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A B S T R A C T

Graph Neural Networks (GNNs) have achieved notable success in various applications. However, the increasing
scale of real-world graphs poses a challenge for efficient GNN training. Recent works propose reducing
computations by reducing the scale of the input graph through graph compression or sparsification. However,
these methods introduce deep learning models requiring multiple training iterations, which leads to significant
additional time overhead. Meanwhile, they fail to consider redundant information that is unhelpful or even
harmful for model training in the input graphs. In this work, we propose a universal, one-time redundancy
removal method called NeutronSketch to remove the redundant information from the input graph. This
method can improve training efficiency while maintaining the model accuracy. In the experiments, we
compare NeutronSketch with graph compression, sparsification, and coarsening methods. The results show that
NeutronSketch has a faster execution speed and better model accuracy. Additionally, we apply NeutronSketch
to the sample-based GNN models. The results show that NeutronSketch reduces input graph scale by an average
of 25% compared to the original graph, reducing training time by 10%–90% while maintaining the model
accuracy.
1. Introduction

Graph Neural Networks (GNNs) have extended deep representation
learning to graph data, achieving state-of-the-art performance in var-
ious graph-based tasks such as vertex classification, link prediction,
graph classification, and recommendation systems [1–4]. With the
rapid increase in the scale of real-world graph data, training GNNs on
large-scale graphs remains a challenge. Take the social media graphs for
instance, they are easy to reach billions of nodes and trillions of edges,
significantly increasing the storage cost of model training [5]. Training
GNNs on large-scale graphs requires unbearable time costs. A straight-
forward approach to improving training efficiency on large-scale graphs
is to reduce their scale.

In recent years, many efforts have been made to improve the
training efficiency of GNNs by reducing the graph scale. According to
the implementation methods, they can be divided into graph compres-
sion [6], graph sparsification [7–10], and graph coarsening [11]. The
graph compression methods often leverage deep learning techniques
to generate small-scale graphs with information content similar to the
original graph, making the accuracy of training GNNs on this small
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graph similar to the original graph. These learning-based methods
generate a new small graph, which loses the structure and feature
information of the original graph. The graph sparsification methods
propose removing specific edges from the graph through random or
deep learning methods to improve model accuracy and training ef-
ficiency of GNNs. The graph coarsening methods try to reduce the
number of vertices while preserving key structural information in the
graph. The small graph generated by graph coarsening retains some
basic structural characteristics of the original graph, such as connectiv-
ity, community structure, etc. In addition, most of the vertex features
are also retained. Therefore, there is a close connection between the
small graph generated by the graph coarsening method and the original
graph. However, these deep learning-based methods require significant
time overhead for iterative training, and more importantly, they do
not consider the redundant information in the original graph, such as
vertices that do not help or negatively impact model training [8,12,
13]. Our investigation demonstrates that such redundancy not only
increases the scale of the graph, leading to inefficient training, but
also introduces adverse information that negatively impacts model
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Knowledge-Based Systems 309 (2025) 112786 
accuracy. Therefore, we aim to propose an effective method to elim-
inate redundant information in the original graph, thereby effectively
accelerating the training of GNN.

In this work, we propose NeutronSketch, a universal, one-time
edundancy elimination method for high-performance GNNs training.
pecifically, we first propose a metric called neighbor similarity to
enote different neighbor distributions. Then we analyze the impact
f vertices with different neighbor similarities on model accuracy and
onvergence speed. Additionally, we propose a metric called inter-class
imilarity to measure the similarity between vertex features of two
lasses. With this metric, we analyze the impact of vertex features on
odel accuracy. Finally, we design specific redundancy removal strate-

ies for vertices with different neighbor similarities and propose the
edundancy removal method NeutronSketch. Applying NeutronSketch
o the original graph results in a skeleton graph. Compared to the
riginal graph, the skeleton graph contains less redundant information

and has a smaller scale. Training GNN models with the skeleton graph
an improve training efficiency without sacrificing model accuracy.

Our contributions can be summarized as follows:

• We explore potential redundant information in large-scale graphs
through extensive experiments. Then, to quantify the redundancy
of different vertices, we propose metrics for neighbor similarity
and inter-class similarity.

• Based on these metrics, we reveal the redundant information
present in large-scale graphs, including vertices that are prone to
cause misclassification and some high-degree vertices. Then, we
propose a universal, one-time redundancy removal method called
NeutronSketch to remove this redundant information.

• We conduct experiments on three large-scale real-world graphs
and compare NeutronSketch with popular graph compression,
sparsification, and coarsening methods. The results show the
superiority of NeutronSketch in preprocessing speed and accu-
racy. Additionally, we also apply NeutronSketch to two popular
sampling-based GNNs. These experiments demonstrate the effec-
tiveness and efficiency of the proposed method. NeutronSketch
can reduce training time by 10%–90% on three large-scale graphs
without sacrificing accuracy.

The rest of the paper is organized as follows. Section 2 introduces
the basic principles of GNNs and provides the definition of the graph
scale reduction problem. Section 3 analyzes the redundant information
in graph data. Section 4 introduces the execution process of Neu-
tronSketch. Section 5 demonstrates the superiority of NeutronSketch
compared to other graph scale reduction methods. Section 6 introduces
some related works for reducing graph scale, such as graph compres-
sion, sparsification, and coarsening. Finally, Section 7 summarizes our

ethod.

2. Preliminaries

In this section, we first introduce the basic principles of Graph
eural Networks (GNNs). Then, we provide the definition of the graph

cale reduction problem.

2.1. Graph neural networks

GNNs are powerful tools for learning vertex and edge representa-
ions that capture the structural information of the graph. Previous
tudies [1,3,14] have revealed the superior performance of GNNs in

graph learning tasks, such as vertex classification and link predic-
ion [1–4]. Generally, GNNs utilize a message-passing mechanism to
teratively aggregate neighbor information for learning vertex repre-
entations, which are then employed for downstream tasks, despite the
arious variants of GNNs. Similar to traditional neural networks, the
raining process of GNNs includes forward and backward propagation.
2 
Here, we provide a formalized introduction using a widely used
model, Graph Convolutional Network (GCN) [2]. Given an input adja-
cency matrix 𝐴 and initial vertex features 𝐻0, the forward propagation
formula for GCN is as follows:

𝑍(𝑙+1) = 𝜎(�̂�− 1
2 �̂��̂�− 1

2 𝐻 (𝑙)𝑊 (𝑙)) (1)

where �̂� denotes the normalized adjacency matrix, �̂� denotes the
egree matrix of vertices, and 𝜎 is the activation function, commonly
mploying ReLU. 𝑊 𝑙 and 𝐻 𝑙 respectively denote the learnable weight
atrix and the embedding matrix in the (𝑙)-th layer. In summary,

he training of GNNs involves the forward propagation of learning
epresentations (as illustrated in Eq. (1)) and the backward propagation

for updating model parameters (i.e., 𝑊 ).

2.2. Problem definition

Reducing graph scale is a promising approach to support large-scale
GNNs training, e.g. graph compression, sparsification, and coarsening
methods. These methods try to minimize graph scale while maintaining
model accuracy. We define the problem of reducing graph scale as
follows:

𝐺∗(𝑉 ∗, 𝐸∗) = 𝐹 (𝐺(𝑉 , 𝐸))

𝑔 𝑜𝑎𝑙 . arg min
𝐺∗

(𝐺 𝑁 𝑁𝜃 𝑠(𝐺∗, 𝑌 )) − (𝐺 𝑁 𝑁𝜃(𝐺 , 𝑌 )) (2)

An original input graph is represented by 𝐺(𝑉 , 𝐸), where 𝑉 denotes
the set of vertices, and 𝐸 denotes the set of edges. We utilize 𝐹 ,
i.e., graph compression or graph sparsification, to obtain a small sub-
graph 𝐺∗(𝑉 ∗, 𝐸∗), where |𝑉 ∗

| ≤ |𝑉 | and |𝐸∗
| ≤ |𝐸| so that the GNNs

trained on 𝐺∗ can achieve comparable performance to the one trained
on 𝐺. The 𝐺 𝑁 𝑁𝜃 denotes the GNN model parameterized with 𝜃, 𝜃 𝑠
denotes the parameters of the model trained on 𝐺∗, and  denotes the
loss function used to measure the difference between model predictions
and truth labels 𝑌 .

There is some redundancy in graphs, which benefits little to the
model accuracy but increases the computation load during training. We
propose identifying redundant vertices 𝑉 in the original graph that are
not helpful or have negative effects on model training. We remove these
vertices 𝑉 and their corresponding edges from the original graph 𝐺 to
generate a skeleton graph 𝐺∗(𝑉 ∗, 𝐸∗). By removing redundant vertices
to reduce the scale of the original graph, training GNNs with 𝐺∗ can
significantly improve training efficiency without sacrificing the model
accuracy.

Based on our definition of the problem above, the following is a
ormal definition of graph compression, graph sparsification, and graph

coarsening methods.
Graph Compression. This method often uses deep learning tech-

iques to generate a small-scale graph with information content close to
the original graph. Graph condensation aims to learn a small, synthetic
graph dataset 𝐺∗(𝑉 ∗, 𝐸∗), such that a GNN trained on 𝐺∗ can achieve
comparable performance to one trained on the much larger 𝐺. Taking
Gcond as an example, the graph compression method can be formulated
as follows:

min
∗

𝐿
(

GNN𝜃∗ (𝐺), 𝑌
)

s.t. 𝜃∗ = ar g min
𝜃

𝐿
(

GNN𝜃(𝐺∗), 𝑌 ) (3)

where GNN𝜃 denotes the GNN model parameterized with 𝜃, 𝜃∗ de-
notes the parameters of the model trained on 𝐺∗, and 𝐿 denotes the
loss function. These methods require multiple iterations of learning,
which typically results in longer execution times. Moreover, the smaller
graphs’ vertex features and graph structures are obtained through
learning, leading to the loss of structural and feature information from
the original graph.
Graph Sparsification. Graph sparsification methods suggest deleting
edges in the graph to reduce redundant computation and alleviate
the over-smoothing problem. Rong et al. propose the DropEdge [9] to
reduce the scale of the graph by randomly dropping a certain ratio of
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Knowledge-Based Systems 309 (2025) 112786 
edges in the origin graph. Formally, it randomly enforces |𝐸|𝑝 non-zero
elements of the adjacency matrix 𝐴 of 𝐺 to be zeros, where |𝐸| is the
total number of edges and 𝑃 is the dropping rate. If we denote the
resulting adjacency matrix as 𝐴𝐷 𝑟𝑜𝑝, then its relation with 𝐴 becomes

𝐴drop = 𝐴 − 𝐴′ (4)

where 𝐴′ is a sparse matrix expanded by a random subset of size |𝐸|𝑝
from original edges 𝐸. These methods only process the edges to allevi-
te the over-smoothing issue, they do not consider the redundancy in
ertices. These redundant vertices that do not contribute to improving
odel performance reduce the efficiency of model training.

Graph Coarsening. The graph coarsening methods generate a smaller
graph by merging nodes and edges to approximate the original graph.
Specifically, the 𝐺∗ is obtained from the original graph 𝐺 by first com-
puting a partition 𝑃 = {𝐶1, 𝐶2,… , 𝐶𝑛′} of 𝑉 , i.e., the clusters 𝐶1 ⋯𝐶𝑛′

are disjoint and cover all the nodes in 𝑉 . Each cluster 𝐶𝑖 corresponds to
a ‘‘super-node’’ in 𝐺∗ and the ‘‘super-edge’’ connecting the super-nodes
𝐶𝑖, 𝐶𝑗 has a weight equal to the total number of edges connecting nodes
in 𝐶𝑖 to 𝐶𝑗 : 𝑊𝑖𝑗 =

∑

𝑢∈𝐶𝑖 ,𝑣∈𝐶𝑗
𝐴𝑖𝑗 . The small graph generated by graph

coarsening retains some basic structural characteristics of the original
graph, such as connectivity, community structure, etc. However, these
methods do not consider redundant information from the perspective
of features.

Compared with these methods, our proposed neutronSketch ana-
yzes redundant information from both the graph structure and vertex
eatures and can generate a de-redundant skeleton graph 𝐺∗ without
epeated iterations.

3. Analysis of redundancy problem

In this section, we analyze the redundant information in the orig-
inal graph through empirical analysis. Specifically, we first analyze
he impact of training vertices with different neighbor distributions
n model accuracy and convergence speed. Then, we discuss which

training vertices are redundant and how they affect model performance
from the perspective of vertex features. Finally, we analyze the impact
f the vertex with high-degree on model training through experiments.
e use mini-batch and random sampling-based GCN as a model for the

ertex classification task. This task is conducted on two datasets: the
mazon product network Ogbn-Products [15] and the review network
eddit [1].

3.1. The influence of neighbor distribution on model training

Homogeneity generally indicates that vertices are more inclined
o connect with similar vertices [16]. This phenomenon has been

observed in a wide range of real-world graphs, including friendship
networks [16], political networks [17], citation networks [18], and so
on. The stronger the homogeneity, the higher the similarity between
a vertex and its neighbors, and the greater the clustering of vertices
rom different classes in the graph. Some works [19,20] prove that
omogeneity is crucial for the powerful performance of GNNs. GNNs

often perform well on graphs with high homogeneity. However, the
homogeneity is a graph-level metric. We should define a metric at the
vertex-level granularity to determine which vertices are redundant for
model training. Some vertex-level metrics, such as Jaccard similarity
and local clustering coefficient, only measure the clustering degree
of vertices in the graph but cannot directly distinguish the impact of
different vertices on model performance. Therefore, we use vertex-level
homogeneity to distinguish the effect of different vertices on model
performance. To measure the homogeneity of different vertices, we
define a metric called neighbor similarity as follows:

𝑆 𝑖𝑚(𝑣) = 1
𝑑𝑣

∑

𝑢∈𝑁(𝑣)
𝛿(𝑐𝑣, 𝑐𝑢) (5)

where 𝑆 𝑖𝑚(𝑣) denotes the neighbor similarity of vertex 𝑣. 𝑑𝑣 and
(𝑣) denote the degree and the neighbors of vertex 𝑣, respectively. 𝑐
𝑣 t

3 
Fig. 1. An illustration of vertices with different neighbor distributions. The vertices in
the same color belong to the same class. The percentages denote the neighbor similarity.

denotes a class which vertex 𝑣 belongs. 𝛿(𝑐𝑣, 𝑐𝑢) is a function, and the
result is 1 only when 𝑐𝑣 = 𝑐𝑢, otherwise it is 0.

Vertices in GNNs have different neighbor similarities. As shown in
Fig. 1, there are three neighbor similarities in GNNs. The vertex A,
B, and C in Fig. 1 are three training vertices, and vertices with the
ame color belong to the same class. The training vertex A in Fig. 1(a)

represents vertices with high neighbor similarity, which means that
most of the neighbors have the same class as vertex A. In contrast, the
training vertex B and C in Figs. 1(b) and 1(c) represent vertices with
moderate and low neighbor similarity, respectively, which indicate that
lose to half of the neighbors or only a small portion of the neighbors

have the same class as that vertex.
We conduct experiments to analyze how vertices with different

neighbor similarities affect the model accuracy. Specifically, we train a
two-layer GCN model using vertices with different neighbor similarities
and record the validation accuracy when the model reaches conver-
gence. As shown in Fig. 2, it can be observed that using only vertices
with high neighbor similarity can achieve similar model accuracy
compared with the baseline, indicating that the model’s classification
ability is mainly derived from vertices with high neighbor similarity. In
summary, vertices with neighbors of the same class enable the model
o learn the characteristics of that class more fully. Conversely, training
he model exclusively with low neighbor similarity vertices signifi-
antly reduces the model’s accuracy, as shown in the red rectangle in

Fig. 2. Adding vertices with low neighbor similarity also leads to a
ecrease in model accuracy compared to training models solely with
igh neighbor similarity vertices, as shown in the rows 0.0–0.1 and
.1–0.2 in Fig. 2. Therefore, these low neighbor similarity vertices neg-
tively impact the model performance and can be considered redundant
ertices.

Additionally, it can be observed that the best model accuracy is
oncentrated in the middle black rectangle of Fig. 2. This indicates

that the model trained with some moderate neighbor similarity ver-
ices (0.3–0.4) and high neighbor similarity vertices (0.9–1.0) can
chieve accuracy close to the baseline. However, not all vertices with
oderate neighbor similarity are useful for improving the model ac-

curacy, e.g., the accuracy of the top right corner in Fig. 2 is lower
than that of the middle part. Therefore, a portion of vertices with
moderate neighbor similarity plays a significant role in improving
the model’s classification ability, while another portion is redundant
ertices that are not helpful for model training. However, relying solely
n the neighbor similarity cannot accurately determine which vertices

with moderate neighbor similarity are redundant. A comprehensive
discussion by combining vertex features is necessary.

Observation 1 The vertices with low neighbor similarity harm
model performance and should be considered as redundant ver-
tices. Not all vertices with moderate similarity are useful for model
training.

3.2. The influence of vertex features on model training

GNNs aggregate vertex features from neighbors, thus the final gen-
rated vertex embeddings have significant connections with the fea-
ures of their neighbors. To identify which vertices with moderate
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Fig. 2. The validation accuracy of models trained with different neighbor similarity vertices. Both the 𝑥 and 𝑦 axes represent intervals of neighbor similarity, where each cell
indicates the validation accuracy for the model trained with vertices from the corresponding similarity ranges. For example, the value 0.921 in the upper left corner of (a) indicates
the validation accuracy for the model trained using vertices with neighbor similarity greater than 0.9 and between 0.0 and 0.1. The baseline denotes the accuracy of the model
trained using all training vertices, which is 0.939 for Reddit and 0.911 for Ogbn-Products.
Fig. 3. The misclassification between class P and class Q.

neighbor similarity can enhance model performance, we analyze how
the neighbors of train vertices affect classification effectiveness from
the perspective of vertex features.

As illustrated in Fig. 3, we observe a phenomenon in the vertex
classification task: there are two vertices with actual class 𝑝 and 𝑞,
but during model inference, some vertices of class 𝑝 are misclassified
as 𝑞, and vertices of class 𝑞 are misclassified as 𝑝. We refer to this
phenomenon as confusion between classes 𝑝 and 𝑞. We define inter-class
similarity to measure the feature similarity between class 𝑝 and 𝑞:

𝑆 𝑖𝑚𝑝,𝑞 = 𝑆 𝑖𝑚𝑞 ,𝑝 = 1
2

( 1
|𝑉𝑞|

∑

𝑖∈𝑉𝑞

𝑠𝑖𝑚(𝑥𝑖, 𝑐 𝑒𝑛𝑡𝑒𝑟𝑝)

+ 1
|𝑉𝑝|

∑

𝑖∈𝑉𝑝

𝑠𝑖𝑚(𝑥𝑖, 𝑐 𝑒𝑛𝑡𝑒𝑟𝑞))
(6)

where 𝑉𝑝 is the vertex set of class 𝑝, 𝑥𝑖 is the feature vector of vertex
𝑖, and 𝑐 𝑒𝑛𝑡𝑒𝑟𝑝 = 1

|𝑉𝑝|
∑

𝑖∈𝑉𝑝 𝑥𝑖 is its embedding center. Here 𝑠𝑖𝑚(⋅) means
cosine similarity. It measures the similarity of vertex features between
classes 𝑝 and 𝑞.

To analyze the reasons for the above phenomenon, we focus on the
relationship between the inter-class similarity of the two classes 𝑝 and 𝑞
and the number of misclassified vertices when confusion occurs. Specif-
ically, we first record the inter-class similarity between the training
vertices belonging to the 𝑝 class and its neighbor vertices belonging to
the 𝑞 class. We then use the trained model for inference and record the
number of vertices whose true class is 𝑝 but are misclassified into class
𝑞. The results are shown in Fig. 4. The 𝑥-axis denotes the ‘‘class pair’’
which refers to the combination of the training vertex’s class with the
class of its neighboring vertices, e.g., a training vertex belongs to class 0
and has neighboring vertices from class 1, they form the class pair ⟨0, 1⟩.
4 
Fig. 4. The proportion of misclassified vertices and inter-class similarity between
different class pairs.

Taking the Reddit [1] and Ogbn-Products [15] datasets as examples,
we observe that as the proportion of misclassified vertices increases,
the inter-class similarity also increases overall. This trend indicates that
misclassification is more likely to occur between two classes with a
higher inter-class similarity. In addition, there is a turning point in
Fig. 4(a). This turning point has lower inter-class similarity but a higher
proportion of misclassified vertices. This is because although class 𝑝
and 𝑞 have low inter-class similarity, if the training vertex belonging
to class 𝑝 has a large number of neighbors belonging to class 𝑞, there
also is obvious confusion between the classes 𝑝 and 𝑞 during inference.
In order to avoid this special situation, we first use the metric proposed
in Section 3.1 to filter out the training vertices with low neighbor
similarity and analyze the redundancy of the training vertices with
moderate neighbor similarity from a feature perspective. Therefore,
vertices belonging to two classes with high inter-class similarity are
more likely to be misclassified. Deleting training vertices with high
inter-class similarity neighbors can reduce the number of misclassified
vertices and decrease the scale of the original graph, improving training
efficiency.

We conduct a simple experiment to validate this idea. Specifically,
we remove training vertices with the following characteristic: There is
a high inter-class similarity between the class of this training vertex and
the classes of its neighbors. Then, we record the proportion of misclas-
sified vertices in the validation results and the inter-class similarity, as
shown in Fig. 5. Comparing Figs. 4 and 5 shows that the proportion of
misclassified vertices significantly decreases after deleting these train-
ing vertices. The trend between proportion and inter-class similarity
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Fig. 5. The proportion of misclassified vertices and inter-class similarity between
different class pairs after deleting training vertices with high inter-class similarity.

Fig. 6. Comparison of model convergence time and accuracy between the origin and
deleting training vertices with high inter-class similarity.

Fig. 7. The distribution of vertices with different neighbor similarities in the training
set.

also disappears. Furthermore, as illustrated in Fig. 6, removing these
ertices slightly improves model convergence speed without affecting

the accuracy. Hence, these vertices are not helpful for model training
and can be considered redundant vertices.

Observation 2 High inter-class similarity between the classes of
training vertices and their neighbors leads to misclassification in
these two classes during model inference. These training vertices
that cause confusion during training are redundant and can be
removed to improve training efficiency.

3.3. The redundancy in vertices with high neighbor similarity

In this section, we first analyze the proportion of vertices with
ifferent neighbor similarities in different datasets. As shown in Fig. 7,

over 40% of the training vertices have neighbor similarities greater
than 0.9 in Ogbn-Arxiv [15], while in Reddit [1] and Ogbn-Products
15], this proportion can reach 50%. Therefore, vertices with high

neighbor similarity often comprise a significant portion of the training
set.

The contributions of vertices with high neighbor similarity to model
classification performance are similar, but the computational load of
these vertices differs. For instance, high-degree vertices have many
neighbors, and these vertices are repeatedly resampled during the
sampling process, leading to an increase in the scale of the sampling
5 
Table 1
The proportion of high-degree vertices in vertices with high neighbor similarity.

Dataset Nbr Similarity Vertices Num HD Vertices Num Percentage

Arxiv
≥ 0.95 31,825 3,861 17.7%
≥ 0.90 34,403 6,105 12.1%
≥ 0.85 38,449 6,911 18.0%

Reddit
≥ 0.95 60,542 14,027 23.1%
≥ 0.90 79,395 19,816 24.9%
≥ 0.85 92,298 24,372 26.4%

Products
≥ 0.95 74,593 19,698 26.4%
≥ 0.90 102,922 29,861 29.0%
≥ 0.85 120,704 36,206 30.0%

Fig. 8. Comparison of convergence time and validation accuracy after removing high-
degree vertices using three neighbor similarity thresholds.

graph and redundant computational overhead. Inspired by this, we
remove high-degree vertices from vertices with high neighbor simi-
larity and then train the GCN model on this graph. The experimental
results are shown in Fig. 8. The 𝑥-axis represents the threshold for
high neighbor similarity, where >0.9 represents removing high-degree
ertices from vertices with neighbor similarity greater than 0.9. We find

that deleting these vertices does not significantly affect the model ac-
curacy. Additionally, we analyze the proportion of high-degree vertices
among high neighbor similarity vertices, and the results are shown in
Table 1. These high-degree vertices account for 20%–30% of the total,
nd removing them can further reduce the graph scale and improve

model training efficiency. Therefore, the high-degree vertices with high
neighbor similarity are redundant.

Observation 3 The high-degree vertices with high neighbor
similarity are redundant, deleting them can improve training
efficiency.

4. The de-redundancy method: NeutronSketch

To remove redundant vertices from the original graphs, we propose
 novel method called NeutronSketch to generate a skeleton graph with

a much smaller scale but rich information from the original graph for
vertex classification tasks.

Overview. The NeutronSketch method is illustrated in Fig. 9. Ver-
tices A, B, and C denote the three training vertices in the original
graph. The different colors of the vertices indicate their classes. The red
dashed lines indicate deleted vertices and edges. NeutronSketch only
iterates over the vertices in the training set. During the de-redundancy
phase, NeutronSketch directly removes the training vertices marked as
redundant from the original graph, along with their connected edges,
without processing their neighbors. The isolated vertices generated
y deleting vertices during the de-redundancy phase also be deleted
ecause these vertices do not participate in model training. It first
ivides all training vertices into three parts based on neighbor simi-
arity and conducts different strategies to remove redundant vertices
mong them. Through the analysis in Section 3, we remove vertices

with low neighbor similarity because training with these vertices harms
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Fig. 9. NeutronSketch: it generates a small skeleton subgraph by deleting the redundant vertices in the original graph based on the neighbor similarity and inter-class similarity.
The generated subgraph is highly informative and friendly for storage and model training. The O1, O2, and O3 denote deleting redundant vertices based on observations 1, 2, and
3 in Section 3, respectively.
the model performance. Additionally, the more similar the features of
vertices belonging to different classes, the more misclassified vertices
occur in these classes during model inference. Therefore, we delete
the moderate neighbor similarity training vertices with many high
inter-class similarity neighbors to reduce the number of misclassified
vertices. For the vertices with high neighbor similarity, we find that the
contributions of these vertices to model classification performance are
similar, but the computation load of these vertices is different. Thus,
we use a threshold to delete the high-degree vertices in them. The
generated skeleton graph has less redundant information and can be
directly fed into the model for training to improve training efficiency.
This skeleton graph can be stored and reused in subsequent model
training.

Algorithm 1 outlines the overall execution flow. NeutronSketch
consists of three steps: computing metrics, detecting redundancy, and
removing redundant vertices.

Computing Metrics. To begin with, NeutronSketch calculates the
inter-class similarity 𝑆 𝑖𝑚(𝑝, 𝑞) between vertices of different classes
(lines 4–8) and neighbor similarity 𝑁 𝑏𝑟_𝑆 𝑖𝑚 for all training vertices
(lines 9–11). These similarities can be stored and reused for subsequent
redundancy detection (line 12).

Detecting Redundancy. In the redundancy detection step, the
vertices are divided into low neighbor similarity, moderate neighbor
similarity, and high neighbor similarity based on the similarity thresh-
old as illustrated in Fig. 9. For low neighbor similarity vertices, we
directly mark them as redundant (lines 14–16). We determine whether
it is a redundant vertex for moderate neighbor similarity vertices based
on the inter-class similarity 𝑆 𝑖𝑚(𝑝, 𝑞)). Specifically, we first calculate
the proportion of different class vertices in their neighbors. We then
detect whether there are neighbors 𝑁𝑣 belonging to class 𝑝 that have
high inter-class similarity (𝑆 𝑖𝑚(𝑝, 𝑞)) with class 𝑞 of vertex 𝑣 based
on a hyperparameter threshold 𝑇 𝐻𝑖𝑛𝑡𝑒𝑟_𝑐 𝑙 𝑎𝑠𝑠_𝑠𝑖𝑚𝑖𝑙 𝑎𝑟𝑖𝑡𝑦. If such neighbors
exist, we mark the vertex as redundant (lines 17–21). For high neighbor
similarity vertices, we use a degree threshold 𝑇 𝐻𝑑 𝑒𝑔 𝑟𝑒𝑒 to mark vertices
whose degrees exceed the threshold as redundant (lines 22–24).

Removing Redundancy. NeutronSketch removes all redundant
vertices and associated edges to obtain a de-redundant skeleton graph
𝐺∗(𝑉 ∗, 𝐸∗) (line 26). This skeleton graph can be directly fed to GNNs
for training. All steps in the NeutronSketch can be executed offline, and
the results can be persistently stored and reused.

5. Experiment

In this section, we conduct extensive experiments to verify the
efficiency of NeutronSketch. We compare NeutronSketch with other
6 
Algorithm 1: NeutronSketch(Offline Performed)
Input: Origin Graph 𝐺(𝑉 , 𝐸), Vertex Feature 𝑋, Vertex Classes Num

𝐿
Hyperparameters 𝑇 𝐻𝑑 𝑒𝑔 𝑟𝑒𝑒, 𝑇 𝐻𝑖𝑛𝑡𝑒𝑟_𝑐 𝑙 𝑎𝑠𝑠_𝑠𝑖𝑚𝑖𝑙 𝑎𝑟𝑖𝑡𝑦, 𝑇 𝐻𝑙 𝑜𝑤, 𝑇 𝐻ℎ𝑖𝑔 ℎ
Output: De-redundant Graph 𝐺∗(𝑉 ∗, 𝐸∗)

1 𝑉 ∗ = 𝑉 ;
2 𝑉𝑑 𝑟𝑜𝑝 = ∅;
3 𝑉𝑡𝑟𝑎𝑖𝑛 ← 𝑔 𝑒𝑡_𝑡𝑟𝑎𝑖𝑛_𝑠𝑒𝑡(𝑉 );
// Calculating the Inter-Class Similarity

4 for 𝑝 ← 0 to 𝐿 do
5 for 𝑞 ← 𝑝 to 𝐿 do
6 𝑆 𝑖𝑚𝑝,𝑞 = 𝑆 𝑖𝑚𝑞 ,𝑝 ← 𝑐 𝑙 𝑎_𝑖𝑛𝑡𝑒𝑟_𝑠𝑖𝑚(𝑝, 𝑞);
7 end
8 end
// Calculating the Neighbor Similarity

9 for 𝑣 ∈ 𝑉𝑡𝑟𝑎𝑖𝑛 do
10 𝑁 𝑏𝑟_𝑆 𝑖𝑚(𝑣) ← 𝑐 𝑎𝑙_𝑛𝑏𝑟𝑠𝑖𝑚(𝑣);
11 end
12 Save the 𝑁 𝑏𝑟_𝑆 𝑖𝑚 and 𝑆 𝑖𝑚𝑝,𝑞 for further usage and free the storage;

// Detecting the redundant vertices in original graph
13 for 𝑣 ∈ 𝑉𝑡𝑟𝑎𝑖𝑛 do
14 if 𝑁 𝑏𝑟_𝑆 𝑖𝑚(𝑣) < 𝑇 𝐻𝑙 𝑜𝑤 then
15 𝑉𝑑 𝑟𝑜𝑝 ← 𝑎𝑑 𝑑_𝑣𝑒𝑟𝑡𝑒𝑥(𝑣);
16 end
17 if 𝑁 𝑏𝑟_𝑆 𝑖𝑚(𝑣) > 𝑇 𝐻𝑙 𝑜𝑤 and 𝑁 𝑏𝑟_𝑆 𝑖𝑚(𝑣) < 𝑇 𝐻ℎ𝑖𝑔 ℎ then
18 if 𝑐 ℎ𝑒𝑐 𝑘_𝑟𝑒𝑑 𝑢𝑛𝑑 𝑎𝑛𝑐 𝑦(𝑣, 𝑇 𝐻𝑖𝑛𝑡𝑒𝑟_𝑐 𝑙 𝑎𝑠𝑠_𝑠𝑖𝑚𝑖𝑙 𝑎𝑟𝑖𝑡𝑦) == 1 then
19 𝑉𝑑 𝑟𝑜𝑝 ← 𝑎𝑑 𝑑_𝑣𝑒𝑟𝑡𝑒𝑥(𝑣);
20 end
21 end
22 if 𝑁 𝑏𝑟_𝑆 𝑖𝑚(𝑣) > 𝑇 𝐻ℎ𝑖𝑔 ℎ and 𝑑𝑣 > 𝑇 𝐻𝑑 𝑒𝑔 𝑟𝑒𝑒 then
23 𝑉𝑑 𝑟𝑜𝑝 ← 𝑎𝑑 𝑑_𝑣𝑒𝑟𝑡𝑒𝑥(𝑣);
24 end
25 end

// Generation of skeleton graph 𝐺∗

26 𝐺∗(𝑉 ∗, 𝐸∗) ← 𝑟𝑒𝑚𝑜𝑣𝑒_𝑣𝑒𝑟𝑡𝑖𝑐 𝑒𝑠(𝑉 , 𝐸 , 𝑉𝑑 𝑟𝑜𝑝);

methods for reducing graph scale, such as graph compression, spar-
sification, and coarsening methods, to demonstrate the superiority of
our method. We then analyze the important hyperparameters that
affect the performance of NeutronSketch. Additionally, we apply the
NeutronSketch method to the state-of-the-art sampling-based GNNs and
compare their convergence speed and validation accuracy.
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Table 2
Statistics of large-scale graph datasets.

Dataset |V| |E| Ftr.Dim Avg.Deg Train/Val/Test

Cora 270,8 132,64 143,3 5 0.052/0.185/0.369
Pubmed 197,17 108,365 500 6 0.60/0.20/0.20
Ogbn-Arxiv 169,343 2,484,941 128 15 0.54/0.18/0.28
Reddit 232,965 114,848,857 602 487 0.66/0.10/0.24
Amazon 1,569,960 264,339,468 200 169 0.80/0.05/0.15
Ogbn-Products 2,449,029 126,167,053 100 100 0.08/0.02/0.90
r
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t
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Table 3
Hyperparameters of sampling-based GNNs.

# Params GCN ClusterGCN

layers 2 2
hidden dim 128 128
fanout [10, 25] [10, 25]
batch size 1024 1024
learning rate 0.001 0.001
dropout 0.5 0.5
early stop 10 10

5.1. Experiment setup

Datasets and Platform. We evaluate the efficiency of NeutronS-
etch through experiments in vertex classification tasks. The experi-

ments are conducted on six real-world graph datasets: Cora, Pubmed,
Reddit [1], Ogbn-Arxiv [15], Amazon, and Ogbn-Products [15]. The
mallest graph contains one hundred thousand vertices and two million
dges, while the largest graph has two million vertices and one hundred
illion edges. Detailed information about the datasets is provided in

Table 2, where ‘‘Avg. Deg’’ denotes the average degree of the datasets.
All experiments are performed on a Linux server with an Intel Xeon
Silver 4316 CPU and an NVIDIA RTX A5000 GPU (24 GB memory).

Baselines. We compare NeutronSketch with other methods for
educing graph scale. Specifically, these methods can be divided into
our classes. The graph sparsification methods: DropEdge [9] and PTD-

Net [8]. The graph compression method: Gcond [6]. The graph coarsen-
ng methods: GC-VN [11] and GC-AJC [11]. The graph sketch method:
raphSkeleton [21]. We use their open-source code and the param-

eter settings provided in their paper to compare these methods with
eutronSketch.

Additionally, to demonstrate the compatibility between NeutronS-
etch and sampling-based training methods, we also apply NeutronS-
etch to two popular sampling-based GNNs, ClusterGCN [22] and
CN [2], that have the capacity to train large-scale graphs. Specifically,
e use the open-source NeutronStar [23] framework and implement

the NeutronSketch for ClusterGCN and GCN on it. The model hyperpa-
rameter settings are listed in Table 3. The comparison of NeutronSketch
nd baseline is conducted under an entirely consistent configuration,
xcept for the input graph.

5.2. Comparison with other methods for reducing graph scale

To demonstrate the superiority of NeutronSketch, we compare it
ith similar graph compression, sparsification, and coarsening meth-

ods. The experimental results are shown in Table 4.
Compared to the graph compression method GCond [6], NeutronS-

etch has a faster end-to-end execution speed and better scalability.
pecifically, GCond uses a multi-layer neural network (MLP) to learn
he relationship between vertex features and graph structure on the
ompressed graph. This method trains GNNs simultaneously on the
ompressed graph and the original graph to optimize the vertex features
nd MLP parameters. As the scale of the original graph increases,
his training process results in huge time and storage overhead. For
xample, GCond fails to compress the Arxiv within 1600s, so we mark
t as out-of-time (OOT). Additionally, GCond cannot compress larger
7 
scale graphs, e.g., Products, due to out-of-memory (OOM) problems. In
contrast, NeutronSketch can compress graphs with various scales well
and improve training efficiency without sacrificing model accuracy.

Furthermore, compared to graph sparsification methods such as
DropEdge [9] and PTDNet [8], the end-to-end running time of Neu-
tronSketch is improved by 13.7 times on average and the model accu-
acy loss on compressed graphs is lower. Specifically, the accuracy of

DropEdge on the Arxiv is only 60.4% because randomly deleting edges
loses some important information in the original graph. Additionally,
PTDNet uses complex denoising networks to analyze the noise of each
edge, which results in huge storage overhead, especially for large-scale
graphs. Therefore, PTDNet appears out-of-memory (OOM) problems on
Arxiv and Products.

Compared with the graph coarsening methods GC-VN [11] and
GC-AJC [11], NeutronSketch achieves 4.8x end-to-end execution time
acceleration and lower model accuracy loss. These methods require
constructing adjacency matrices and calculating the connectivity of
the entire graph before model training, which incurs significant stor-
age and computational costs. Therefore, they are more suitable for
small-scale graphs such as Pubmed. The GC-VN, and GC-AJC cannot
process large-scale graphs, e.g., Products, due to out-of-memory (OOM)
problems.

The Gskeleton [21] first selects key vertices from the original graph
and then compresses them, generating a smaller-scale skeleton graph.
Due to adopting a more complex compression strategy, Gskeleton typi-
ally incurs a larger time overhead. The GraphSkeleton takes a consid-
rable amount of time (over 1200 s) to compress the Products, so we

represent the result as out-of-time (OOT) in Table 4. Additionally, the
skeleton divides the vertices into the background vertices and target
ertices. It compresses the background vertices and uses target vertices
o train models, which changes the original partitioning of the dataset
nd only performs well on a few datasets, such as Arxiv. In contrast,

although NeutronSketch generates a larger skeleton graph, our method
s simpler and more effective, with faster execution speed and lower
odel accuracy loss.

In addition, we also record the preprocessing time required for these
methods to process the original graph, as shown in the ‘‘Preprocess

ime’’ in Table 4. Overall, the methods that only require one itera-
tion (DropEdge, NeutronSketch, GSkeleton, etc.) take less time than
he methods that require multiple iterations (Gcond, PTDNet). Since
eutronSketch only needs to iterate once on the training vertices in the
riginal graph, the preprocessing time only accounts for 0.5%–1% of
he entire end-to-end time. On the contrary, methods such as GSkeleton
nd DropEdge need to traverse all the edges in the original graph, and
he preprocessing time of these methods accounts for more than 20%
f the entire end-to-end time. Therefore, compared to these methods,
eutronSketch executes faster on large-scale graphs.

Table 5 summarizes the methods used to reduce graph size. Gcond
generates a new small graph through gradient matching. This process
requires multiple iterations, so the time complexity of this method
cannot be calculated. In Table 5, we use − to denote the time com-
lexity of Gcond. The computation in NeutronSketch primarily focuses

on calculating neighbor similarity and inter-class similarity. NeutronS-
ketch computes a neighbor similarity score for each training vertex,
which requires iterating over all training vertices and their neighbors,
resulting in a time complexity of 𝑂(|𝐸 |), where |𝐸 | denotes
𝑇 𝑟𝑎𝑖𝑛 𝑇 𝑟𝑎𝑖𝑛
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Table 4
Comparison of NeutronSketch with methods in graph compression, sparsification, and coarsening in terms of end-to-end runtime, methods preprocessing time, and model accuracy.
‘NSketch’ denotes the NeutronSketch method, and ‘GSkeleton’ denotes the GraphSkeleton method.

Dataset Origin NSketch GSkeleton Gcond DropEdge PTDNet GC-VN GC-AJC

Cora
Run time (s) 4.87 3.90 4.92 21.67 4.23 32.71 16.74 15.36
Preprocess time (s) – 0.0013 0.12 18.74 1.45 – 2.93 1.02
Model ACC (%) 80.9 80.3 79.6 80.5 80.6 80.1 79.9 79.3

Pubmed
Run time (s) 10.68 7.61 5.17 131.88 6.99 172.10 45.32 24.29
Preprocess time (s) – 0.071 0.73 119.66 2.77 – 30.59 18.97
Model ACC (%) 78.0 77.2 68.8 77.9 78.6 77.2 78.8 75.4

Arxiv
Run time (s) 222.53 109.51 288.97 2653.43 504.19

OOM
449.08 617.04

Preprocess time (s) – 0.41 65.10 2487.31 139.85 169.33 207.69
Model ACC (%) 71.4 71.3 68.8 63.29 60.4 68.1 67.7

Reddit
Run time (s) 273.79 62.95 116.75 4982.74 606.69

OOM OOT OOTPreprocess time (s) – 4.20 27.48 4885.94 465.72
Model ACC (%) 93.7 93.9 92.8 89.2 91.6

Products
Run time (s) 216.13 170.94

OOT OOM OOM OOM OOM OOMPreprocess time (s) – 7.96
Model ACC (%) 91.1 90.7

Amazon
Run time (s) 402.92 224.76

OOM OOM OOM OOM OOM OOMPreprocess time (s) – 12.36
Model ACC (%) 76.6 75.9
Table 5
Comparison of methods for improving model training efficiency by reducing graph scale across four aspects: model accuracy loss, time cost,
storage cost, and number of iterations.

Category Method Model ACC loss Time cost Storage cost Iterations

Graph Sparsification DropEdge Moderate 𝑂(|𝐸|) Low Low One Time

PTDNet Low 𝑂(|𝐸|) Moderate High Multiple

Graph Compression Gcond Low − High Moderate Multiple

Graph Coarsening GC-VN,GC-AJC Moderate 𝑂(|𝑁| + |𝐸|) Moderate High One Time

Graph Sketch GSkeleton Low 𝑂(𝑒(𝑘)|𝑁| + |𝐸|) Moderate Low One Time

NeutronSketch Low 𝑂(𝑁 𝐷 𝑇 ) Low Low One Time
e
d

Fig. 10. The influence of different hyperparameter 𝑇 𝐻ℎ𝑖𝑔 ℎ on model performance on
he datasets Ogbn-arxiv and Reddit.

the number of neighbors for all training vertices. Calculating inter-class
imilarity involves computing the feature similarity between every class

pair in the training set, with a time complexity of 𝑂(𝑁 𝐷 𝑇 ), where
is the number of all training vertices, 𝐷 is the feature dimension,

nd 𝑇 is the number of class. These two metrics can be computed
simultaneously, so the overall time complexity of the algorithm is
𝑂(𝑁 𝐷 𝑇 ). Compared with other methods, the time cost of NeutronS-
ketch is positively related to the number of training vertices. The time
complexity of other methods is directly related to the number of edges
in the original graph. In real-world graph data, the number of edges
is significantly larger than the number of vertices. Furthermore, our
method does not require multiple iterations and can generate skeleton
graphs with only one iteration. Therefore, NeutronSketch has a faster
execution speed. In addition, NeutronSketch only needs to store a few
additional important metrics during algorithm execution, so it requires
only a smaller storage overhead.
8 
Fig. 11. The influence of different hyperparameter settings on model convergence
speed and accuracy on the Ogbn-Products dataset. (a) Varying the threshold for vertex
degree (𝑇 𝐻𝐷 𝑒𝑔 𝑟𝑒𝑒). (b) Varying the threshold for inter-class similarity (𝑇 𝐻𝐼 𝑛𝑡𝑒𝑟_𝐶 𝑙 𝑎𝑠𝑠_𝑆 𝑖𝑚).

5.3. Effect of hyperparameters

There are four important hyperparameters in NeutronSketch, 𝑇 𝐻𝑙 𝑜𝑤,
𝑇 𝐻ℎ𝑖𝑔 ℎ, 𝑇 𝐻𝑑 𝑒𝑔 𝑟𝑒𝑒 and 𝑇 𝐻𝑖𝑛𝑡𝑒𝑟_𝑐 𝑙 𝑎𝑠𝑠_𝑠𝑖𝑚. The hyperparameters 𝑇 𝐻𝑙 𝑜𝑤 and
𝑇 𝐻ℎ𝑖𝑔 ℎ are used to distinguish vertices with low and high neighbor
similarity. We fix the 𝑇 𝐻𝑙 𝑜𝑤 to 0.1 as vertices with a similarity below
this threshold have less than 10% neighbors of the same class. The
GNNs cannot classify these vertices accurately. As shown in Fig. 10, the
xperiment shows that the best hyperparameter 𝑇 𝐻ℎ𝑖𝑔 ℎ for different
atasets is different. And the performance of using average neighbor

similarity as 𝑇 𝐻ℎ𝑖𝑔 ℎ is close to the optimal case. To avoid tedious
hyperparameter adjustments and reduce their impact on algorithm
performance, we set the 𝑇 𝐻ℎ𝑖𝑔 ℎ to the average neighbor similarity of
all vertices in that class.
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Fig. 12. Comparison of convergence time among three large-scale graphs. ‘Origin’
enotes training sample-based GNNs with the original graphs, and ‘Sketch’ denotes

training sample-based GNNs with the skeleton graphs.

Fig. 13. Comparison of validation accuracy among three large-scale graphs. ‘Redun-
dancy’ denotes training sample-based GNNs only with the deleted redundant vertices.

Hyperparameters 𝑇 𝐻𝑑 𝑒𝑔 𝑟𝑒𝑒 and 𝑇 𝐻𝑖𝑛𝑡𝑒𝑟_𝑐 𝑙 𝑎𝑠𝑠_𝑠𝑖𝑚 plays a crucial role
n detecting redundant vertices. We consider high neighbor similar-

ity vertices with degrees beyond the 𝑇 𝐻𝑑 𝑒𝑔 𝑟𝑒𝑒 as redundant vertices.
Parameter 𝑇 𝐻𝑖𝑛𝑡𝑒𝑟_𝑐 𝑙 𝑎𝑠𝑠_𝑠𝑖𝑚 is a threshold to remove moderate neighbor
similarity vertices that cause misclassification. The increase of the pa-
rameter 𝑇 𝐻𝑖𝑛𝑡𝑒𝑟_𝑐 𝑙 𝑎𝑠𝑠_𝑠𝑖𝑚 means more precise removal of training vertices
that cause confusion, increasing the model accuracy. As shown in
Fig. 11, we adjust these two parameters separately while keeping the
other parameters constant. The experimental results show that both
hyperparameters affect training efficiency by adjusting the number of
emoved redundant vertices. As these two hyperparameters increase,
he number of deleted redundant vertices decreases, the scale of the
nput graph increases, and training efficiency decreases. In addition,
s the proportion of vertices with high neighbor similarity is higher,
he 𝑇 𝐻𝑑 𝑒𝑔 𝑟𝑒𝑒 has a greater impact on redundant vertices detection.
djusting the 𝑇 𝐻𝑑 𝑒𝑔 𝑟𝑒𝑒 significantly changes the scale of the input
raph.

5.4. Effect of NeutronSketch with graph sampling methods

To demonstrate the effectiveness of NeutronSketch in improving
training efficiency, we combine it with sampled-based training methods
and compare the convergence speed of the baseline with NeutronS-
ketch, as shown in Fig. 12. If the validation accuracy does not improve
for ten consecutive epochs, we consider the model to have converged.

e record the training time until the model converges, which includes
atch vertex selection, sampling processes, and the time consumption
f the model training process.

Mini-batch and sampling methods use the highly redundant original
raphs for model training. During each iteration of the training process,
he sampler repeatedly samples these redundant vertices, and the model
lso trains them repeatedly. However, the redundant vertices do not
ontribute to improving model performance. The repetitive sampling
nd training lead to significant redundant computations, resulting in a
ecrease in training efficiency. Applying NeutronSketch to the original
raph generates a de-redundant skeleton graph. Training GNNs on this
keleton graph can significantly accelerate training speed. Overall, us-

ng NeutronSketch can reduce training time by 10% to 90%. However,

9 
the acceleration effect of applying NeutronSketch to the ClusterGCN is
ess pronounced than for GCN. This is because the ClusterGCN is trained
n the full graph, and each batch’s sampled subgraph often contains
ertices from the validation and test sets. However, NeutronSketch only
emoves redundant vertices from the training set, and compared to
CN, the computation load of each batch in ClusterGCN is slightly

educed.
Additionally, since there are significant differences in the distribu-

ion of different classes of vertices in the Ogbn-Products, it is crucial
to carefully remove redundant vertices to avoid affecting the original
distribution of the training set. Therefore, the number of redundant
vertices removed from Ogbn-Products is relatively small.

To evaluate the impact of NeutronSketch on model accuracy, we
record the validation accuracy when the model converges, as shown
in Fig. 13. NeutronSketch enhances model training efficiency and does
not affect the model accuracy. Furthermore, from the results shown
in Fig. 13, it is evident that the model accuracy improves after re-
moving redundant vertices on some datasets. This improvement can
e attributed to our redundancy removal strategy, which combines
nter-class similarity and neighbor similarity. To further validate the
fficiency of NeutronSketch, we only use the deleted redundant vertices
or model training, as shown ‘‘Redundancy’’ in Fig. 13. It is observed

that training the model using only redundant vertices significantly
ecreases accuracy, providing further evidence of the efficiency of

NeutronSketch.

6. Related works

In recent years, researchers have proposed various methods to
improve training efficiency. In the following parts, we briefly introduce
the mainstream methods to improve training efficiency by reducing the
graph scale and discuss their differences from our work.
Graph Compression. These methods often use deep learning tech-
iques to generate small-scale graphs with information content close to

the original graph, making the accuracy of training GNNs on this small
graph similar to the original graph. Some previous works have achieved
good performance. Specifically, Jin et al. propose Gcond [6] which
uses gradient matching to ensure models trained on 𝐺 and 𝐺∗ achieve
similar accuracy. Nevertheless, the Gcond introduces additional deep
eural networks, increasing model complexity. Additionally, Si et al.

analyze the error in the forward pass and construct a compressed graph
by minimizing the approximation error [24]. However, they do not
consider the model training and only replace the original training graph
with this compressed graph during model inference. Compared with
these methods, NeutronSketch only requires one execution to generate
a skeleton graph with low redundancy. This skeleton graph can be used
during model training and inference to improve efficiency.
Graph Sparsification. In the GNN-related domain, graph sparsification
methods propose to remove particular edges in graphs to improve
the model accuracy or reduce the redundant computation. Typically,
Rong et al. propose the DropEdge [9] alleviates overfitting and over-
smoothing issues by randomly removing edges from the original graph.
In addition, the PTDNet [8] and GAUG [25] introduce neural network
models to remove noisy edges from the original graph and improve the
quality of the graph. These methods generate small subgraphs by re-
ducing the number of connected edges in the original graphs, while the
number of vertices in these subgraphs remains unchanged compared to
the original graphs. These methods only remove noisy edges, overlook-
ing the redundant information in the vertices. The massive redundant
vertices cannot improve model performance and introduce additional
computational overhead, thereby reducing the training efficiency of
GNNs. NeutronSketch primarily distinguishes from these graph sparsi-
ication methods as we drop redundant nodes and corresponding edges

rather than only edges in the origin graph.
Graph Coarsening. The graph coarsening method aims to simplify
arge graphs while retaining their essential structural and connectiv-

ity properties. Huang et al. propose an aggregation-based coarsening
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method to merge the original nodes into super-nodes along with aver-
aged node features for graph reduction [11]. However, the coarsening
methods mostly require significant storage overhead. Additionally, the
coarsening methods do not consider the feature information. Compared
to these methods, NeutronSketch is lighter and only requires additional
torage for metrics such as neighbor similarity.
Sampling-Based Training Methods. Unlike the above methods that
irectly reduce the scale of graphs, the sampling-based training method
1,26] samples subgraphs for model training in each training epoch.

This method reduces the training graph and significantly decreases
he demand for computational resources and memory, thereby sub-
tantially accelerating the training process and enhancing the effi-
iency of model iterations. The sampling-based method is orthogo-

nal to NeutronSketch. A GNN training system can benefit from both
eutronSketch and graph sampling.

Other Methods. In addition to the methods described above, there
re some other methods to improve the efficiency of GNNs training.
pecifically, Zhang et al. propose an FPGA-based adaptive CNNs in-

ference accelerator synergistically utilizing filter pruning, fixed-point
arameter quantization, and multi-computing unit parallelism called
PPQ-CNN [27] to effectively adapt to the tradeoff between the speed

and accuracy. Chen et al. propose a more granular greedy graph par-
ition algorithm with spatial locality and judgment-aware edge folding
o accelerate model training [28]. In addition, Li et al. propose a GCN-
ased framework to embed the explicit features or those extracted with
xplicit intentions in the recommendation field [29]. Yu et al. propose

a redundancy-aware incremental execution method RACE [30], which
immediately implements the output features of the latest graph snap-
shot by correctly and incrementally refining the output features of the
previous graph snapshot and achieving regular access to vertex input
features.

7. Conclusion

In this paper, we propose NeutronSketch, a universal one-time
edundancy removal method. NeutronSketch detects and removes re-
undant vertices from the training set by comprehensively considering
he original graph topology and vertex feature information. Offline
xecution of NeutronSketch can obtain a de-redundant skeleton graph,
nd using the skeleton graph can significantly improve the model
raining efficiency. Compared to graph compression, sparsification, and
oarsening methods, NeutronSketch has faster execution speed and
etter model accuracy. In addition, our method is orthogonal to other
ptimizations and can be combined with other optimization methods
o achieve better training performance. We use two sampling-based
NNs in the experiment to verify the efficiency of NeutronSketch. The
xperimental results show that NeutronSketch successfully detects and
emoves redundant information from the graph, improving the training
fficiency of GNNs while maintaining model accuracy. NeutronSketch
lso has a wide range of application scenarios. In the recommendation
omain, using NeutronSketch can quickly and accurately remove re-
undant vertices from user social graphs and user-item graphs, which
mproves the performance of GNNs during the recall and ranking
tages. In the visualization domain, graphs processed by NeutronSketch
re smaller in scale and more information-dense, significantly reducing
he impact of redundant structures. In the unsupervised context, we can
btain the labels necessary for the execution of NeutronSketch through
lustering or pre-training methods. Subsequently, redundancy can be
emoved from the original graph. In the supervised context, where
abel information is available, NeutronSketch uses metrics like inter-
lass similarity and neighbor similarity to remove redundancy. This
areful removal of redundant vertices helps maintain or even improve
ccuracy during training by leveraging available label information to
etter identify redundant vertices. While NeutronSketch has shown
romising results, there are still areas for improvement. For example,
eutronSketch currently focuses on homogeneous graphs and has not
et extended to heterogeneous graphs with multiple vertex and edge
lasses. Expanding NeutronSketch’s capabilities to handle more general
raph types is an important direction for our future research.
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