaction is a
better choice than ImpTM-zero-copy. In the implementation, β
is set to 40%. If these conditions are not met, we compare Tizi
with Tefi. If Tizi is less than Tefi, we choose ImpTM-zero-
copy. Otherwise, we choose ExpTM-filter. The value of RTT
can be arbitrarily specified, as it can eliminated in subsequent
comparisons. Since the cost computation between partitions is
independent, HyTGraph performs the engine selection on the
GPU for high performance. Algorithm 1 line (2-13) shows the
overall execution flow.

B. Partition Granularity and Task Combination
A key to implementing high-performance hybrid transfer

management is to determine the optimal granularity for task
scheduling. The existing frameworks [18], [28], [39], [50]

1In the implementation, the number of memory requests of each active
vertex ⌈Do(v) ∗ d1/m⌉ + am(v) can be directly computed by using the
length and physical position of the neighbor data.

Algorithm 1 Cost-based engine selection
Input: active vertex set {A0, · · · , AN−1} of N partitions,
Output: tasks prefer ExpTM-filter {V f0 . . . V fM−1} (M < N), task

prefer ExpTM-compaction V c, and task prefer ImpTM-zero-copy V z.
1: initialize a selection array {p0, . . . pN−1} on GPU.

Cost analysis and engine selection:
2: for each Ai in {A0, · · · , AN−1} do in parallel
3: Compute Tefi, Teci, and T izi according to Formula (1,2,3)
4: if Teci < α ∗ Tefi and Teci < β ∗ T izi then
5: pi=‘ExpTM-C’;
6: insert Ai to V c; //pre-combine on GPU
7: else if Tefi < Tizi then
8: pi=‘ExpTM-F’;
9: else

10: pi=‘ImpTM-ZC’;
11: insert Ai to V z; //pre-combine on GPU
12: end if
13: end for
14: Copy V c, {p0, . . . pN−1} and {A0, · · · , AN−1} to host.

Task Combination:
15: i = 0, j = 0, length = 0;
16: while i < N do
17: if pi==‘ExpTM-F’ and length < k then
18: insert Ai to V fj ;
19: length = length+ 1;
20: else
21: length = 0, j = j + 1;
22: end if
23: i = i+ 1;
24: end while

directly use the partitioned subgraphs as scheduling unit. This
method is simple and straightforward, however, can lead to low
task scheduling performance. If the partition size is too large,
the coarse-grained cost computation may lead to inappropriate
engine selection. If the partition size is small, it may lead
to higher kernel scheduling overhead and fragmented data
transfers for more partitions.

To achieve fine-grained engine selection and low over-
head task scheduling simultaneously, HyTGraph decouples
the graph partitioning and task scheduling and optimizes
them separately. HyTGraph partitions the graph into small
partitions (32MB each partition) to provide fine-grained cost
analysis. While in the computation, HyTGraph packages
partitions choosing the same engine into large chunks for
processing. Specifically, for partitions using ExpTM-filter,
HyTGraph merges k consecutive partitions into a large one
(k=4 in HyTGraph) to reduce scheduling overhead (Line 15-
24 in algorithm 1). For partitions using ExpTM-compaction,
HyTGraph merges all their active vertices and writes their
neighbors to a consecutive memory chunk to leverage explicit
memory copy (line 6 in algorithm 1). For partitions using
ImpTM-zero-copy, HyTGraph merges all active vertices (line
11 in algorithm 1) and processes them with one CUDA
kernel to leverage the implicit computation-communication
overlapping feature of zero-copy access.

VI. CONTRIBUTION-DRIVEN ASYNCHRONOUS TASK
SCHEDULING

Asynchronous computation allows newly updated results
to be used immediately in subsequent computation, which
has been proven to be effective in GPU-based graph pro-
cessing [6], [42]. However, simply processing the transferred
subgraph multiple times may cause the local updates to be

This article has been accepted for publication in IEEE Transactions on Parallel and Distributed Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2025.3547356

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Northeastern University. Downloaded on April 06,2025 at 07:12:23 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 8

abolished by the subsequent computation from other partitions,
leading to increased computation and data transfer. This is
known as the stale computation problem [11], [45]. Our
experiments reveal that existing framework with multi-round
processing can even cause higher transfer volume (See Section
IX-E for details) than synchronous scheduling in some cases.
To address this issue, HyTGraph adopts a contribution-driven
priority scheduling method.
Hub-vertex-driven priority scheduling. Due to the power-
law property of real-world graphs, some important vertices
with high incoming and outgoing degrees often become the
hubs in the computation path. These vertices become critical
upstream dependencies of a large number of vertices because
of the large outgoing degree. On the other hand, these ver-
tices also have a high probability of being activated in the
iterative computation due to large incoming degrees. If these
vertices do not accumulate sufficient updates before being
scheduled, the downstream computation results based on the
current value are likely to be abolished by subsequent new
updates. Based on this observation, we propose a hub-vertex-
driven priority scheduling approach. By ensuring that the hub
vertices accumulate enough contributions before being sched-
uled, HyTGraph can reduce the possible stale computations
on the downstream vertices. Implementing hub-vertex-driven
scheduling in GPU-accelerated platforms is challenging, as
the hub vertices distribute randomly among the entire graph,
which makes hub vertices hard to gather and transfer. To solve
this problem, HyTGraph adopts a hub vertex sorting method
[48], that groups the top 8% important vertices at the beginning
of the CSR structure. The importance score of each vertex is
measured by the following equation:

H(v) =
Do(v) ∗Di(v)

Domax ∗Dimax
(4)

Di(v), Do(v), Dimax, and Domax represent the incoming-
, outgoing-, maximum incoming-, and maximum outgoing-
degree, respectively. In this way, the hub vertices are grouped
together, and the non-hub-vertices remain in their natural
order. HyTGraph recomputes the loaded subgraph only once
because most updates can only pass two hops effectively [41].
Another benefit of this method is that the vertices having a
high probability of being activated (with large in-degree) are
stored together, which can help gather high-active subgraphs
for the cost-based engine selection. It is worth mentioning that
the hub sorting does not need to be performed every time. The
hub vertex can be sorted only once in the preparation stage,
and all subsequent executions (of different algorithms) can
benefit from it.
∆-driven priority scheduling. For iterative graph algorithms
based on arithmetic accumulation, e.g., ∆-based PageRank
and PHP [47], the contribution of vertices is directly reflected
in their delta values (the messages to be accumulated). Prior-
itizing vertices with larger ∆ value can help downstream ver-
tices accumulate more valid updates [47]. Following the orig-
inal vertex-centric ∆-driven priority scheduling, HyTGraph
provides a partition-centric ∆-driven scheduling method that
computes an overall ∆ value for each partition and prioritizes
those with larger contributions.

Algorithm 2 Data caching during iterative processing.
1: Vcurr=init("ALG") // initial active vertices
2: Vcache = ∅ // cached vertices
3: Nbatch = 0 // counter of processed vertices
4: while Vcurr ̸= ∅ do
5: if Nbatch > γ|V | then
6: Vcand=hot_candidates_VCDC(Ccap)
7: if overlap(Vcurr ,Vcache) then
8: cache_update_VCDC(Vcurr,Vcache)
9: Evict cold data and alloc space for new candidates

10: c tag = 1
11: end if
12: reset_hotness_VCDC()
13: Nbatch = 0
14: end if
15: {Vc, Vz , Vf}=engine_selection_HyTM(Vcurr)
16: Vnext=proc_HyTM_VCGC({Vc, Vz , Vf},Vcand \ Vcache)
17: Load accessed candidates into the cache
18: Record the number of accesses
19: Vcurr = Vnext

20: Nbatch+ = |Vcurr|
21: if c tag == 1 then
22: Vcache = Vcand

23: end if
24: end while

VII. VERTEX-CENTRIC GRAPH CACHING

The proposed hybrid transfer management focuses on trans-
fer reduction within each iteration. However, certain iterative
graph algorithms (e.g., Pagerank) involve repeated data access
among iterations [40], which benefit less from HyTM, and
can hardly optimized with exiting caching mechanisms due to
coarse-grained data caching and challenging cache vertices de-
termination. In this section, we introduce an access frequency-
guided, vertex-centric graph caching (VCGC) method. During
computation, HyTGraph tracks the access frequency of all
vertices in real time, sorts them in by access frequency to
determine the cache candidates, and performs vertex-centric
cache replacement using the hybrid communication engine.
This approach leverages a more directed access frequency
metric and finely transfers and caches the graph in a vertex-
centric manner.

Enable high-performance VCGC is a non-trivial task as
frequent eviction and loading for variable-length adjacency
lists on the GPU incur substantial memory manipulation
overhead. To address this issue, HyTGraph provides several
key features, including 1) a periodic cache refreshing approach
that decouples the eviction and loading of frequently accessed
data; 2) CSR-based compacted data organization to maximize
memory utilization, and uses GPU parallel processing to ac-
celerate the cache determination. We first introduce the overall
execution flow and then detail the design and implementation
of each component.

Execution flow. The cache management flow during iter-
ative processing is outlined in Algorithm 2, with functions
associated with data caching indicated by the VCDC suffix. To
begin, HyTGraph initializes the active vertices (Line 1) and the
necessary data for cache maintenance (Line 2 and 3) and then
performs the iterative computation (Line 4-24). Before engine
selection and computation, HyTGraph first checks whether the
cache condition is triggered based on the hotness (Line 5-7).
If the condition is met, HyTGraph refreshes the vertex-centric

This article has been accepted for publication in IEEE Transactions on Parallel and Distributed Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2025.3547356

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Northeastern University. Downloaded on April 06,2025 at 07:12:23 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 9

cache by evicting cold data and reloading the new data in
batches through GPU parallel processing. To avoid additional
host-GPU data transfer, HyTGraph separates the cache filling
and eviction, first evicting cold data and allocating space for
the new candidates (in Line 8) and then loading the data to
the GPU during HyTM processing. This design ensures low
cache management overhead.

Hotness-based cache candidate selection. HyTGraph de-
termines the cache candidates by sorting vertices by the
hotness and obtaining the top-K vertices as the candidates.
The ”hotness” of a vertex is defined by the access volume
over a certain period, which is maintained using a |V |-length
hotness array during iterative processing. In the candidate
determination stage (Line 8), vertices are sorted by the hotness,
with the topK hot vertices whose aggregated neighbor sizes
do not exceed a given capacity (Ccap) as the candidates, i.e.,
Vcand. Following the selection, the hotness array is reset for
the next step. This process, encompassing hotness evaluation
and top-K computation, incurs less overhead compared to
iterative processing. HyTGraph also performs the selection
process on the GPU to achieve high performance.

Cache refresh condition checking. Determining appropri-
ate replacement timing is crucial to efficient communication
and low replacement overhead. Length replacement cause
increased cache miss, while highly frequent replacements can
result in the overhead outweighing the benefits. To address this
issue, HyTGraph employs a lazy condition-checking approach
to balance the cost and benefit. Firstly, instead of using
iterations as the metric for timing checks, HyTGraph calculates
the cache candidates Vcand after processing a given number
of vertices, denoted by γ|V | (Line 5). This is to adapt to the
asynchronous and ∆-based priority processing in HyTGraph.
Secondly, HyTGraph evaluates whether the data requiring
replacement exceeds β of the new candidates (Line 7) and
performs cache refreshing (Line 8) only if the condition is met.
Otherwise, iterative computation continues with the old cache.
The 30% threshold is configured based on the insight that it
ensures sufficient changes in access frequency are accumulated
while avoiding frequent cache refreshing caused by minor
fluctuations in vertex hotness. In graph computation, the access
frequency distribution typically stabilizes after the first few
iterations. Therefore, this 30% setting allows HyTGraph to
cache most of the correct vertices after a few refresh cycles.
Once stabilized, the system avoids unnecessary adjustments
triggered by small changes, which would otherwise require
reorganizing the entire CSR structure.

Vertex-centric cache refreshing. Cache replacement involves
the removal of old vertices and the loading of new ones.
HyTGraph decouples them into two phases and processes them
separately to reduce replacement overhead. In the cache updat-
ing stage (Line 8), HyTGraph performs GPU parallel cold data
deletion and compacts the remaining data to make room for
the new candidates (Line 8). Initially, a data deletion kernel is
launched to identify all outdated vertices (Vcache \Vcand) and
mark them as invalid. Subsequently, the remaining valid data
(Vcand∩Vcache) is compacted in the cache. Finally, new spaces
are allocated for the new vertices (Vcand\Vcache) in the tail of

the cache, and the corresponding write indices are generated.
To avoid additional data communication for loading data into
the cache, HyTGraph integrates the cache loading stage into
the computation kernel (Line 16). During computation, the
GPU computation kernel will store the accessed data of new
cache candidates (Vcand \Vcache) in the allocated cache space
according to the indices generated in the cache updating stage.
Such an implementation ensures cache refreshing efficiency by
fully utilizing GPU parallelism and avoiding additional host-
GPU data communications.

VIII. IMPLEMENTATION AND OPTIMIZATIONS

Flexible multi-stream scheduling. The processing engines
of ExpTM-F, ExpTM-C, and ImpTM-zero-copy-ZC require
different resources, including CPUs for active edge com-
paction, GPU for the computation kernel, and PCIe for the
host-GPU data transfer. To overlap the resource utilization
and improve the parallelism, HyTGraph uses multiple CUDA
streams to process the tasks concurrently. During the iterative
processing, the task scheduler monitors the available streams
and assigns them to tasks that have not been scheduled.
The operating system will automatically overlap data transfer
and kernel computation of different streams. HyTGraph first
schedules the ExpTM-Filter tasks with specific priority (as
discussed in Section VI) to leverage the contribution-driven
priority scheduling. Then the ImpTM-zero-copy and ExpTM-
compaction tasks are scheduled. The CPU-based active edge
compaction can be overlapped with the kernel computation
and data transfer of ImpTM-zero-copy and ExpTM-filter.

Hotness computation. HyTGraph uses a byte per vertex to
record the access frequency during computation, optimizing
GPU memory usage. The involved sorting, TopK, and com-
paction operations are implemented using the CUB library [8].

CPU data compaction. HyTGraph provides a simple yet
efficient compaction engine on the CPU following the deign
of Subway [38]. To track locations of compacted edge data,
HyTGraph re-generate a new compressed neighbor index for
fast edge location.

Computation kernel. HyTGraph uses SEP-Graph’s process-
ing kernel for its mature optimizations and enables neighbor
shifting [42] for it to support ExpTM-F and ExpTM-C engines.

IX. EXPERIMENTAL EVALUATION

A. Experimental Setup

Environments. Our main test platform is equipped with one
Intel Silver 4210 2.20Ghz 10-core CPU, 128GB DRAM, and
an NVIDIA GTX 2080Ti GPU with 34SMX clusters, 4352
cores, and 11GB GDDR6 memory. The GPU is enabled with
CUDA 10.1 runtime and 418.67 driver. The host side runs
Ubuntu 18.04 with Linux kernel version 4.13.0. All source
codes are compiled with -O3 optimization.

Graph algorithms and datasets. We evaluate HyTGraph
with four algorithms. Besides SSSP and PageRank, the other
two algorithms are Breadth-First Search (BFS) and Connect
Component (CC) [42]. We use both real-world graphs and

This article has been accepted for publication in IEEE Transactions on Parallel and Distributed Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2025.3547356

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Northeastern University. Downloaded on April 06,2025 at 07:12:23 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 10

TABLE III: Dataset description.

Dataset |V| |E| |E|/|V| Size
Road-USA [2] (RU) 23.9M 57.7M 2.4 461M
Orkut [2] (RU) 3.1M 117M 39 968M
sk-2005 [3] (SK) 50.6M 1.93B 38 28GB
Twitter [2] (TW) 52.5M 1.96B 37 32GB
Friendster-konect [2] (FK) 68.3M 2.59B 37 42GB
uk-2007 [3] (UK) 105.1M 3.31B 31 55GB
Friendster-snap [2] (FS) 65.6M 3.61B 55 58GB
RMAT [22] 1-100M 0.1-6.4B - -

synthesized graphs in our evaluation. The major parameters of
graph datasets that are used in our experiments are presented
in Table III. The synthetic graphs are generated by PaRMAT
[22] with the input parameters a = 0.5, b = 0.2, and c = 0.2
to maintain a power-law distribution.

Systems for comparison. We compare HyTGraph with
three representative GPU-accelerated graph processing sys-
tems Subway [38], EMOGI [31], and Grus [43]; a in-memory
GPU graph processing system cuGraph [9]; and a CPU-based
graph processing system Galois [32]. Additionally, we also
implement ExpTM-filter and ImpTM-unified-memory in HyT-
Graph’s codebase for a fair comparison. We use the default
configuration of these systems. The number of compaction
threads in Subway and HyTGraph is set to 2×CPU cores.
The cache capacity of HyTGraph is set to 2GB, which is
the available memory when processing the largest graph and
aligned for all datasets. All reported results are measured by
averaging the number of 5 runs. HyTGraph is open-sourced
at https://github.com/iDC-NEU/HyTGraph.

B. Overall Performance on Small Graphs

We compare HyTGraph with in-memory processing frame-
works on small graphs, using both a power-law graph (Orkut)
and a uniform road network (Road-USA), to analyze the
performance trade-off between out-of-memory and in-memory
processing, as shown in Table IV. In addition to cuGraph,
UVM-based Grus and ImpTM-UM degrade to in-memory
processing as most data can be cached in GPUs. Subway also
switches to in-memory processing by copying the data entirely
to GPU. In contrast, we disable the graph caching function
in HyTGraph to evaluate its performance as a fully out-of-
memory framework. Our findings reveal that Grus, Subway,
ImpTM-UM, and cuGraph achieve the best results across var-
ious configurations on these small graphs. On the Road-USA
graph, the disadvantages of out-of-memory processing become
more evident due to its disproportionately long absolute run-
time relative to the graph size. This is primarily attributed
to the small average degree and large diameter of the road
network, which result in a higher number of iterations. Algo-
rithms such as CC and SSSP require 5,000–6,000 iterations
to converge, each involving substantial fragmented edge data
accesses (each access involves up to 9 neighborhoods per).
EMOGI with zero-copy access exhibits inferior performance
in this scenario, mainly due to PCIe underutilization caused
by transferring sliced data. In addition, the performance on
the road network is also affected by load balancing. We

TABLE IV: Comparison with other systems.

Overall runtime (s)
Alg. System RU OK SK TW FK UK FS

PR

Galois 4.68 4.66 21.3 66.3 293.6 28.5 342.4
cuGraph 0.31 0.5 - - - - -

ExpTM-F 6.41 3.54 37.7 34.8 60.7 34.3 162.8
ImpTM-UM 0.76 0.22 6.89 16.5 75.4 22.4 102.7

Grus 0.60 0.17 1.72 12.2 52.2 14.8 79.8
Subway 0.17 0.26 8.68 38.1 73.7 16.9 108.4
EMOGI 3.11 0.52 18.6 21.4 51.1 12.4 68.3

HyTGraph 1.67 0.34 1.84 8.76 21.6 4.04 29.2

SSSP

Galois 23.92 1.71 26.7 12.9 51.5 15.2 33.1
cuGraph 8.05 0.89 - - - - -

ExpTM-F 68.5 2.14 60.9 15.1 50.4 60.9 70.1
ImpTM-UM 3.57 0.18 12.7 10.1 37.2 18.6 34.9

Grus 14.98 0.20 25.2 11.2 70.8 5.32 16.9
Subway 2.65 0.21 14.6 10.9 20.8 18.4 27.7
EMOGI 33.75 0.38 7.46 4.09 14.9 4.71 11.8

HyTGraph 5.24 0.24 5.02 1.81 7.08 2.56 5.86

CC

Galois 20.8 0.41 23.9 15.7 35.9 55.1 39.4
cuGraph 0.31 0.22 - - - - -

ExpTM-F 36.21 0.15 21.9 5.47 10.9 41.6 11.8
ImpTM-UM 3.25 0.15 1.43 1.49 3.27 7.88 4.16

Grus 12.37 0.13 2.09 1.36 3.21 5.17 4.69
Subway 2.99 0.19 11.67 6.52 8.61 14.7 14.1
EMOGI 14.95 0.21 4.01 1.96 2.71 4.54 3.76

HyTGraph 5.25 0.18 3.23 1.19 2.07 3.23 2.56

BFS

Galois 1.28 0.88 16.2 7.55 12.5 15.2 14.7
cuGraph 1.66 0.68 - - - - -

ExpTM-F 26.87 1.02 20.3 3.86 8.87 25.1 9.54
ImpTM-UM 2.45 0.45 1.13 1.29 1.97 2.33 6.25

Grus 9.90 0.13 0.83 1.11 1.85 2.37 3.35
Subway 1.63 0.28 7.39 5.79 6.85 9.04 13.49
EMOGI 9.93 0.24 1.06 1.04 1.44 1.26 1.97

HyTGraph 3.75 0.22 0.93 0.85 1.82 0.88 2.54

observe that in-memory processing frameworks with fine-
grained workload balancing, such as cuGraph and Subway
(which leverages Tigr’s degree-optimized load balancing [37]),
outperform other frameworks in different cases. Notably, Ga-
lois outperforms GPU baselines for the BFS algorithm on
the Road-USA. This demonstrates that CPU-based frameworks
still hold advantages in certain scenarios.

C. Overall Performance on Large Graphs

Comparison with ExpTM-F, Subway, and EMOGI. Table
IV shows the overall results. Due to the heavy redundant trans-
fer, ExpTM-F shows inferior performance. The speedup of
HyTGraph over ExpTM-F ranges from 2.81X (for PageRank
on FK) to 28.52X (for BFS on UK) with an average of 9.89X.
Neither Subway nor EMOGI is always better than the other.
The speedup of HyTGraph over Subway ranges from 2.91X
(for SSSP on SK) to 10.27X (for BFS on UK) with an average
of 5.02X. Subway’s critical performance bottleneck lies in its
heavy CPU-based compaction and preprocessing (For SSSP
algorithm, the preprocessing and compaction overhead account
for 46.9%-74.9% of the total runtime). On CC, SSSP, and
PageRank, HyTGraph is faster than EMOGI by 2.01X on
average, with its speedups ranging from 1.24X to 7.91X.
With the help of zero-copy access, EMOGI achieves signifi-
cant performance improvement on low-activeness subgraphs.
While for the high-activeness subgraphs, especially those with

This article has been accepted for publication in IEEE Transactions on Parallel and Distributed Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2025.3547356

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Northeastern University. Downloaded on April 06,2025 at 07:12:23 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 11

0

25

50

75

100

1 10 20 30 40 50

P
ro

p
o

rt
io

n
(%

)
ExpTM-F ExpTM-C ImpTM-ZC

0

25

50

75

100

 0

 2

 4

 6

 8

 10

10 20 30 40 50 60 70

T
im

e
(s

)

(c) Per-iteration runtime of PageRank

 0

 1

 2

 3

 4

10 20 30 40

(d) Per-iteration runtime of SSSP

iteration#

iteration#iteration#

1 10
ite

2
r

0
ation#

30 40

(b) Access pattern of HyTGraph
 for SSSP

(a) Access pattern of HyTGraph
 for PageRank

ExpTM-F
Subway
EMOGI

HyTGraph

ExpTM-F
Subway
EMOGI

HyTGraph

Fig. 5: Execution path of HyTGraph and per-iteration runtime
comparison with ExpTM-filter, EMOGI and Subway (on FK).

dense and small degree vertices, EMOGI usually has low
host-GPU utilization due to unsaturated memory requests.
In contrast, HyTGraph achieves efficient data transfer on
both high-activeness and low-activeness partitions by adopting
hybrid transfer management. On BFS, HyTGraph outperforms
Subway and EMOGI on SK, TW, and UK. On FK and
FS, EMOGI shows better performance because most of the
accesses on these two graphs are sparse. Moreover, compared
with HyTGraph, EMOGI avoids the cost analysis, engine
selection, and task combination. Since BFS traverses each
vertex only once and thus has no cross-layer communication,
we disable the vertex-centric data caching for it.

Comparison with Unified-Memory (UM)-based systems:
ImpTM-UM and Grus. On the SK graph, the UM-based
frameworks demonstrate superior performance for PageRank,
CC, and BFS algorithms because the accessed edge-associated
data can be entirely cached in the GPU memory. UM-based
approaches only transfer the data once. However, when pro-
cessing large graphs, the performance of ImpTM-UM degrades
significantly because the implicit data transfer requires ex-
pensive page replacement and data transfer overhead. The
experimental results show that on the four large graphs,
HyTGraph achieves on average 3.01X and 2.55X speedups
over ImpTM-UM and Grus, respectively.

Comparison with CPU-based Approach. From Table IV,
we can observe that the GPU-accelerated graph processing
frameworks show significant performance improvement over
CPU-based Galois. Specifically, HyTGraph shows an average
of average 10.34x speedup over Galois.

D. Execution Path Analysis of HyTM

To demonstrate the performance improvement of hybrid
processing, we record the execution path of HyTGraph on
PageRank and SSSP to show the proportion of partitions using
ExpTM-filter, ExpTM-compaction, and ImpTM-zero-copy in
each iteration. Figure 5 (a) shows the result on PageRank. The
proportion of active partitions is high in the early iterations,
HyTGraph prefers ExpTM-filter. As the algorithm converges
and many vertices become inactive, the proportion of ImpTM-
zero-copy increases. For SSSP in Figure 5 (b), there are few

TABLE V: Transfer reduction analysis.

Transfer volume / Edge volume
Alg. System SK TW FK UK FS

PR

ExpTM-F 57.6X 52.4X 58.3X 30.9X 121.6X
Subway 2.46X 5.48X 10.74X 1.79X 12.44X
EMOGI 3.31X 20.6X 24.6X 3.81X 25.23X

HytGraph− 2.17X 10.9X 12.01X 1.68X 12.62X
HyTGraph 1.36X 8.15X 8.82X 1.38X 10.8X

SSSP

ExpTM-F 44.3X 11.2X 28.1X 24.3X 24.1X
Subway 4.23X 2.07X 3.32X 1.78X 3.19X
EMOGI 3.29X 1.74X 4.81X 1.11X 2.69X

HytGraph− 3.25X 1.25X 4.60X 1.13X 2.52X
HyTGraph 2.53X 1.10X 3.87X 1.06X 2.12X

active vertices in the early and last few iterations, HyTGraph
prefers ImpTM-zero-copy. When most vertices are activated
in the middle iterations, HyTGraph prefers ExpTM-filter to
improve the transfer efficiency. As the number of active vertex
decreases, ExpTM-compaction is also used in some partitions.
Figure 5 (c) and (d) show the per-iteration runtime of ExpTM-
F, Subway, EMOGI, and HyTGraph. As these systems adopt
different asynchronous processing strategies, the active vertex
number of different systems in each iteration is not the same.
HyTGraph cannot consistently outperform the others in each
iteration. However, through the hybrid transfer management,
HyTGraph achieves the minimum overall runtime.

E. Transfer Reduction Analysis

We analyze the effectiveness of HyTGraph’s transfer reduc-
tion by comparing it with ExpTM-filter, Subway (ExpTM-
compaction), and EMOGI (ImpTM-zero-copy), using PageR-
ank and SSSP algorithms across five real-world graphs. Trans-
fer volumes are normalized against the volume of edges. As
shown in Table V, ExpTM-filter exhibits the highest trans-
fer volume. With the help of fine-grained zero-copy access,
EMOGI achieves considerable transfer reduction. However,
due to the lack of effective asynchronous scheduling, the
transfer volume is still large. Subway, aimed at minimizing
data transfer through CPU data compaction, shows diverse per-
formance across different algorithms due to the unstable naive
asynchronous processing. Specifically, Subway excels in the
PageRank algorithm, where additional computation markedly
enhances convergence. However, for the value-replacement-
based SSSP algorithm, Subway loses its edge due to the stale
computation problem [11]. Since processing the transferred
subgraph only twice each scheduling, HyTGraph’s variant
without data caching (HytGraph−) shows marginal improve-
ment over Subway for the PageRank algorithm. On small
graphs with few partitions, e.g., the TW graph, HytGraph−

even demands 2X data transfer compared to Subway. Con-
versely, for the SSSP algorithm, HytGraph− achieves sig-
nificant transfer reduction in most scenarios through hybrid
transfer management and contribution-driven priority schedul-
ing. After incorporating vertex-centric graph caching, HyT-
Graph further diminishes data transmission by 7% to 37%
over HytGraph−. These enhancements significantly improve
HyTGraph’s communication efficiency.

This article has been accepted for publication in IEEE Transactions on Parallel and Distributed Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2025.3547356

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Northeastern University. Downloaded on April 06,2025 at 07:12:23 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 12

 0

 2

 4

 6

 8

SK TW FK UK FS SK TW FK UK FS SK TW FK UK FS SK TW FK UK FS

40X 62X
8.6X

N
o

rm
al

iz
ed

 S
p

ee
d

u
p

Baseline +HyTM +TC +CDS +GC

(D) BFS(c) CC(b) SSSP(a) PageRank

Fig. 6: Performance gain analysis of hybrid transfer management (HyTM), Task Combining (TC), Contribution-Driven
Scheduling (CDS), and vertex-centric Graph Caching (GC) .

F. Performance Improvement Analysis

To access the performance gain offered by different opti-
mizations, our methodology initiates from a fundamental base-
line utilizing ImpTM-zero-copy (EMOGI) and sequentially
incorporates hybrid transfer management, vertex-centric graph
caching, task combining, and contribution-driven scheduling.
We selected ImpTM-zero-copy as the initial point of compari-
son due to its superior performance across all baselines. Figure
6 shows the normalized runtime, reflecting the performance
gains attributed to each optimization.
Effectiveness of HyTM. The hybrid transfer management
method brings speedups of averaging 2.87X, 1.66X, 1.34X,
and 1.07X for PageRank, SSSP, CC, and BFS algorithms,
respectively. For algorithms with significant variations in
active vertices, such as SSSP, CC, and PageRank, HyTM
demonstrates notable performance improvements. Conversely,
for algorithms with a few active vertices throughout the exe-
cution, such as BFS, ImpTM-zero-copy still holds advantages.
This is because it benefits from the efficient zero-copy access
and avoids the overhead associated with cost analysis and
task management in HyTM. On FK and FS graph, ImpTM-
zero-copy even demonstrates better performance than HyTM.
However, in most algorithms with diverse access patterns,
HyTGraph demonstrates considerable effectiveness.
Effectiveness of task combining and contribution-driven
scheduling. The task combining (TC) can bring speedups
of averaging 1.28X, 1.37X, 1.19X, and 1.05X for PageRank,
SSSP, CC, and BFS algorithms, respectively. The contribution-
driven scheduling (CDS) further brings speedups of averaging
2.18X, 1.21X, 1.25X, and 1.06X over the hybrid processing
with TC. Overall, integrating the two optimizations brings
speedups of averaging 2.78X, 1.67X, 1.47X, and 1.16X over
the naive hybrid transfer management method on the four
algorithms. PageRank algorithm benefits most because the
proposed asynchronous processing can effectively accelerate
convergence by prioritizing the vertices with large contribu-
tions, i.e., the vertex value. In contrast, BFS benefits little
from the two designs because each vertex is activated only
once during the iterative processing, leading to a small overall
transfer overhead.
Effectiveness of vertex-centric graph caching (VCGC).
Since the BFS algorithm traverses each vertex only once,
it can not benefit from the VCGC optimization. Therefore,
we do not enable VCGC for it in the evaluation. On the
other three algorithms, VCGC provides speedups ranging from
0.98X to 1.38X by reducing cross-layer communication. We

0.2
0.4
0.6
0.8
1.0

TW−SSSPTW−PR FS−SSSP FS−PR

R
at

io

(a) Ratio of total access of cached data

NoCache
HubCache

AccCache

0.2

0.4

0.6

0.8

1.0

TW−SSSPTW−PR FS−SSSP FS−PR

N
o

rm
al

iz
ed

 R
u

n
ti

m
e

(b) Normalized runtime with different approaches

NoCache
HubCache

AccCache

Fig. 7: Comparison with hub-vertex caching.

observe that the effectiveness of data caching differs across
algorithms. For PageRank and SSSP, VCGC exhibits consis-
tent improvements ranging from 1.13X to 1.38X. In contrast,
for the CC algorithm, VCGC demonstrates slightly weaker
performance on TW and FK graphs. This discrepancy arises
because the runtime of these cases has short runtimes and low
volumes of cross-layer communication, rendering the caching
improvements insufficient to outweigh the costs associated
with cache replacement. Nevertheless, as an enhancement to
the hybrid transfer management method, VCGC effectively
reduces transmission volumes in most scenarios. As a recom-
mendation, VCGC is particularly advantageous for algorithms
with extensive cross-layer accesses, such as PageRank and
SSSP and their variants.

Comparison with hub-vertex caching. We evaluate the
performance of the proposed VCGC and the hub-vertex-
based caching approach by comparing: 1) the proportion of
reduced edge accesses relative to the total accesses, and 2)
the normalized runtime compared to HyTGraph without data
caching, as shown in Figure 7. Both caching mechanisms
effectively reduce the volume of edge accesses. On average,
VCGC achieves a 24.2% higher reduction in edge accesses
compared to hub-vertex sorting. However, in specific scenar-
ios such as TW-PR, hub-vertex sorting performs compara-
bly to VCGC. Specifically, VCGC and hub-vertex caching
reduce edge accesses by 14.1%–40.9% (avg. 25.1%) and
17.3%–42.4% (avg. 31.0%), respectively, compared to HyT-
Graph without data caching. In terms of runtime improvement,
the difference between the two approaches is less pronounced.
VCGC achieves an average improvement of approximately
7.9% over hub-vertex caching. This is due to HyTGraph
’s contribution-driven priority scheduling, which performs
additional iterations for processing hub vertices, inherently
reducing remote data accesses. This optimization overlaps with
the caching mechanism, preventing the access reductions from
fully translating into runtime gains. Looking forward, VCGC’s
access-frequency-based caching mechanism can be extended
to a wider range of graph processing tasks, such as real-time

This article has been accepted for publication in IEEE Transactions on Parallel and Distributed Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2025.3547356

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Northeastern University. Downloaded on April 06,2025 at 07:12:23 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 13

TABLE VI: Runtime breakdown of HyTGraph with vertex-
centric graph caching on PageRank.

Engine Component time of different components (s)
SK TW FK UK FS

W/o caching overall 2.85 11.5 30.2 4.71 40.9
Computation 1.84 8.76 21.6 4.04 29.2

W/ caching Cand. Selection +0.07 +0.08 +0.1 +0.07 +0.09
Cache Refreshing +0.19 + 0.48 +0.68 +0.44 +0.52

Benefit - -1.26 -3.29 -9.26 -1.17 -12.2

 1

 1.5

 2

0GB 0.5GB 1GB 1.5GB 2GBS
p

ee
d

u
p

 o
v

er
 w

/o
 c

ac
h

e

(a) From 0GB to 2GB for PR

SK
TW
FK

UK
FS

 1

 1.25

 1.5

0GB 0.5GB 1GB 1.5GB 2GB

(b) From 0GB to 2GB for SSSP

SK
TW
FK

UK
FS

Fig. 8: Performance with varying cache sizes.

streaming graph analysis [15], graph sampling [21], and multi-
hop subgraph analysis [26]. It is expected to achieve high
runtime efficiency in these applications.

Overhead of graph caching. Table VI presents the overhead
associated with graph caching, including the hotness-based
candidate selection and Vertex-centric cache refreshing. We
also compare the results with the performance gains brought
by graph caching on PageRank. We observe that the time
dedicated to candidate selection and cache refreshing is small,
accounting for approximately 3% to 12% of total runtime.
Compared to the benefit of optimizing cross-layer accesses,
the total overhead of cache management is also minor, ranging
from 5% to 42% of performance gain. With an appropriate
cache refresh configuration, HyTGraph typically caches the
most correct vertices after a single (or two for TW and FK
graph) cache refreshing cycle. In summary, for graph iterative
algorithms with extensive cross-iteration repeat vertex accesses
(e.g., PageRank), GPU graph caching can significantly en-
hance performance, with the incurred management overhead
being effectively outweighed by the benefits.

G. Sensitivity Analysis
Varying cache sizes. To evaluate the impact of varying cache
sizes, we run SSSP and PR on the five large graphs, starting
from no hot data caching (0GB) and linearly increasing the
cache size to 2GB. As shown in Figure 8. We observe that
the first 0.5B of data caching yields a significant performance
improvement, approximately 42% to 62% compared to the

 0.1

 1

 10

 100

 1000

0.1B 0.2B 0.4B 0.8B 1.6B 3.2B 6.4B

T
im

e
(s

)

(a) PageRank

Grus Subway EMOGI HytGraph

 0.1

 1

 10

 100

0.1B 0.2B 0.4B 0.8B 1.6B 3.2B 6.4B

(b) SSSP

Fig. 9: Performance comparison with increasing graph size, the
graphs are generated by RMAT with sizes from 0.1 Billion to
6.4 Billion (64X).

 0

 1

 2

 3

 4

 5

1080 P100 2080Ti A5000 1080 P100 2080Ti A5000

N
o

rm
al

iz
ed

 S
p

ee
d

u
p Subway

Grus
EMOGI

HytGraph

(b) SSSP(a) PageRank

Fig. 10: Performance comparison on different GPUs (FS).

improvement of caching 2GB of data. This is because, due
to the power-law distribution, frequently accessed vertices
represent a small proportion of the total but account for a
large number of edge accesses. As the cache size increases
from 0.5GB to 2GB, the per-GB benefit of caching graph data
decreases. Nevertheless, the overall performance improvement
remains non-negligible.

Varying graph sizes. We compare HyTGraph with Grus,
Subway, and EMOGI under variable graph sizes and report
the results in Figure 9. Subway encounters an integer overflow
issue and fails to process graphs with 6.4 billion edges.
Grus exhibits superior performance on small graphs because
the data only needs to be loaded once. However, as graph
sizes increase, the performance declines because the overhead
of data migration of unified memory increases. We observe
that most system demonstrates linear scaling with increasing
graph sizes. Benefiting from the vertex-centric GPU data
caching, HyTGraph achieves comparable performance with
Grus and outperforms other systems on small graphs. On large
graphs, Grus underperforms on the SSSP algorithm due to the
increased overhead of frequent memory page swapping of low
active data. In contrast, HyTGraph can efficiently process large
graphs through a combination of hybrid transfer management
and vertex-centric data caching. As the graph size increases
from 0.1B to 6.4B (64X), the runtime of Grus, EMOGI, and
HyTGraph for PageRank increases by 231.2X, 111.6X, and
157.86X, respectively. For the SSSP algorithm, the runtime of
Grus, EMOGI, and HyTGraph increases by 111.8X, 57.08X,
and 54.22X, respectively. Due to limited cache capacity, the
performance benefits of HyTGraph’s caching do not scale
proportionally as the graph size increases, which makes it
appear to have weaker scalability compared to EMOGI without
caching. However, HyTGraph still demonstrates a significant
advantage in absolute runtime. Furthermore, compared to the
UVM-based page caching approach used in Grus, HyTGraph’s
caching method offers superior scalability.

Varying GPUs. We assess HyTGraph’s performance across
various platforms equipped with different GPUs, includ-
ing a GTX 1080 connected to one i7-8700k CPU through
PCIe3.0x8, a NVIDIA P100 connected to dual Xeon-sliver
4210 CPUs through PCIe3.0x16, a GTX 2080Ti connected
to dual Xeon Silver 4210 CPUs through PCIe3.0x16, and an
NVIDIA A5000 connected to dual Xeon silver 4316 CPUs
through PCIe4.0x16. The FS graph serves as the input data.
We normalize the runtime of all systems to Subway and
present the results in Figure 10. We can observe that HyT-
Graph outperforms all three competitors across all platforms.
For PageRank (and SSSP), HyTGraph achieves speedups of
3.4X-3.6X (4.6X-5.1X), 2.6X-4.0X (3.1X-6.3X), and 2.1-2.2X

This article has been accepted for publication in IEEE Transactions on Parallel and Distributed Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2025.3547356

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Northeastern University. Downloaded on April 06,2025 at 07:12:23 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 14

(2.1X-2.3X) over Subway, Grus, and EMOGI, respectively.

X. LIMITATIONS AND FUTURE WORK

Extending HyTGraph to multiple GPU acceleration. Cur-
rently, HyTGraph assumes the vertex data can fit into a
single GPU. When processing graphs with vertex data that
exceed a single GPU’s memory capacity, the data can be
partitioned across multiple GPUs. This approach introduces
additional challenges, including managing host-GPU com-
munication bandwidth, inter-GPU communication overhead,
and achieving a balance among computation, communication,
and cache utilization. We take developing multi-GPU-based
HyTGraph as future work.
Adapting to GPU platforms with advanced interconnects.
Recently, the hardware manufacturers have introduced ad-
vanced interconnects, such as NVIDIA NVlink [34], Intel
CXL [10], and AMD Infinity Fabric [1]). These technologies
facilitate the construction of larger host memory pools for
scaling large graphs and enable devices and host memory to
connect through faster and more heterogeneous communica-
tion links. While these advancements offer new opportunities
for processing large-scale graphs, they also present challenges
in optimizing irregular data transfers across complex commu-
nication links. Extending HytGraph to support these emerging
interconnect technologies is part of our future work.

XI. RELATED WORK

In-GPU-memory graph processing. The high parallelism of
GPU has attracted great attention [12], [19], [20], [30], [46],
[49], [51] in graph processing community. Cusha [23] uses
two novel data structures, named GShards and CW, to avoid
non-coalesced memory access. Gunrock [46] performs com-
putation on the frontier with data-centric abstraction. Tigr [37]
proposes a virtual transformation to transform skewed graphs
into virtual vertices for load-balancing. SEP-Graph [42] op-
timize execution paths by adaptively switching Sync/Async,
Push/Pull, and data-driven/topology-driven modes.
Out-of-core GPU graph processing. GPU-accelerated graph
processing has attracted extensive attention. Besides the sys-
tems mentioned above [13], [18], [31], [38]–[40], [43], [50],
recent studies also propose CPU-GPU co-processing to accel-
erate large graphs computation [14], [28]. However, the CPU-
based low-activeness subgraph processing may become a new
bottleneck. Besides graph processing, researchers have also
investigated GPU-accelerated pattern matching on large graphs
[7], [17] that optimize communication by sharing execution or
combining zero-copy access and unified virtual memory.

XII. CONCLUSION

We present HyTGraph, a highly efficient GPU-accelerated
graph processing framework by adaptively switching transfer
management methods involving explicit transfer management
and implicit transfer management. This hybrid approach maxi-
mizes the host-GPU bandwidth and is necessary to achieve the
shortest overall execution time. Moreover, HyTGraph provides
a vertex-centric graph caching method that further reduces
communication through data transfer reusing. Our intensive
experiments show the high effectiveness of HyTGraph.

REFERENCES

[1] Amd infinity fabric link. https://www.amd.com/content/dam/amd/en/
documents/instinct-tech-docs/other/56978.pdf. Accessed: 2024-10-11.

[2] The koblenz network collection. http://konect.uni-koblenz.de/. Ac-
cessed: 2021-09-01.

[3] Laboratory for web algorithmics. http://law.di.unimi.it/. Accessed: 2021-
09-01.

[4] N. Agarwal, D. W. Nellans, M. Stephenson, M. O’Connor, and S. W.
Keckler. Page placement strategies for gpus within heterogeneous mem-
ory systems. In Proceedings of the Twentieth International Conference
on Architectural Support for Programming Languages and Operating
Systems, ASPLOS 2015, Istanbul, Turkey, March 14-18, 2015, pages
607–618. ACM, 2015.

[5] R. Ausavarungnirun, J. Landgraf, V. Miller, S. Ghose, J. Gandhi, C. J.
Rossbach, and O. Mutlu. Mosaic: a GPU memory manager with
application-transparent support for multiple page sizes. In Proceedings
of the 50th Annual IEEE/ACM International Symposium on Microar-
chitecture, MICRO 2017, Cambridge, MA, USA, October 14-18, 2017,
pages 136–150. ACM, 2017.

[6] T. Ben-Nun, M. Sutton, S. Pai, and K. Pingali. Groute: An asynchronous
multi-gpu programming model for irregular computations. In Proceed-
ings of the 22nd ACM SIGPLAN Symposium on Principles and Practice
of Parallel Programming, Austin, TX, USA, February 4-8, 2017, pages
235–248. ACM, 2017.

[7] J. Chen, Q. Wang, Y. Gu, C. Li, and G. Yu. Unified-memory-based
hybrid processing for partition-oriented subgraph matching on GPU.
World Wide Web, 25(3):1377–1402, 2022.

[8] Nvidia cub, 2023. https://github.com/NVIDIA/cub.
[9] Rapids cugraph, 2023. https://docs.rapids.ai/api/cugraph/stable/.

[10] CXL. Compute express link specification revision 1.1. https://www.
computeexpresslink.org/, 2022.

[11] W. Fan, P. Lu, X. Luo, J. Xu, Q. Yin, W. Yu, and R. Xu. Adaptive
asynchronous parallelization of graph algorithms. In Proceedings of the
2018 International Conference on Management of Data, SIGMOD 2018,
Houston, TX, USA, June 10-15, 2018, pages 1141–1156. ACM, 2018.

[12] A. Gaihre, Z. Wu, F. Yao, and H. Liu. XBFS: exploring runtime
optimizations for breadth-first search on gpus. In Proceedings of the 28th
International Symposium on High-Performance Parallel and Distributed
Computing, HPDC 2019, Phoenix, AZ, USA, June 22-29, 2019, pages
121–131. ACM, 2019.

[13] P. Gera, H. Kim, P. Sao, H. Kim, and D. A. Bader. Traversing large
graphs on gpus with unified memory. Proc. VLDB Endow., 13(7):1119–
1133, 2020.

[14] A. Gharaibeh, L. B. Costa, E. Santos-Neto, and M. Ripeanu. A yoke
of oxen and a thousand chickens for heavy lifting graph processing.
In International Conference on Parallel Architectures and Compilation
Techniques, PACT ’12, Minneapolis, MN, USA - September 19 - 23,
2012, pages 345–354. ACM, 2012.

[15] S. Gong, C. Tian, Q. Yin, W. Yu, Y. Zhang, L. Geng, S. Yu, G. Yu,
and J. Zhou. Automating incremental graph processing with flexible
memoization. Proc. VLDB Endow., 14(9):1613–1625, 2021.

[16] J. E. Gonzalez, Y. Low, H. Gu, D. Bickson, and C. Guestrin. Power-
graph: Distributed graph-parallel computation on natural graphs. In 10th
USENIX Symposium on Operating Systems Design and Implementation,
OSDI 2012, Hollywood, CA, USA, October 8-10, 2012, pages 17–30.
USENIX Association, 2012.

[17] W. Guo, Y. Li, M. Sha, B. He, X. Xiao, and K. Tan. Gpu-accelerated
subgraph enumeration on partitioned graphs. In Proceedings of the
2020 International Conference on Management of Data, SIGMOD 2020,
Portland, OR, USA, June 14-19, 2020, pages 1067–1082. ACM, 2020.

[18] W. Han, D. Mawhirter, B. Wu, and M. Buland. Graphie: Large-scale
asynchronous graph traversals on just a GPU. In 2019 USENIX Annual
Technical Conference, USENIX ATC 2019, Renton, WA, USA, July 10-
12, 2019, pages 429–442. USENIX Association, 2019.

[19] P. Harish and P. J. Narayanan. Accelerating large graph algorithms
on the GPU using CUDA. In High Performance Computing - 2007,
14th International Conference, Goa, India, December 18-21, 2007,
Proceedings, volume 4873 of LNCS, pages 197–208. Springer, 2007.

[20] S. Hong, S. K. Kim, T. Oguntebi, and K. Olukotun. Accelerating
CUDA graph algorithms at maximum warp. In Proceedings of the
16th ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, PPOPP 2011, San Antonio, TX, USA, February 12-16,
2011, pages 267–276. ACM, 2011.

[21] H. Hu, F. Liu, Q. Pei, Y. Yuan, Z. Xu, and L. Wang. λgrapher:
A resource-efficient serverless system for GNN serving through graph
sharing. In T. Chua, C. Ngo, R. Kumar, H. W. Lauw, and R. K. Lee,

This article has been accepted for publication in IEEE Transactions on Parallel and Distributed Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2025.3547356

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Northeastern University. Downloaded on April 06,2025 at 07:12:23 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 15

editors, Proceedings of the ACM on Web Conference 2024, WWW 2024,
Singapore, May 13-17, 2024, pages 2826–2835. ACM, 2024.

[22] F. Khorasani, R. Gupta, and L. N. Bhuyan. Scalable simd-efficient graph
processing on gpus. In Proceedings of the 24th International Conference
on Parallel Architectures and Compilation Techniques, PACT ’15, pages
39–50, 2015.

[23] F. Khorasani, K. Vora, R. Gupta, and L. N. Bhuyan. Cusha: vertex-
centric graph processing on gpus. In HPDC’14, pages 239–252, 2014.

[24] M. Kim, K. An, H. Park, H. Seo, and J. Kim. GTS: A fast and scalable
graph processing method based on streaming topology to gpus. In
Proceedings of the 2016 International Conference on Management of
Data, SIGMOD Conference 2016, San Francisco, CA, USA, June 26 -
July 01, 2016, pages 447–461, 2016.

[25] A. Kyrola, G. E. Blelloch, and C. Guestrin. Graphchi: Large-scale graph
computation on just a PC. In 10th USENIX Symposium on Operating
Systems Design and Implementation, OSDI 2012, Hollywood, CA, USA,
October 8-10, 2012, pages 31–46. USENIX Association, 2012.

[26] C. Li, H. Chen, S. Zhang, Y. Hu, C. Chen, Z. Zhang, M. Li, X. Li,
D. Han, X. Chen, et al. Bytegraph: a high-performance distributed
graph database in bytedance. Proceedings of the VLDB Endowment,
15(12):3306–3318, 2022.

[27] H. Liu and H. H. Huang. Enterprise: breadth-first graph traversal on
gpus. In J. Kern and J. S. Vetter, editors, Proceedings of the International
Conference for High Performance Computing, Networking, Storage and
Analysis, SC 2015, Austin, TX, USA, November 15-20, 2015, pages 68:1–
68:12. ACM, 2015.

[28] L. Ma, Z. Yang, H. Chen, J. Xue, and Y. Dai. Garaph: Efficient
gpu-accelerated graph processing on a single machine with balanced
replication. In 2017 USENIX Annual Technical Conference, ATC 2017,
Santa Clara, CA, USA, July 12-14, 2017, pages 195–207. USENIX
Association, 2017.

[29] G. Malewicz, M. H. Austern, A. J. C. Bik, J. C. Dehnert, I. Horn,
N. Leiser, and G. Czajkowski. Pregel: a system for large-scale graph
processing. In Proceedings of the ACM SIGMOD International Confer-
ence on Management of Data, SIGMOD 2010, Indianapolis, Indiana,
USA, June 6-10, 2010, pages 135–146. ACM, 2010.

[30] D. Merrill, M. Garland, and A. S. Grimshaw. High-performance and
scalable GPU graph traversal. ACM Trans. Parallel Comput., 1(2):14:1–
14:30, 2015.

[31] S. Min, V. S. Mailthody, Z. Qureshi, J. Xiong, E. Ebrahimi, and W. Hwu.
EMOGI: efficient memory-access for out-of-memory graph-traversal in
gpus. Proc. VLDB Endow., 14(2):114–127, 2020.

[32] D. Nguyen, A. Lenharth, and K. Pingali. A lightweight infrastructure
for graph analytics. In ACM SIGOPS 24th Symposium on Operating
Systems Principles, SOSP ’13, Farmington, PA, USA, November 3-6,
2013, pages 456–471. ACM, 2013.

[33] NVIDIA. Nvidia a100 tensor core gpu. https://www.nvidia.com/en-us/
data-center/a100/, 2022.

[34] NVIDIA. Nvidia h100 tensor core gpu. https://www.nvidia.com/en-us/
data-center/h100/, 2022.

[35] NVIDIA. Nvidia tesla p100. https://www.nvidia.com/en-us/data-center/
tesla-p100/, 2022.

[36] A. Roy, I. Mihailovic, and W. Zwaenepoel. X-stream: edge-centric
graph processing using streaming partitions. In ACM SIGOPS 24th
Symposium on Operating Systems Principles, SOSP ’13, Farmington,
PA, USA, November 3-6, 2013, pages 472–488. ACM, 2013.

[37] A. H. N. Sabet, J. Qiu, and Z. Zhao. Tigr: Transforming irregular graphs
for gpu-friendly graph processing. In Proceedings of the Twenty-Third
International Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS 2018, Williamsburg, VA,
USA, March 24-28, 2018, pages 622–636. ACM, 2018.

[38] A. H. N. Sabet, Z. Zhao, and R. Gupta. Subway: minimizing data
transfer during out-of-gpu-memory graph processing. In EuroSys ’20:
Fifteenth EuroSys Conference 2020, Heraklion, Greece, April 27-30,
2020, pages 12:1–12:16. ACM, 2020.

[39] D. Sengupta, S. L. Song, K. Agarwal, and K. Schwan. Graphreduce:
processing large-scale graphs on accelerator-based systems. In Proceed-
ings of the International Conference for High Performance Computing,
Networking, Storage and Analysis, SC 2015, Austin, TX, USA, November
15-20, 2015, pages 28:1–28:12. ACM, 2015.

[40] R. Tang, Z. Zhao, K. Wang, X. Gong, J. Zhang, W. Wang, and P. Yew.
Ascetic: Enhancing cross-iterations data efficiency in out-of-memory
graph processing on gpus. In ICPP 2021: 50th International Conference
on Parallel Processing, Lemont, IL, USA, August 9 - 12, 2021, pages
41:1–41:10. ACM, 2021.

[41] K. Vora. LUMOS: dependency-driven disk-based graph processing. In
USENIX ATC 2019, pages 429–442. USENIX Association, 2019.

[42] H. Wang, L. Geng, R. Lee, K. Hou, Y. Zhang, and X. Zhang. Sep-
graph: finding shortest execution paths for graph processing under a
hybrid framework on GPU. In Proceedings of the 24th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming, PPoPP
2019, Washington, DC, USA, Feb 16-20, 2019, pages 38–52. ACM,
2019.

[43] P. Wang, J. Wang, C. Li, J. Wang, H. Zhu, and M. Guo. Grus: Toward
unified-memory-efficient high-performance graph processing on GPU.
ACM Trans. Archit. Code Optim., 18(2):22:1–22:25, 2021.

[44] Q. Wang, X. Ai, Y. Zhang, J. Chen, and G. Yu. Hytgraph: Gpu-
accelerated graph processing with hybrid transfer management. In
39th IEEE International Conference on Data Engineering, ICDE 2023,
Anaheim, CA, USA, April 3-7, 2023, pages 558–571. IEEE, 2023.

[45] Q. Wang, Y. Zhang, H. Wang, L. Geng, R. Lee, X. Zhang, and G. Yu.
Automating incremental and asynchronous evaluation for recursive
aggregate data processing. In Proceedings of the 2020 International
Conference on Management of Data, SIGMOD 2020, Portland, OR,
USA, June 14-19, 2020, pages 2439–2454. ACM, 2020.

[46] Y. Wang, A. A. Davidson, Y. Pan, Y. Wu, A. Riffel, and J. D. Owens.
Gunrock: a high-performance graph processing library on the GPU. In
The 23rd International Symposium on High-Performance Parallel and
Distributed Computing, HPDC’14, Vancouver, BC, Canada - June 23 -
27, 2014, pages 239–252. ACM, 2016.

[47] Y. Zhang, Q. Gao, L. Gao, and C. Wang. Maiter: An asynchronous graph
processing framework for delta-based accumulative iterative computa-
tion. IEEE Trans. Parallel Distributed Syst., 25(8):2091–2100, 2014.

[48] Y. Zhang, V. Kiriansky, C. Mendis, S. P. Amarasinghe, and M. Zaharia.
Making caches work for graph analytics. In 2017 IEEE International
Conference on Big Data (IEEE BigData 2017), Boston, MA, USA,
December 11-14, 2017, pages 293–302. IEEE Computer Society, 2017.

[49] Y. Zhang, X. Liao, H. Jin, B. He, H. Liu, and L. Gu. Digraph:
An efficient path-based iterative directed graph processing system on
multiple gpus. In Proceedings of the Twenty-Fourth International
Conference on Architectural Support for Programming Languages and
Operating Systems, ASPLOS 2019, Providence, RI, USA, April 13-17,
2019, pages 601–614. ACM, 2019.

[50] L. Zheng, X. Li, Y. Zheng, Y. Huang, X. Liao, H. Jin, J. Xue, Z. Shao,
and Q. Hua. Scaph: Scalable gpu-accelerated graph processing with
value-driven differential scheduling. In 2020 USENIX Annual Technical
Conference, USENIX ATC 2020, July 15-17, 2020, pages 573–588.
USENIX Association, 2020.

[51] J. Zhong and B. He. Medusa: Simplified graph processing on gpus.
IEEE Trans. Parallel Distributed Syst., 25(6):1543–1552, 2014.

[52] X. Zhu, W. Han, and W. Chen. Gridgraph: Large-scale graph processing
on a single machine using 2-level hierarchical partitioning. In 2015
USENIX Annual Technical Conference, USENIX ATC ’15, July 8-10,
Santa Clara, CA, USA, pages 375–386. USENIX Association, 2015.

Qiange Wang received the PhD degree in com-
puter science from Northeastern University, China,
in 2022. He is currently a postdoctoral research
fellow at the National University of Singapore. His
research interests include distributed graph process-
ing, learning, and management systems.

Xin Ai is currently working toward the PhD degree
in computer science with Northeastern University.
His research interests include parallel and distributed
graph computing and learning system.

This article has been accepted for publication in IEEE Transactions on Parallel and Distributed Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2025.3547356

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Northeastern University. Downloaded on April 06,2025 at 07:12:23 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 16

Yongze Yan received the Master degree in computer
science from the Northeastern University of China,
Shenyang, in 2023. He is currently working toward
the PhD degree. His major research interests include
GPU data processing and database on emerging
hardware.

Shufeng Gong received the PhD degree in com-
puter science from Northeastern University, China,
in 2021. He is currently a lecturer with Northeastern
University, China. His research interests include
cloud computing, distributed graph processing, and
data mining.

Yanfeng Zhang received the PhD degree in com-
puter science from Northeastern University, China,
in 2012. He is currently a professor with North-
eastern University, China. His research consists of
distributed systems and big data processing. He
has published many papers in the above areas. His
paper in SoCC 2011 was honored with ”Paper of
Distinction”.

Jing Chen received the Master degree in com-
puter science from Northeastern University, China,
in 2022. Her research interests include GPU graph
processing systems.

Ge Yu received the PhD degree in computer science
from the Kyushu University of Japan, in 1996. He is
now a professor with Northeastern University, China.
His current research interests include distributed and
parallel systems, cloud computing, big data man-
agement, and blockchain techniques and systems.
He has published more than 200 papers in refereed
journals and conferences. He is the CCF fellow, the
IEEE senior member, and the ACM senior member.

This article has been accepted for publication in IEEE Transactions on Parallel and Distributed Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2025.3547356

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Northeastern University. Downloaded on April 06,2025 at 07:12:23 UTC from IEEE Xplore. Restrictions apply.

