
The VLDB Journal (2024) 33:781–806
https://doi.org/10.1007/s00778-024-00838-z

REGULAR PAPER

Ingress: an automated incremental graph processing system

Shufeng Gong1 · Chao Tian2 ·Qiang Yin3 · Zhengdong Wang3 · Song Yu1 · Yanfeng Zhang1 ·Wenyuan Yu4 ·
Liang Geng5 · Chong Fu1 · Ge Yu1 · Jingren Zhou4

Received: 24 February 2023 / Revised: 10 October 2023 / Accepted: 1 January 2024 / Published online: 20 February 2024
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024

Abstract
The graph data keep growing over time in real life. The ever-growing amount of dynamic graph data demands efficient
techniques of incremental graph computation. However, incremental graph algorithms are challenging to develop. Existing
approaches usually require users to manually design nontrivial incremental operators, or choose different memoization
strategies for certain specific types of computation, limiting the usability and generality. In light of these challenges, we
propose Ingress, an automated system for incremental graph processing. Ingress is able to deduce the incremental counterpart
of a batch vertex-centric algorithm, without the need of redesigned logic or data structures from users. Underlying Ingress is an
automated incrementalization framework equipped with four different memoization policies, to support all kinds of vertex-
centric computations with optimized memory utilization. We identify sufficient conditions for the applicability of these
policies. Ingress chooses the best-fit policy for a given algorithm automatically by verifying these conditions. In addition to
the ease-of-use and generalization, Ingress outperforms state-of-the-art incremental graph systems by 12.14× on average (up
to 49.23×) in efficiency.

Keywords Incrementalization · Flexible memoization · Graph computing systems

B Qiang Yin
q.yin@sjtu.edu.cn

Shufeng Gong
gongsf@mail.neu.edu.cn

Chao Tian
tianchao@buaa.edu.cn

Zhengdong Wang
lnwzd2009@sjtu.edu.cn

Song Yu
yusong@stumail.neu.edu.cn

Yanfeng Zhang
zhangyf@mail.neu.edu.cn

Wenyuan Yu
wenyuan.ywy@alibaba-inc.com

Liang Geng
geng.161@osu.edu

Chong Fu
fuchong@mail.neu.edu.cn

Ge Yu
yuge@mail.neu.edu.cn

Jingren Zhou
jingren.zhou@alibaba-inc.com

1 Introduction

In response to the increasing need for processing large-scale
graphs, under various scenarios, e.g., anti-fraud, bioinformat-
ics, fintech, recommendation and social network analysis, a
number of graph processing systems have been proposed [10,
14, 29, 47, 55, 56, 59]. However, these systems are mainly
designed based on the assumption that computation is per-
formed over static graphs. When the underlying graph is
updated with input changes, e.g., edge insertions and dele-
tions, they have to reperform the entire computation on the
updated graph starting from scratch. Such recomputation is
costly as real-life graphs easily have billions of nodes and
trillions of edges, e.g., e-commerce graphs [27] and they are
constantly changed, e.g., the relationships between users and
items in e-commerce transactions [5].

1 Northeastern University, Shenyang, China

2 Beihang University, Beijing, China

3 Shanghai Jiao Tong University, Shanghai, China

4 Alibaba Group, Hangzhou, China

5 Ohio State University, Columbus, USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00778-024-00838-z&domain=pdf
http://orcid.org/0000-0003-3398-8345

782 S. Gong et al.

Fig. 1 Overall structure of Ingress

These highlight the need for incremental graph compu-
tation. That is, we apply a batch algorithm to compute the
result over the original graphG once, followed by employing
an incremental algorithm to adjust the old result in response
to the input changes ΔG to G. It ensures that the adjusted
result is the same as that recomputed by the batch algorithm
on the updated graph. In practice, real-world changes are
typically small, e.g., English Wikipedia was expanded with
on average less than 600 new articles per day out of 5 mil-
lion articles during 2019 [46]. In addition, given small input
changes ΔG, it is common to find a considerable overlap
between the computation over G and the recomputation on
the new graph updated with ΔG. Therefore, by making use
of the memoized previous intermediate result, incremental
computation can reduce unnecessary recomputation and is
often more efficient.

The benefit of incremental computation has led to the
development of several incremental graph processing sys-
tems, notably Tornado [44], GraphIn [43], KickStarter [50]
and GraphBolt [31]. They adopt the vertex-centric model,
where the same user-defined function is executed in parallel
at each vertex, and vertices exchange updates with each other
by message passing. The vertex-centric model can naturally
express iterative graph computation, e.g., PageRank [38] and
single source shortest path (SSSP) [12].

While the existing systems [31, 43, 44, 50] have elim-
inated redundant recomputation, they are limited by two
major drawbacks. (i) Nontrivial user intervention is required,
e.g., GraphIn [43] and GraphBolt [31] ask users to man-
ually deduce the incremental operators, and Tornado [44]
and KickStarter [50] require users to make sure that the cor-
responding batch computation satisfies certain properties.
(ii) These systems use different memoization policies and
achieve different levels of generality. For instance, Graph-
Bolt, aiming at a high level of generality to support wide
variety of applications, needs to memoize a large number
of intermediate results. Although KickStarter, GraphIn and
Tornado memoize small amount of states, they only support
a specific class of graph computations that satisfy certain
properties. Our new findings show that some incremental
algorithms do not even employ any memoized intermediate
states at all. However, checking the properties of the graph

computations and choosing the best memoization policies
manually is usually difficult for non-expert users.

Then two questions are naturally raised. Can we build an
incrementalization framework that automatically converts a
generic user-specified batch graph algorithm into an incre-
mental algorithm? Furthermore, can this framework deduce
incremental algorithms with different memoization policies
such that the memoized intermediate results are as few as
possible?
Ingress. To answer these questions, we develop Ingress,
an automated vertex-centric system for incremental graph
processing. The overall structure of Ingress is shown in
Fig. 1. Given a batch algorithm A, Ingress verifies the char-
acteristics of A and deduces an incremental counterpart AΔ

automatically. It selects an appropriate memoization engine
to record none or part of run-time intermediate states. Upon
receiving graph updates, Ingress executes AΔ to deliver
updated results with the help of memoized states.

The rationale behind Ingress is (a) identifying the differ-
ences between the prior run and the recomputation over the
new graph, and (b) enforcing their effects on the old interme-
diate results. For some graph computations, such effects can
be directly applied on the previous final results, even with-
out the need of memoizing other intermediate information.
In other words, the differences across multiple steps of the
iterative computation can be assembled and processed in a
singe batch. This is fully leveraged by Ingress to achieve
incrementalization with different memoization strategies.

Ingress provides the following features that differ from
previous graph incremental processing systems.
Flexible memoization. Ingress aims to deduce an incre-
mental counterpart of a batch vertex-centric algorithm with
flexible memoization policies, i.e., deducing AΔ from A,
under four different memoization policies. Specifically, (1)
the memoization-free policy records no runtime states of the
previous computation, (2) the memoization-path policy only
records a small portion of critical states (messages), which
form a set of paths, (3) thememoization-vertex policy records
all the vertex states, and (4) the (default) memoization-edge
policy records all the edge states, i.e., old messages. They
can be adopted to incrementalize the batch algorithms of
e.g., PageRank, SSSP, forward process of Graph Convolu-
tional Network (GCN-forward) [24], and GraphSAGE [17]
with mean aggregator, respectively (see Fig. 1). We also pro-
vide the sufficient conditions for these memoization modes
that guarantee the correctness of incremental computation.
With these four policies, flexiblememoization is able to cover
the needof incrementalizing all vertex-centric algorithms and
support all kinds of incremental computation with optimized
memory usage.
Automatic incrementalization. Ingress is able to deduce an
incremental counterpart of a batch vertex-centric algorithm.
There is no need to manually reshape the data structures or

123

Ingress: an automated incremental graph processing system 783

Table 1 Performance comparison over UK-2005

Algorithm System Time (s) Space (GB)

PageRank Ingress 2.46 0.31

GraphBolt 19.34 13.66

SSSP Ingress 0.34 0.6

KickStarter 3.65 1.39

the logic of the batch ones, improving ease-of-use. Based
on the sufficient conditions that we establish for the appli-
cability of memoization policies, it selects an appropriate
memoization policy for each batch algorithm to conduct
incrementalization, and guarantees the correctness. More-
over, by transforming sufficient conditions into first-order
formulas and applying SMT solver Z3 [36], the satisfiability
of the conditions can be automatically verified (Automatic
Verification module in Fig. 1). Putting this together with the
four incrementalization engines that derive incremental algo-
rithmswith the selectedmemoization policies, Ingressmakes
the process of incrementalization transparent to users.
Optional execution mode. Ingress incorporates two execu-
tion engines, a synchronous engine and an asynchronous one.
The synchronous engine is the default one of Ingress since
synchronous processing makes correctness and convergence
analyses easy [29, 31]. However, synchronous processing
also hinders the performance of incremental computation
due to the synchronization semantics and global barriers. To
address this, the asynchronous execution engine employs two
optimizations, selective processing and fast messages prop-
agation, respectively. Based on the characteristics of each
deduced incremental algorithmAΔ, Ingress chooses the best
execution engine based on the characteristics of AΔ.
High performance. In addition to the ease-of-use and gen-
eralized reduction of memory consumption, Ingress also
achieves high performance runtime. Table 1 compares the
performance of Ingress for PageRank and SSSPwith Graph-
Bolt and KickStarter, respectively, over the graph UK-2005
that consists of 39 million vertices and 0.9 billion edges.
Despite the fact thatPageRank (resp. SSSP) iswell-supported
in GraphBolt (resp. KickStarter), with 1% input graph
updates, i.e., |ΔG|=1%|G|, Ingress outperforms Graph-
Bolt and KickStarter by 7.84× and 10.55×, respectively, in
response time. Ingress also has the least space cost, thanks
to its flexible memoization mechanism. It only incurs 2.26%
and 34.26% the space cost of GraphBolt (resp. KickStarter)
for PageRank (resp. SSSP).
Contributions and organization. We summarize our con-
tributions as follows.
(1) A general framework for incrementalizing vertex-centric
algorithms (Sect. 3). It models the operations of incremen-
tal computation in terms of the cancelation of old invalid

messages and the compensation of new missing messages,
which can be carried out with the help of different memoiza-
tion policies.
(2) An analytical foundation for the correctness of the incre-
mentalizationw.r.t. differentmemoization policies, including
the sufficient conditions for the applicability of the policies
(Sect. 4).
(3) Two effective optimizations, namely selective processing
and fast message propagation, to improve the performance
of Ingress while still guaranteeing the correctness of incre-
mental processing (Sect. 5).
(4) The automation techniques for selecting appropriate
memoization policies for incrementalization, as well as a
distributed runtime engine to perform incremental graph
computation (Sect. 6).
(5) An extensive evaluation of the incremental graph pro-
cessing system Ingress (Sect. 7).

This paper extends the conference version [13] in theo-
retical analyses, optimization techniques and experimental
study. (1) We provide detailed formal proofs for the cor-
rectness of three incrementalization policies, including MF,
MP and MV (Sect. 4). In contrast, only intuitive proof
sketcheswere presented in [13]. (2)We propose two effective
optimizations, selective processing and fast messages prop-
agation, to improve the utilization of vertex programs and
message propagating efficiency in incremental processing
(Sect. 5). (3) We enhance the experimental study as follows.
(a) We add new experiments to evaluate the impact of edge
weight updates on the performance of Ingress (Sect. 7.2.2);
(b) we implement the optimizations introduced in Sect. 5 and
conduct experiments to verify their effectiveness (Sect. 7.5);
(c) the entire experimental study is also enhanced by com-
paring Ingresswith two state-of-the-art baselines, DZiG and
RisGraph (Sects. 7.2–7.4).

2 Preliminaries

We start with a review of basic notations for vertex-centric
algorithms and incremental graph computation.
Graphs. We consider graphs G = (V , E, PG), directed or
undirected. Here V is a finite set of vertices, E ⊆ V × V is
a set of edges, PG = {PV , PE } is a pair of functions such
that each vertex v in V (resp. edge e in E) carries a property
PV (v) (resp. PE (e)), which indicates e.g., weight, label or
keyword and is possibly empty.
Vertex-centric model. In vertex-centric graph computation
models [14, 29], a vertex program A is executed in parallel
on all vertices in the input graph G iteratively. The program
A can be represented by a triple (H,U ,G), where H is the
aggregation function ofA, U is the update function and G is
the propagation function. Following the Bulk Synchronous
Parallel (BSP) model [49], the computation of A are sepa-

123

784 S. Gong et al.

rated into super-steps. In each round i , A performs

mi
v = H(Mi−1

v),

xiv = U(xi−1
v ,mi

v),

mi
v,w = G(xiv,m

i
v, PE (v,w)) (∀w ∈ Nbr(v))

(1)

at each vertex v. Here Mi−1
v ={mi−1

u,v |(u, v) ∈ E} refers to
the set of messages received by v at the start of round i ; xiv
(resp. xi−1

v) denotes the state of vertex v in round i (resp.
i −1);mi

v is the aggregated result of the messages; andmi
v,w

denotes the message sent from v to w at round i + 1, where
w is in the neighbor set Nbr(v) of v. Intuitively, each vertex
v first aggregates the received messages byH; it then applies
U to adjust its state to xiv with the aggregated result mi

v; at
last it generates a set of messages by G and propagates them
to its neighbors. In practice, there are many cases thatH and
U have the same logic, e.g., summing the values.

Starting from the initial round, each vertex executes A in
parallel. They communicate via synchronous message pass-
ing. The process terminates when no more changes are made
to vertex states, i.e., the computation reaches a fixpoint and
all vertices are halted [29].

In light of the simplicity and the distributed nature of the
model, a large number of vertex-centric algorithms are devel-
oped (see [33] for a survey).

Example 1 We show four example vertex-centric algorithms,
using the formulation of (H,U ,G).
(a) PageRank. Consider PageRank that computes the set
{PRv | v ∈ V } of PageRank scores, which is defined
as the unique solution to the equations {PRv = d ×
sum(u,v)∈EPRu/Nu + (1 − d) | v ∈ V }. Here d is a con-
stant damping factor and Nu denotes the number of outgoing
neighbors of vertex u in graph G. As opposed to the stan-
dard PageRank algorithm that exploits the power method, a
delta-based PageRank algorithm [56] can be represented as
follows.

◦ H(Mi−1
v) = sum(Mi−1

v);
◦ U(xi−1

v ,mi
v) = sum(xi−1

v ,mi
v);

◦ G(xiv,m
i
v, PE (v,w)) = d ×mi

v/Nv (∀w ∈ Nbr(v)).

Observe thatH = U = sum. Intuitively, each vertex uses its
state xv to store its PageRank score. In particular, xv = 0 and
M0

v = {1−d} for all v ∈ V . Each time a vertex v aggregates
messages from its neighbors and updates its state by sum. It
converts the aggregated result mi

v to d × mi
v/Nv and propa-

gates it to all its neighbors. As shown in [56], this delta-based
PageRank algorithm computes the PageRank scores for all
vertices correctly.
(b) PHP. We next consider the PHP (Penalized Hitting Prob-
ability) problem [16]. It is to compute a proximity score, in

terms of penalized hitting probability, between a given source
vertex s and every other vertex in a graphG. A vertex-centric
PHP algorithm works as follows.

◦ H(Mi−1
v) = sum(Mi−1

v);
◦ U(xi−1

v ,mi
v) = sum(xi−1

v ,mi
v);

◦ G(xiv,m
i
v, PE (v,w)) = βmi

vPE (v,w).

Here 0 < β < 1 is a predefined parameter and PE (v,w) is
the weight of edge (v,w). Initially, we have xv = 0 for all
v ∈ V ; M0

s = 1 and M0
v = 0 for all v �= s. As in PageRank,

we haveH = U = sum in PHP. In one iteration, each vertex
v aggregates messages from its neighbors and updates its
state by sum. Then the aggregated message is transmitted
to its neighbor w with probability proportional to the edge
weight PE (v,w).
(c) SSSP. As another example, consider SSSP that computes
the shortest distance from a given source s to all vertices
in a directed graph G. A vertex-centric algorithm for SSSP
operates as follows.

◦ H(Mi−1
v) = min(Mi−1

v);
◦ U(xi−1

v ,mi
v) = min(xi−1

v ,mi
v);

◦ G(xiv,m
i
v, PE (v,w))=mi

v+PE (v,w), (∀w∈Nbr(v)).

Here the state xv of v indicates the shortest distance from s
to v and PE (v,w) represents the length of (v,w). Initially,
we have x0v = ∞ and M0

v = ∅ for all v �= s; and x0s = 0,
M0

s = {0}. Each vertex v aggregates messages and updates
its state by usingmin for bothH and U . It creates and sends
a message to each neighbor w, which represents the shortest
length of paths through v to w. The algorithm terminates
when all shortest distances no longer change, i.e., it reaches
a fixpoint.
(d)GCN-forward. Consider the GCN-forward [24] prob-
lem. Given a directed graph G and K weight matrices
W1, . . . ,WK , it is to compute the features of each vertex
v iterativley based on K weight matrices and the features
of the neighbors that are within K -hops away from v. The
weight matricesW1, . . . ,Wk are trained beforehand by mul-
tiple graphs; thus they are independent to the input graph G.
An algorithm for GCN-forward can be defined as follows.

◦ H(Mi−1
v) = sum(Mi−1

v); U(xi−1
v ,mi

v) = relu(mi
v);

◦ G(xiv,m
i
v, PE (v,w)) = xiv · Wi (∀w ∈ Nbr(v)).

Initially, each x1v is set to the input feature vector v0 of v

and M0
v = ∅. At the i-th round, each vertex merges multiple

vectors into one by summing the corresponding elements of
the vectors in the messages Mi−1

v ; it then updates its feature
vector to relu(mi

v). Here the operation relu just resets the
negative values in the vector to zero. At last, it computes a

123

Ingress: an automated incremental graph processing system 785

Table 2 Summary of notations Notation Definition

A, AΔ Batch algorithm and incremental algorithm

G, ΔG Original graph and input updates to G

H, U , G Aggregation, update and propagation function

U− The inverse function of U
mi

v The aggregated result of the messages sent to v at round i

Mi−1
v The set of messages sent to v at round i

M A set of messages

mi−1
v,w A single message sent from v to w at round i

xiv The state of vertex v at round i

X
i , X̂i The collection of vertex states of G and G ⊕ ΔG at round i

M
i , M̂i The collection of all messages pertaining on G and G ⊕ ΔG at round i

GR reserved subgraph, i.e., The subgraph of G ⊕ ΔG induced by the unreset vertices

GC Changed graph, i.e., The subgraph of G ⊕ ΔG that induced by the reset vertices

X
i
R, Xi

C The collection of vertex states of GR and GC at round i

M
i
R, Mi

C The collection of messages of GR and GC at round i

message of vi · Wi , i.e., xiv · Wi , where · is matrix multipli-
cation and propagates it to each outgoing neighbor w. The
computation terminates at the round K + 1.

Incremental computation. The problem of incremental
graph computation is formalized as follows.

◦ Input: A original graph G, the (old) output A(G) over
G computed by a batch graph algorithm A, and input
updates ΔG to G.
◦ Output: The new outputA(G ⊕ ΔG) = A(G) ⊕ ΔO .

Here the input batch update ΔG consists of a set of unit
updates. To simplify our discussion, we consider the inser-
tion or deletion of a single edge as a unit update in the sequel,
which can simulate certain modifications, e.g., updates on
edge weight. For instance, each change to the weight on
edge e = (u, v) can be considered as deleting e and fol-
lowed by adding another edge e′ = (u, v) with the new
weight. Vertex updates are dual of edge updates and can also
be readily handled by our proposed approaches. In addition,
G ⊕ ΔG denotes applying updates ΔG to G, similarly for
A(G) ⊕ ΔO , i.e., ΔO denotes the changes to the old output
in response ΔG.

Notations of the paper are summarized in Table 2.

3 Incrementalization framework

We next present the incrementalization framework underly-
ing Ingress. It aims to directly deduce an incremental graph
algorithm AΔ from a given batch vertex-centric algorithm
A, without the need of extra user-generated logic or data

structures. In a nutshell, the deduced algorithm catches the
differences between two runs of its batch counterpart with
respect to the messages that should be transmitted. It carries
out the corresponding adjustment of old results with the help
of an effective memoization strategy.
Message-driven differentiation. In a vertex-centric model,
the (final) state of each vertex v is decided by the messages
that v receives in different rounds of the iterative compu-
tation. Due to this property, we can reduce the problem of
finding the differences among two runs of a batch vertex-
centric algorithm to identifying the changes to messages.
Then for incremental computation, after fetching the mes-
sages that differ in one round of the runs over original and
updated graphs, it suffices to replay the computation on the
affected areas that receive such changed messages, for state
adjustment. After that, the changes to the messages are read-
ily obtained for the next round and the algorithm can simply
perform the above operations until all changed messages are
found and processed. This coincides with the idea of change
propagation [1].

To distinguish the differences among messages, we intro-
duce old invalid messages and new missing messages.
(1) Invalid messages. An old message transmitted during the
run over the original graph G is called invalid if either its
value becomes out-dated for the new graph G ⊕ ΔG or the
link for passing the message is disconnected due to input
updates ΔG.
(2) Missing messages. A new message transferred in the run
over the G ⊕ ΔG is called missing if it is either a revised
version of an old message w.r.t. G or is associated with a
newly added edge in ΔG.

123

786 S. Gong et al.

Fig. 2 Cancelation and compensation messages for PageRank and
SSSP

Example 2 Consider running thedelta-basedPageRank algo-
rithm of Example 1(a) on the graph G shown in Fig. 2a.
Assume that a batch update ΔG to G removes the edge
(A,C) and inserts the edge (C, A); and the resulting graph
G⊕ΔG is shown in Fig. 2b. Here invalid and missing mes-
sages can be identified by inspecting the batch run of
PageRank algorithm overG from the perspective ofG⊕ΔG.
In the first round, vertex A receives a message 1−d. It
applies propagation function G and generates two messages,
d(1− d)/2 and d(1− d)/2 for vertices B and C (see Exam-
ple 1a), respectively. Both are invalid w.r.t. G⊕ΔG. Indeed,
in the absence of edge (A,C), vertex A should only send
one missing message d(1−d) to B. Similarly, in the second
round, since A receives d(1 − d) from D, it will send two
invalid messages (1 − d)d2/2 and (1 − d)d2/2 to B and C ,
respectively; and one message to B is missing. In each round
of the prior run over G, the insertion of (C, A) also triggers
an invalid message from C to D and two missing messages
from C to A and D.

As such, the incremental algorithm first discovers all
the invalid and missing messages. It then reperforms the
computation on affected areas ofG⊕ΔG bygenerateing can-
celation messages (resp. compensation messages) to undo
(resp. replay) their effects.

It is a common practice to memoize previous computed
(intermediate) results in incremental processing [1, 18], sim-
ilarly for identifying invalid and missing messages.
Memoization policies. A simple memoization strategy for
detecting invalid and missing messages is to record all the
old messages in Mi

v , for each vertex v and i ≥ 0 in the batch
run over G. Then the changed messages can be found by
direct comparison between the messages created in the new
run and those memoized ones. Guided by the changed mes-
sages, the incremental algorithm revises the states of the data
iteratively as described above, i.e., canceling (resp. recover-
ing) the effects of invalidmessages (resp. missingmessages).
Here the old states of each vertex can be restored from the
stored messages without explicit memoization.

Although this solution is general enough to incrementalize
all vertex-centric algorithms, it usually causes overwhelm-
ingmemoryoverheads [31, 43], especially for algorithms that

take a large number of rounds to converge. In light of this, we
incorporate a flexible memoization scheme in the incremen-
talization framework to optimize memory usage to different
extentswhenever possible. The schemeconsists of fourmem-
oization policies: (1) the memoization-free policy (MF) that
records no runtime old messages, (2) the memoization-path
policy (MP) that only records a small part of oldmessages, (3)
the memoization-vertex policy (MV) that tracks the states of
the vertices among different steps, and (4) the memoization-
edge policy (ME) that keeps all the old messages.
(1) Memoization-free (MF). This policy does not record any
oldmessage at all. Instead, the incremental algorithms should
handle the effects of invalid andmissingmessages directly on
the previous batch run’s converged states, i.e., final results.
This is doable for a class of vertex-centric algorithms per-
forming traceable aggregations, in which the effects of
multiple messages can be “assembled” into that of a sin-
gle message. Moreover, the effects of old invalid messages
can be “eliminated” by propagating their inverse version.

With the MF policy, an incremental algorithm first gener-
ates summarized versions of cancelation and compensation
messages from the previous converged states. They are then
processed with the same functions of the batch algorithm,
to cancel (resp. compensate) the effects of invalid messages
(resp. missing messages).

Example 3 Continuing with Example 2, in order to fix the
PageRank scores, we regard the messages received by ver-
tices in each round as “correct with noises” w.r.t. G ⊕ ΔG.
We eliminate these noises by cancelation and compensation
messages. For example, for each invalid message value m to
B (resp. C), we can send −m, the inverse of m, as a can-
celation message to undo its effect. Similarly, we need to
process all the missing messages for B. A key observation is
that instead of sending the cancelation (resp. compensation)
messages one by one, we can just compute one summarized
message to handle the effects of all invalid and missing mes-
sages for each vertex. This is becauseH and U of PageRank
algorithm (i.e., sum) embrace traceable aggregation. Indeed,
in the batch runwhenever vertex A accumulates amessage of
value mi to its state xv via function U , it generates and sends
two invalid messages of value dmi/2 to B andC via function
G. Observe that x∗

A=sumi {mi }, where x∗
A is the converged

state of the prior run over G. The aggregation of invalid mes-
sages to B and C can be then expressed by dx∗

A/2. Thus to
cancel the effects of these invalidmessages, it suffices to send
a summarized cancelation message −dx∗

A/2 to B (resp. C).
The summarized compensationmessage to B can be deduced
accordingly, whose value can be expressed by dx∗

A; it is used
to enforce the effects of missing messages to B. Edge inser-
tion of (C, A) can be processed along the same lines with
cancelation and compensation messages.

123

Ingress: an automated incremental graph processing system 787

All the cancelation and compensationmessages are shown
in Fig. 2c. The incremental algorithm restarts the computa-
tion of PageRank (Example 1a) with these messages. As will
be clear in Sect. 4.1, it converges to revised PageRank scores
for G ⊕ ΔG.

(2) Memoization-path (MP). This policy only records a small
portion of old messages that are effective. In fact, in some
vertex-centric computation with traceable aggregations, the
final state xv relies only on a subset of messages sent to
vertex v, which can be referred to as effective messages and
form a set of paths. Take SSSP as an example. The value of
the shortest distance w.r.t. v is determined by the smallest
messages received from the neighbors of v, which lie on
the shortest paths from the source vertex. Hence there is no
need to handle the effects of invalid messages that are not
effective. Under this policy, the incremental algorithms store
the paths of effective messages to process invalid messages.
Themissingmessages canbehandled as that inmemoization-
free policy.

Example 4 Recall graph G and input updates ΔG from
Example 2 and assume that each edge in G has unit length.
Consider running SSSP algorithm of Example 1(b) on G.
Observe that the final shortest distance value x∗

C (resp. x∗
D)

for vertexC (resp. D) is determinedby themessage 1 (resp. 2)
that sent from A toC and (resp.C to D). Thus these twomes-
sages are effective. Similarly, there is an effective message
1 from A to B. The incremental algorithm for SSSP stores
above three effective messages and works in two phases as
follows.
(1) It first cancels the effects of the stored effecitve mes-
sages that become invalid for G ⊕ΔG. Since edge (A,C) is
removed, the effective message 1 cannot be passed from A
to C and it becomes invalid. Then the incremental algorithm
guides A to send a cancelation message ⊥ to C , which indi-
cates the invalidation of the effective message. It resets xC
to the initial state ∞. The cancelation message ⊥ is further
propagated to D, hence xD is also reset to ∞. At this time,
all the effects of invalid effective messages are canceled.
(2) The second phase is to restore the effects ofmissingmes-
sages. For each unrest vertex v that either is the source node
of an inserted edge or is connected to a reset vertex, the algo-
rithm generates a set of compensation messages via function
G, in which the converged states x∗

v suffice for the messages
propagation purpose (see the definition of G in Example 1b).
These messages are sent to reset vertices and the destina-
tion nodes of inserted edges, i.e., a compensation message of
value 2 is sent from B toC . That is, the message propagation
of the batch algorithm for SSSP resumes with the compensa-
tion messages. The computation terminates when the correct
revised distance values w.r.t. G ⊕ ΔG are obtained.

(3) Memoization-vertex (MV). The memoization-vertex pol-
icy keeps track of the states w.r.t. the vertices across different

rounds of the batch computation, in a stepwise manner. This
is based on the observation that some vertex-centric algo-
rithms directly transfer vertex states as messages. Hence it
suffices to memoize the vertex states (aggregated results),
from which the invalid and missing messages can be easily
discovered in incremental processing. Despite the fact that
multiple values will be kept for each vertex, it reduces the
space cost from the scale of edges to vertices.

Example 5 With the memoization-vertex policy, an incre-
mental algorithm for GCN-forward can be deduced from
the batch algorithm of Example 1(c), by memoizing the
aggregated result mi

v for each vertex v (v ∈ V) at round
i (i ∈ [1, K + 1]). In particular, m1

v is defined as the input
feature vector w.r.t. v. Given the graph G and updates ΔG of
Example 2, the incremental algorithm asks vertex A to send
a cancelation message m1

A,C= − m1
A·W1 to C in the ini-

tial round, to undo the effect of an invalid message m1
A·W1

transmitted during prior run. This is feasible since GCN-
forward takes sum as H. Upon receiving this, vertex C
adjusts the cancelation message to−relu(m2

C)·W2 and prop-
agates it to D; it also sends a new compensation message
relu(sum(m2

C ,m1
A))·W2 to D. These two represent the dif-

ference between the messages transmitted during the two
runs. The algorithm also updatesm2

C to sum(m2
C ,m1

A). Anal-
ogously, a compensation message m1

C · W1 is sent from C to
A in the first round to enforce the effect of amissingmessage.

Summing up, during round i (0<i≤K) of the incre-
mental algorithm, for each vertex v that receives messages,
a cancelation message −relu(mi

v)·Wi and a compensation
message relu(sum(mi

v, M
i
v))·Wi are created and propagated

to the neighbors of v. Here Mi
v denotes the set of messages

received by v in round i . The recorded mi
v is also updated to

sum(mi
v, M

i−1
v). Finally, computing relu(mK+1

v) can obtain
the revised results for G ⊕ ΔG.

As observed in [17, 58], such incremental computation of
GCN-forward is effective in anomaly detection in dynamic
e-commerce graphs and link prediction in evolving social
networks, where updated edges refer to new clicks on items
and user relationships.

(4) Memoization-edge (ME). When a batch vertex-centric
algorithm cannot be incrementalized with any of the above
three policies, the incrementalization should proceed with
memoization-edge policy. Here all the old messages of the
prior run arememoized for identifying and processing invalid
andmissingmessages. Therefore, the incremental algorithms
just simply replay the computation on affected areas that
receive evolved messages. With ME policy, we can handle
any algorithm in the vertex-centric model of Sect. 2.
Space complexity. It is easy to see that besides the previous
final results, the space complexity of the auxiliary informa-
tion in the incremental algorithms deduced viaMF (resp.MP,
MV, ME) policy is O(1) (resp. O(|V |), O(r |V |), O(r |E |)).

123

788 S. Gong et al.

Here r is a variable representing the number of rounds in the
batch runs.
Workflow. Theworkflow of incrementalization includes two
parts, policy selection and algorithm builder.
(a) Policy selection. Given a batch vertex-centric algorithm
A, the framework first chooses a memoization policy for
incrementalizing A. As will be seen in Sect. 4, there are
sufficient conditions for the applicability of different mem-
oization policies so that the decision can be made according
the properties of A.
(b) Algorithm builder. The second part is to deduce the
incremental algorithm with the selected memoization pol-
icy. Based on the sufficient conditions, such an algorithm
AΔ can be easily constructed from A (see Sect. 4).

4 Flexible memoization

We next show how to deduce incremental algorithms AΔ

from the given batch ones A with different memoization
policies. To this end, we introduce sufficient conditions
for adopting the memoization-free (Sect. 4.1), memoization-
path (Sect. 4.2) and memoization-vertex (Sect. 4.3) policies
in incrementalizing A, respectively. We formally establish
the correctness of the proposed sufficient conditions. We
leave out memoization-edge since the incrementalization
with this policy is simple and its process has been outlined
in Sect. 3.

4.1 Incrementalization via memoization-free

As discussed in Sect. 3, with the memoization-free (MF) pol-
icy, the deduced incremental algorithms should initiate two
sets of messages, i.e., cancelation and compensation mes-
sages directly from the converged states of batch runs, which
are needed to handle invalid and missing messages, respec-
tively. Intuitively, this is applicable for incrementalizing a
class of batch algorithmsA, in which (1) the effects of mes-
sages can be canceled via their “inverse” form; and (2) the
effects of messages can be clearly traced. We next formalize
these as sufficient conditions for enforcing MF policy.
Conditions. The sufficient condition for the MF policy con-
sists of three sub-conditions.
(1) The first condition says that the update function U has an
inverse function U− satisfying the following.

(C1) U(M\M ′) = U(M ∪{U− ◦U(M ′)}) (∀M ′ ⊆ M)

That is, in order to cancel the effects of a set M ′ of invalid
messages, it suffices to propagate and enforce their inverse
U− ◦U(M ′). Here ◦ is a function composition operator such
thatU−◦U denotes applying functionU followed by function
U−.

(2) The other two conditions ensure that the effects of mes-
sages can be clearly traced across multiple iterations. That
is, the effect of an invalid message mi

u,v to v sent in round

i+1 can be traced from the vertex state x j
v for any later round

j > i . Combining this invariant with (C1), we can cancel the
effects of invalid messages and compensate the missing mes-
sages without memoizing intermediate states. It is obvious
that the aggregation function H and the update function U
should be identical (i.e., H = U); otherwise the traceability
no longer exists due to the update function. An algorithm A
with traceability should have the following properties.

(C2) U({U(M)} ∪ M ′) = U(M ∪ M ′)
(C3) U ◦ G ◦ U(M) = U ◦ G(M)

Intuitively, condition (C2) enables partial aggregation for
function U , so that we can directly measure the effects of
partially aggregated messages (or even a single message). If
condition (C3) holds, the embedded aggregations within the
iterations can be “picked out” without affecting the result,
e.g., U◦G◦U◦G◦U(M) = U◦G◦G(M). The condition (C3)
also states that functionG generatesmessages solely based on
the input aggregated results and edge properties,without con-
sidering the vertex states. This is because it does not require
applying function U as the prerequisite. Thus, here we use
G(M) in (C3) instead ofG(xv,mv, PE (v,w)). By conditions
(C2) and (C3), the state of each vertex is the aggregation of
all messages accumulated so far, i.e., x tv = U(

⋃t
i=0{mi

v}).
With this traceability, we do not store any intermediate vertex
states.

We say that a vertex-centric batch algorithm A is MF-
applicable if it satisfies the conditions (C1)(C2)(C3).

Example 6 Since sum(M\M ′) = sum(M, {−sum(M ′)}),
where M (resp. M ′) consists of real numbers, we know
that the PageRank algorithm of Example 1(a) satisfies (C1)
and U− computes the negative value of the input. The
other two conditions also hold as function sum is asso-
ciative and sum(d × M1/Nv, d × M2/Nv) = sum(d ×
sum(M1, M2)/Nv), i.e., U ◦ G ◦ U(M) = U ◦ G(M).

We next show how to deduce the necessary messages for
an MP-applicable algorithm A.
Deducing messages. Suppose that G is updated with input
changes ΔG. For each vertex v, we deduce a set M−

v of can-
celation messages and a set M+

v of compensation messages
as follows.
(1) Cancelation messages. Denote by w1, . . . , wk the neigh-
bors of v in G. Given graph updates ΔG, the old message
mi

v,w j
sent from v to w j could become invalid. This hap-

pens when G(xiv,m
i
v, PE (v,w j)) �= G(x ′i

v ,m′i
v , P ′

E (v,w j)),
where x ′i

v ,m
′i
v and P ′

E (w,w j) are the vertex state, aggregated
result and edge property w.r.t. the new run over G ⊕ ΔG,

123

Ingress: an automated incremental graph processing system 789

respectively. In this case, we call (v,w j) is an evolved edge
for transmitting messages. To eliminate the effects of invalid
messages, we create a set M−

v of cancelation messages as

M−
v = {F(m∗

v, PE (v,w j)) | evolved (v,w j) in G}. (2)

Here m∗
v is the aggregation of initial and all received mes-

sages in the bath run over G and F is defined as the
composition U− ◦ U ◦ G. In fact, all the messages propa-
gated from v to w j are Mv,w j =

⋃∞
i=0 G(xiv,m

i
v, PE (v,w j))

= ⋃∞
i=0 G(∗,mi

v, PE (v,w j)), as the message generation
does not depend on the vertex state xiv . Let all the mes-
sages received by w j across iterations be

⋃∞
i=0 M

i
w j

=
Mv,w j ∪ M ′, where M ′ represents the messages from
w j ’s other incoming neighbors. Observe that m∗

w j
=

U(Mv,w j ∪ M ′). Then removing the effects of messages
Mv,w j is equivalent to updating x∗

w j
to U(M ′). By condi-

tion (C1), we have that U(
⋃∞

i=0 M
i
w j

∪{U− ◦U(Mv,w j)}) =
U(M ′). Thus it suffices to propagate U− ◦ U(Mv,w j)

from v to w j . According to condition (C2) we have
U(Mv,w j) = U(

⋃∞
i=0 G(∗,mi

v, PE (v,w j))). Observe that
m∗

v = U(
⋃∞

i=0 m
i
v), then by condition (C3) we have

U(Mv,w j) = U ◦ G(∗,m∗
v, PE (v,w j)). It follows that the

cancelation message sent tow j can be expressed as U− ◦U ◦
G(∗,m∗

v, PE (v,w j)). However, we do not recordm∗
v , we can

deduce m∗
v by m

∗
v = U−(x∗

v , x0v) because x∗
v = U(x0v ∪m∗

v).
(2) Compensation messages. The set M+

v of compensation
messages can be computed as the dual of cancelation mes-
sages M−

v . They will be utilized to enforce the effects of
missing messages passed via evolved edges. More specifi-
cally, we derive the compensation messages M+

v by using
the new edge properties w.r.t. G ⊕ ΔG as

M+
v =

{

U◦G(∗,m∗
v, P

′
E (v,w j))

∣
∣
∣
∣
evolved (v,w j)

inG ⊕ ΔG

}

. (3)

As discussed above, this is needed if there exist dif-
ferences between the messages sent from v during the
runs over G and G ⊕ ΔG. That is, G(∗,m∗

v, PE (v,w j))

�=G(∗,m∗
v, P

′
E (v,w j)) for neighbor w j of v.

We are now ready to show how to incrementalize a vertex-
centric algorithm A that is MF-applicable.
Incremental algorithm. Given a graph G, input updates
ΔG to G and the previous result {x∗

v }v∈V derived by an
MF-applicable batch algorithm A over G, the deduced
incremental Algorithm 1 computes the updated results for
G ⊕ ΔG. It first finds those evolved edges (v,w j) induced
by input updates, i.e., ΔG triggers invalid or missing mes-
sages (line 1). This is achieved by comparing the messages
that directly created with the previous converged states as
described above. For each evolved edge, it then initiates
appropriate cancelation and compensation messages based

Algorithm 1: Incrementalization via MF policy

Input: Graph G, graph updates ΔG, previous computation
result {x∗

v }v∈V of A w.r.t. G.
Output: Updated result {x ′

v}v∈V w.r.t. G ⊕ ΔG.
1 find all evolved edges induced by ΔG;
2 foreach evolved edge (v,w j) do
3 m∗

v = U−(x∗
v , x0v);

4 M−
v ←M−

v ∪ {U−◦U◦G(∗,m∗
v, PE (v,w j))};

5 M+
v ←M+

v ∪ {U◦G(∗,m∗
v, P

′
E (v,w j))};

6 restore computation with messages M−
v , M+

v (∀v ∈ V).

on Eqs (2) and (3) (lines 2–5). Starting with the transmis-
sion of thesemessages to designated neighbors, it restores the
iterative computation of A over G ⊕ ΔG to get the updated
results, i.e., applying the same functionsH, U and G as batch
counterpart A (line 6).

Example 7 Continuing with Example 3, we use Algorithm 1
to generate the cancelation and compensation messages as
shown in Fig. 2c. Observe that both A and C pertain to
evolved edges. We first apply U− ◦ U ◦ G over G and gener-
ate two cancelation messages in M−

A , one for B and one for
C . Based on the definitions of U and G for PageRank (see
Example 1), both messages are −dx∗

A/2. For M+
A , we apply

U ◦ G over G ⊕ ΔG to generate a compensation message to
B in M+

A with value dx∗
A. The messages M−

C and M+
C can be

computed similarly (see Fig. 2c).

Remark (1) To incrementalize MF-applicable algorithms
like PageRank, prior systems such as GraphBolt [31] and
DZiG [30] proposed optimizations to reduce space cost for
intermediate results to some extent. With the MF policy,
Ingress is the first system to incrementalize these algorithms
without recording any intermediate results.
(2) Intuitively, MF-applicable algorithms like PageRank
can derive cancelation and compensation messages without
recording any intermediate vertex states due to two key fac-
tors (a) these algorithms employ accumulative aggregation
algorithms, and (b) there exists an inverse function capable of
eliminating the effects of previously accumulated messages
from the vertex states. Apart from PageRank, many other
algorithms are also MF-applicable, such as SimRank [20],
Penalized Hitting Probability (PHP) [16], Katz Metric [22],
Believe Propagation [39] and Adsorption [2], i.e., they can
be incrementalized with Algorithm 1.

Algorithm correctness. The correctness of incrementaliza-
tion via MF policy is warranted by Theorem 1.

Theorem 1 (Correctness of MF policy) The computation of
MF-applicable A restored with messages (M−

v , M+
v) con-

verges to the correct result A(G ⊕ ΔG).

We first introduce the following notations to facilitate the
proof of Theorem 1. Denote by (i) Xi = {xiv}v∈V the collec-
tion of vertex states in the i-the round of computation; and

123

790 S. Gong et al.

denote byMi = {Mi
v}v∈V the collection of messages used in

the i-the round of computation. Specifically, X0 andM0 are
the initial vertex states andmessages. Observe thatH = U as
required for an MF-applicable algorithm A. Thus the aggre-
gation function H and the update function U are combined
into one function U . With these notations, we can rewrite the
vertex-centric computation of anMF-applicable algorithmA
as follows:

X
i = U(Xi−1 ∪ M

i−1), M
i = G(Mi−1). (4)

Herewe abuse the notationU to allow it to take a collection of
vertex states and messages as input, which should be consid-
ered as a group-by aggregation operation over a collection of
vertex states and messages. That is, U(Xi−1,Mi−1) should
be interpreted as applying U over xi−1

v and Mi−1
v for each

vertex v in V . Similarly, G in Eq. (4) should also be treated as
a group-by operation. Intuitively, Eq (4) describes a global
view of the computation for an MP-applicable algorithm A.
Starting from (X0,M0),A iteratively updates Xi and gener-
ates newmessagesMi to get the final result.We also write X̂i

and M̂i for the vertex states and messages in the incremental
computation over the updated graph G ⊕ΔG, to distinguish
them from those in the computation over the original graph
G.

We prove Theorem 1 in three steps as shown below.
(1) We first characterize Xk in terms of the initial states X0

andmessagesMi (i ≥ 0) propagated during the computation
of algorithm A (Lemma 1).
(2) We next analyze the initial vertex states X̂0 and the initial
messages M̂0 generated by Algorithm 1 for the incremental
computation of A over G ⊕ ΔG (Lemma 2).
(3) With Lemma 1 and Lemma 2, we show that the compu-
tation over G⊕ΔG starting from (X̂0, M̂0) converges to the
same result as the computation starting from (X0,M0) over
G ⊕ ΔG. Thus Theorem 1 follows.

Lemma 1 Suppose that anMF-applicable algorithmA starts
from X

0 and M
0, then the computation result on graph G

after k rounds can be represented as Xk = U
(
X
0 ∪ ⋃k−1

i=0

Gi (M0)
)
, where G� denotes � times of applications of the

function G and G0(M0) = M
0.

Lemma 2 Suppose that the computation of anMF-applicable
A over G converges after k iterations. The initial states X̂0

and messages M̂0 in the incremental computation of Algo-
rithm 1 can be expressed as follows.

X̂
0 = U

(

X
0 ∪

k−1⋃

i=0

Gi (M0)

)

, (5)

M̂
0 = U

(

Ĝ
(
k−1⋃

i=0

Gi (M0)

)

� G
(
k−1⋃

i=0

Gi (M0)

))

. (6)

Here we use (i) Ĝ to represent the propagation function over
the updated graph G ⊕ ΔG, to distinguish from the function
G over G, and (ii) � to denote the applications of union ∪,
inverse function U− and aggregation function U for simplic-
ity, i.e., A � B = A ∪ U− ◦ U(B).

We are ready to prove Theorem 1.

Proof of Theorem 1 We show that on G ⊕ ΔG the computa-
tion starting from (X0,M0) converges to the same result as
the incremental computation starting from (X̂0, M̂0). Here
X̂
0 and M̂

0 are the initial states and messages as stated in
Lemma 2. Assume w.l.o.g. the computations of A on G and
G ⊕ΔG both converge after k iterations. It suffices to estab-
lish the following.

U
(

X̂
0 ∪

k−1⋃

i=0

Ĝi (M̂0)

)

= U
(

X
0 ∪

k−1⋃

i=0

Ĝi (M0)

)

(7)

By Lemma 1, starting from (X̂0, M̂0), the computation
result X̂k over G ⊕ ΔG after k iterations can be computed
as follows.

U
(

X̂
0 ∪

k−1⋃

i=0

Ĝi (M̂0)

)

(a)

= U
⎛

⎝X̂
0 ∪

k⋃

i=1

Ĝi

⎛

⎝
k−1⋃

j=0

G j (M0)

⎞

⎠

�
k−1⋃

i=0

Ĝi

⎛

⎝
k⋃

j=1

G j (M0)

⎞

⎠

⎞

⎠ (b)

= U
⎛

⎝X̂
0 ∪ Ĝk(M0) ∪

k−1⋃

i=1

Ĝi (M0) ∪
k−1⋃

j=0

Ĝk(G j (M0))

�Gk(M0) ∪
k−1⋃

j=1

G j (M0) ∪
k−1⋃

i=0

Ĝi (Gk(M0))

⎞

⎠ (c)

= U
⎛

⎝X̂
0 ∪

k−1⋃

i=1

Ĝi (M0) �
k−1⋃

j=1

G j (M0)

⎞

⎠ (d)

= U
(

X
0 ∪

k−1⋃

i=0

Ĝi (M0)

)

(e)

Line (a) is due to Lemma 1, while line (b) is due to Lemma
2 and condition (C2). After unfolding the second union item
and the third union item in line (b) we get line (c). This is
because most of the unfolded items are the same and can
be canceled out. Since A on G and G ⊕ ΔG both converge
after k iterations (i.e., Xk+1 = X

k and X̂
k+1 = X̂

k), we
have that Gk(∗) = 0 and Ĝk(∗) = 0 where 0 is the iden-
tity element of U , i.e., U(X ∪ 0) = U(X) for any X. Thus

123

Ingress: an automated incremental graph processing system 791

Algorithm 2: Incrementalization via MP policy

Input: Graph G, graph updates ΔG, result {x∗
v }v∈V of A on G,

and effective messages ME .
Output: Updated {x ′

v}v∈V w.r.t. G ⊕ ΔG.
1 foreach mc ∈ ME sent via a deleted (v,w) ∈ ΔG do
2 initiate a cancelation message ⊥ to be sent from vertex v to

vertex w;

3 propagate ⊥ along the paths formed by ME and reset xw to
initial state for the receivers w of ⊥;

4 foreach (v,w j) that is evolved or is associated with a reset
vertex do

5 M+
v ←M+

v ∪ {U◦G(∗, x∗
v , P ′

E (v,w j))};
6 restore the computation with messages M+

v (∀v ∈ V).

by ignoring the identity elements Gk(M0) = Ĝk(M0) =⋃k−1
i=0 Ĝk(Gi (M0)) = ⋃k

i=1 Ĝi (Gk(M0)) = 0, we obtain
line (d) from line (c). Line (e) then follows from Eq. (5).

��

4.2 Incrementalization via memoization-path

When the inverse functionU− required by the condition (C1)
of MF-applicability is hard to find, one might be tempted to
store the whole set of intermediate results and messages for
removing invalid messages. However, not all is lost. Despite
condition (C1), there are vertex-centric algorithms in which
only part of the messages decide the final results. To this
end, it suffices to consider the cancelation of those invalid
messages that have impacts on the converged states. Putting
this and the properties of traceability together, it is feasi-
ble to incrementalize another class of algorithms A via the
memoization-path (MP) policy, where a small portion of the
old effective messages are memoized. Since we still need
traceability, the aggregation functionH and update function
U of batch algorithm A should be identical.
Conditions. The sufficient condition for applyingMP policy
in incrementalizaion also consists of two parts.
(1) The aggregation, i.e., update function U in batch algo-
rithmA selects as output a single element from the input set.
That is,

(C4) U(M) = mc ∈ M .

The condition (C4) requires the existence of a specific input
message mc, referred to as an effective message.
(2) The vertex-centric algorithmA is endowedwith the trace-
ability property, i.e., it satisfies conditions (C2) and (C3) of
Sect. 4.1.

Intuitively, condition (C4) requires the output of U only
depends on a single inputmessage. Combiningwith (C2) and
(C3), it implies a tree structure for the effective messages
transferred between vertices. The traceroutes (or paths) of
the effective messages can be clearly captured in the batch

run. We say that a batch vertex-centric algorithm A is MP-
applicable if A satisfies conditions (C2)(C3)(C4).

Example 8 The SSSP algorithm of Example 1(b) is MP-
applicable. Obviously, the function min (i.e., function U)
selects a single minimum value from the input sets, hence
(C4) is satisfied. It also satisfies (C2)–(C3) as the computa-
tion of minimum distance values can be postponed until all
messages are transmitted and accumulated.

Deducing messages. Similar to the MF policy, the cance-
lation and compensation messages are deduced under the
MP policy, in response to the effects of invalid and miss-
ing messages. The difference is that we explicitly store all
the effective messages after the batch run over G with MP
policy, which form a set of paths.
(1)Cancelationmessages. Each cancelationmessage, denoted
as ⊥, is initiated in regard to an effective message mc whose
transmitting route is broken due to the input updates ΔG.
Intuitively, if an effective mc was sent from vertex v to w

during the batch run and edge (v,w) is deleted in ΔG, then
it becomes invalid.
(2) Compensation messages. The compensation messages
are derived along the same lines as that in the MF policy
(Sect. 4.1), which will be propagated to enforce the effects
of missing messages. The only difference is the senders of
these messages (see below).
Incremental algorithm. The procedure for incrementalizing
an MP-applicable algorithm A is shown as Algorithm 2. It
consists of two phases. In the first phase (lines 1–3), it prop-
agates cancelation messages ⊥ along the paths that formed
by the stored effective messages of the batch run. This pro-
cess starts with deleted edges that have been used to transmit
effective messages (lines 1–2), and cancels the effects of
invalid effectivemessages by resetting states to initial version
(line 3). After that, the second phase initiates compensa-
tion messages M+

v using the same strategy of Algorithm 1
(lines 4-5). Note that compensation messages are also gen-
erated at reset vertices v or those linked to reset vertices w j ,
i.e., v or w j has been reset. They will be sent to w j to adjust
the states from the initial version and (v,w j) can be regarded
as an evolved edge. Finally, the iterative computation of A
continues with M+

v (line 6).
One can verify that the logic of the incremental SSSP

algorithm described in Example 4 exactly coincides with
that of Algorithm 2. There also exist other MP-applicable
algorithms, e.g., Connected Components [3] and Lowest
Common Ancestor [42].

Remark Note that in Algorithm 2, before restoring the iter-
ative computation of A (line 6), Ingress first needs to roll
back the vertex states to a safe approximation w.r.t. G⊕ΔG.
As we have seen, Ingress takes a dependency guided reset-

123

792 S. Gong et al.

ting approach for rollback1, i.e., it propagates “⊥” along the
paths formed effective messages and resets the vertex states
to their initial versions during the process.Other systems, like
KickStarter, use a different rollback mechanism. Instead of
resetting the states of affected vertices to the initial versions
directly, they compute safe approximations based on trim-
ming [50]. This is achieved by utilizing both (i) additional
level information in value dependency and (ii) the neighbor
states of affected vertices. We remark the following.

(1)Trimming-based rollback ismore effective in reducing the
cost of iterative computation after rollback. However, it also
brings additional overheads since it involves more sophisti-
cated computation logic and requires to maintain extra data
structures such as the dependency level information. Thus,
trimming-based rollback is not suitable for the case where
a large portion of vertices are affected by the graph updates
as the trimming cost may dominate the overall incremental
processing cost.
(2) Resetting-based rollback is more efficient in identifying
the vertices affected by graph updates. However, it may reset
the states of more vertices to their initial versions compared
to the trimming-based approach [50]. Nevertheless, we find
that achieving a similar effect to trimming requires only a
very small number of rounds of iterative computation after
resetting, typically 1–2 rounds (see Sect. 7.7).When the num-
ber of rounds of iterative computation after rollback is large,
adding a small number of rounds has only a minor impact.
Therefore, resetting-based rollback is more suitable for cases
where the number of affected vertices and that of rounds of
iterative computation are both very large.
Algorithm correctness. The correctness of Algorithm 2 can
be verified by the following theorem.

Theorem 2 (Correctness of MP policy) After propagating
cancelation messages ⊥, the iterative computation of an
MP-applicable algorithmA restoredwithmessages M+

v con-
verges to the correct result A(G ⊕ ΔG).

Since an MP-applicable algorithm A satisfies conditions
(C2) and (C3), the computation of A can also be character-
ized by Eq.4. We thus borrow the notations Xi , Mi , X̂i , M̂i

from the proof of Theorem 1.
In addition, we define a reserved subgraph GR =

(VR, ER, PGR). Here VR denotes the set of unreset ver-
tices, which are not reset with the cancelation messages
⊥ in Algorithm 2 and hence are not the receivers of ⊥;
ER = {e | e ∈ (VR × VR) ∩ E ∩ E ′}, where E ′ denotes the
edge set of the updatedgraphG ′ = G⊕ΔG = (V ′, E ′, PG ′);
and PGR is defined accordingly with VR and ER. We also
write Xi

R,Mi
R and GR to represent the collections of vertex

states and messages in round i when running algorithm A
1 This is essentially the VAD-Reset approach in [50].

over the reserved graph GR, and the propagation function
over GR, respectively. Intuitively, GR is a subgraph of the
intersection of G and G ⊕ ΔG. It includes all the vertices
that have not been reset, which means the result of the batch
run over G is reserved in GR.

We define changed graph GC = (VC, EC, PGC) in a
similar fashion, where VC = V ′\VR, EC = {e | e ∈
(VC ×VC)∩ E ′} and PGC is specified accordingly. We letXi

C
andMi

C denote the collections of vertex states and messages
in round i when invokingA on GC , respectively. In fact, the
changed subgraph contains all reset vertices whose states are
not yet determined in Algorithm 2 after transmitting cance-
lation messages ⊥.

The proof of theorem 2 also consists of three steps.
(1) We first show that after the propagation of cancelation
messages⊥ inAlgorithm2, the converged states of those ver-
tices that have not been reset coincide with the ones obtained
by directly running batch algorithmA over the reserved sub-
graph GR (Lemma 3).
(2) Next, we investigate the components of the initial vertex
states X̂0 and (compensation) messages M̂0 created in Algo-
rithm 2, and characterize them in terms of the initial states
X
0
R and X

0
C , and messages M0

R and M
0
C w.r.t. the reserved

subgraph GR and changed subgraph GC (Lemma 4).
(3)With Lemma 3 and 4, we then prove that the computation
of A restored with X̂

0 and M̂
0 converges to the same result

as running A over G ⊕ ΔG (Theorem 2).

Lemma 3 Suppose that A converges after k rounds over G.
Then after propagating cancelation messages ⊥ along the
paths formed by effective messages ME, the states of the
unreset vertices, denoted by Xk

N , can be expressed as

X
k
N = U

(
X
0
R ∪

k−1⋃

�=0

G�
R(M0

R)
)
. (8)

Lemma 4 After propagating cancelation messages ⊥, the
initial vertex states X̂0 and compensation messages M̂0 in
the incremental computation of Algorithm 2 can be expressed
as follows.

X̂
0 = U

(

X
0
R ∪

k⋃

�=0

M
�
R

)

∪ X
0
C, (9)

M̂
0 = M

0
C ∪

k⋃

�=0

(
U ◦ Ĝ(M�

R) \ U ◦ GR(M�
R)

)
. (10)

Here Ĝ represents the propagation function w.r.t. G ⊕ ΔG
and the batch run of A terminates in k rounds.

Proof of Theorem 2 We now verify that the computation of
A restored with (X̂0, M̂0) converges to the same result as

123

Ingress: an automated incremental graph processing system 793

runningA overG⊕ΔG with initial (X0,M0). Since theMP-
applicable algorithm A satisfies conditions (C2) and (C3),
Lemma 1 still holds for the MP-applicable A. Therefore, it
suffices to show

U
(

X̂
0 ∪

k−1⋃

�=0

Ĝ�(M̂0)

)

= U
(
X
0 ∪

k−1⋃

�=0

Ĝ�(M0)
)
. (11)

Similar to the proof of Theorem 1, here we assumew.l.o.g.
the computations of A on G and G ⊕ ΔG both converge
after k rounds. With the expressions of X̂0 and M̂

0 given in
Lemma 4, the computation result X̂k of A on G ⊕ ΔG after
k rounds can be expressed as

U
(

X̂
0 ∪

k−1⋃

�=0

Ĝ�(M̂0)

)

(a)

= U
(
k−1⋃

�=0

Ĝ�

(

M
0
C ∪

k⋃

�=0

(
U ◦ Ĝ(M�

R) \ U ◦ GR(M�
R)

)
)

∪U
(

X
0
R ∪

k⋃

�=0

M
�
R

)

∪ X
0
C

)

(b)

= U
(

k⋃

�=1

Ĝk−�

(
k⋃

�′=�

(
U ◦ Ĝ(M�′

R) \ U ◦ GR(M�′
R)

)
)

∪X0 ∪
k−1⋃

�=0

Ĝ�(M0)

)

(c)

= U
(

X
0 ∪

k−1⋃

�=0

Ĝ�(M0)

)

. (d)

Line (b) is due to Lemma 4. After unfolding the first and
second terms of line (b), most of the unfolded items are iden-
tical and hence can be removed with the help of the set minus
operator ‘\’. Then line (c) follows. Note that the first item of
line (c) is an identity element 0, we finally have line (d) and
the correctness of Eq.11. ��

4.3 Incrementalization via memoization-vertex

We continue with the memoization-vertex (MV) policy.
Unlike the MF and MP policies that record nothing or a
small portion of effective messages, theMV policy records a
state (aggregated result) for each vertex in every iteration. It
deduces cancelation and compensation messages for incre-
mental computation from the recorded states.
Conditions. The sufficient condition for applyingMV policy
in incrementalizaion is composed of two parts.
(1) The aggregation functionH satisfies conditions (C1) and
(C2), i.e.,H has an inverse functionH− and supports partial
aggregation.

Algorithm 3: Incrementalization via MV policy

Input: Graph G, graph updates ΔG, old results {xv}v∈V of A over
G and recorded states {mi

v}v∈V for rounds i = 1 . . . , K .
Output: Updated results {xv}v∈V w.r.t. G⊕ΔG.
1 for i = 1 . . . K do
2 foreach affected vertex v do
3 mi

v
′ ← Ua(mi

v, M
i−1
v);

4 xiv ← U(xi−1
v ,mi

v); xiv
′ ← U(xi−1

v
′
,mi

v
′
);

5 foreach neighbor u of v do
6 if G(xiv, PE (v, u)) �= G(xiv

′
, P ′

E (v, u)) then
7 computes (M−

v , M+
v) via Eq. (12)-(13);

8 propagate (M−
v , M+

v) and update Mi
u ;

9 mi
v ← mi

v
′
; // update the recorded states.

(2) Themessages propagated in the i-th round are determined
by vertex state alone. More specifically, we can rewrite the
propagation function G can as

(C5) mi
v,w=G(xiv, ∗, PE (v,w)).

where ∗ be any aggregated result. We say an algorithm A is
MV-applicable if A satisfies conditions (C1)(C2)(C5).

Example 9 GCN-forward algorithm of Example 1(c) uses
sum as its H. Thus (C1) and (C2) hold. Condition (C5)
also holds since the output of its propagation function can
be written as xiv · Wi .

Observe that MV policy shares two conditions on H with
MF policy. The main difference is that in an MF-applicable
algorithm, (i) the update function U and aggregation func-
tion H share the same logic; and (ii) the output message
is generated based on the aggregated result only, i.e.,
mi

v,w=G(∗,mi
v, PE (v,w)). Instead, U and H of an MV-

applicable algorithm can be very different, e.g., sum and relu
of GCN-forward algorithm. The message is created accord-
ing to the latest vertex state, i.e., condition (C5). As a result,
an MV-applicable algorithm is required to track the con-
text when applying U . Fortunately, with (C1) and (C2), the
recorded states suffice to produce cancelation and compen-
sation messages in incremental computation. We next show
how to incrementalize an MV-applicable algorithm A by
deducing these messages.
Deducing messages. For a given MV-applicable algorithm
A, in the i-th round, each vertex v records a state mi

v

that represents the aggregated result after applying H. Then
cancelation and compensation messages are deduced in an
iteration-wise manner.
Cancelation message. In the i-th round, suppose that a
message from v to w j is invalid. This can be decided
as in MP policy, by verifying if G(xiv,m

i
v, PE (v,w j)) =

G(x ′i
v ,m′i

v , P ′
E (v,w j)), where xiv and x

′i
v are the vertex states

123

794 S. Gong et al.

of v w.r.t. G and G⊕ΔG, respectively. If such verification
fails, we define the cancelation messages M−

v as

M−
v = {F(xiv, ∗, PE (v,w j)) | evolved (v,w j) inG}, (12)

where F = H− ◦H ◦ G. As inMP policy, the correctness of
M−

v is warranted by conditions (C1) and (C2).
Compensation message. According to condition (C5), the
compensation messages transmitted along evolved edges
(v,w j) can be generated directly from x ′i

v , i.e., the updated
vertex state. That is,

M+
v =

{

G(x ′i
v , ∗, P ′

E (v,w j))

∣
∣
∣
∣
evolved (v,w j)

in G ⊕ ΔG

}

. (13)

Incremental algorithm. Algorithm 3 outlines an incremen-
tal algorithm forMV-applicable programs. Starting from the
initial round, it replays the computation on affected vertices
with the recorded states and updates the results accordingly.
Note that a vertex v is called affected if (i) v has received
cancelation or compensation massages, or (ii) v is involved
in the input updates ΔG. In each round i , the incremen-
tal algorithm first computes the new aggregated result m′i

v

w.r.t. each affected vertex v, by aggregating the recorded state
(aggregated result) mi

v with messages Mi−1
v received from

v’s neighbors. (line 3). Here Mi−1
v , possibly empty, consists

of cancelation and/or compensation messages. It then recov-
ers the old vertex state xiv and derives the new state x ′i

v directly
using update function U (line 4). With xiv and x ′i

v in place, it
generates and sends cancelation and compensation messages
when needed, i.e., applying Eqs. (12) and (13) (lines 6–8).
It also replaces the recorded state mi

v by m′i
v for future use

(line 9). The process terminates when all the previous rounds
have been processed.

Intuitively, Algorithm 3 replays the computation to update
affected vertex states, as in incremental GCN-forward of
Example 5. In addition, many other GNN algorithms, e.g.,
CommNet [45] are also MV-applicable.
Algorithm correctness. By induction on the rounds of the
iterative computation, we verify the correctness of the incre-
mental algorithm deduced via MV policy.

Theorem 3 (Correctness ofMV policy)Algorithm3correctly
outputs the results {xv}v∈V w.r.t.G⊕ΔG, forMV-applicable
vertex-centric algorithms.

Proof It is obvious that all the initial vertex states are correct
in incremental computation in the initial round. Suppose that
Algorithm 3 correctly updates all vertex states in (k−1)-th
round of the iterative computation. That is, for each vertex,
the vertex state x ′k−1

v and the stored state m′k−1
v are correct

as if they are obtained by running the batch MV-applicable
algorithmA over the G ⊕ΔG. We next analyze the states in
round k.

Fig. 3 The distribution of deduced message values when performing
PageRank

Denote by x̂ ′k
v and m̂′k

v the correct values of vertex
state x ′k

v and aggregated result m′i
v in the k-th round of

A over G ⊕ ΔG = (V ′, E ′, P ′
E), respectively. By the

definition of the vertex-centric model (Sect. 2) and con-
dition (C5), we have x̂ ′k

v = U(x̂ ′k−1
v , m̂′k

v) and m̂′k
v =

H ({G(x̂ ′i−1
u , ∗, P ′

E (u, v)) | (u, v) ∈ E ′}). Note that x̂ ′k−1
v =

x ′k−1
v and m̂′k−1

v = m′k−1
v by the induction hypothesis. Hence

m̂′k
v can be computed by

H
(
{G(x̂ ′k−1

u , ∗, P ′
E (u, v)) | (u, v) ∈ E ′}

)
(a)

= H
(
{H− ◦ H ◦ G(xk−1

u , ∗, PE (u, v)) | (u, v)∈E}
∪{G(x ′k−1

u , ∗, P ′
E (u, v)) | (u, v) ∈ E ′} ∪ mk

v

)
. (b)

Here line (b) is true because of condition (C1). Observe that
besides the stored old state mk

v , the first and second terms
of line (b) coincide with the forms of cancelation messages
and compensation messages transferred in round k of Algo-
rithms 3, respectively, for computing m′k

v . The messages are
communicated via evolved edges only, which triggers the
actual change to the old state mk

v . To this end, m′k
v is cor-

rectly updated due to condition (C2), i.e., m′k
v = m̂′k

v . As
Algorithm 3 updates x ′k

v based on the correct m′k
v and x ′k−1

v ,
we conclude x ′k

v = x̂ ′k
v . ��

5 Asynchronous processing optimization

We introduce two effective optimizations, selective process-
ing and fast message propagation, to further improve the
performance of deduced incremental algorithms.
Observation. We start with two observations on message
propagationof incremental computation.Recall that the com-
putation of a vertex-centric algorithm A and its incremental
counterpart AΔ can be treated as a message propagation
process under the BSP synchronization model (see Sect. 2).
While the BSP model makes it easy to reason about the cor-
rectness and convergence of both A and AΔ, it also hinders
the message propagation performance of AΔ, as discussed
below.

123

Ingress: an automated incremental graph processing system 795

Fig. 4 Slow and fast message propagation

Observation 1. Most of the messages, including compensa-
tion and cancelation messages, are of “small values” in the
sense that theymake relatively small contributions to the con-
vergence of AΔ, while only a small portion of them are of
“large values”. This is because the messages propagated by
AΔ are deduced and propagated from a small graph update
ΔG. The BSP model takes a uniform treatment of all mes-
sages regardless of their values. This degrades performance,
especially for accumulative algorithms like PageRank. A
vertex-centric algorithm is accumulative if its computation
can be characterized by Eq. (4). As shown in Fig. 3, with
|ΔG| = 1%|G|, most of the messages processed by AΔ

have small values; only about 2–3% of the messages have
relatively large values. Here we treat the messages whose
values are larger than 10−6 as large messages if the termina-
tion condition requires that every receivedmessage is smaller
than 10−6. That is, a large message makes a substantial
contribution to the convergence. Intuitively, messages with
small values have less effect on the vertex states. If for every
receiving small message, AΔ executes the vertex program
(H,U ,G) accordingly, the vertex program utilization can be
largely reduced, resulting in performance degeneration of
incremental computation. A better solution is to execute the
vertex program on vertices with messages of large values or
that have accumulated enough messages of small values.
Observation 2. The propagation of messages that are impor-
tant for the convergence of AΔ can be slowed down due to
the global synchronization barrier. In each iteration under the
BSP model, a vertex only processes the messages received
from the previous iteration. Take SSSP as an example and
consider a sample graph as shown in Fig. 4a. Suppose that
the effective messages for vertices u, v and w rely on the
message originating from s. As shown in Fig. 4a, it takes 3
iterations for message m to propagate from vertex s to w

before convergence. In contrast, the effective message can
be propagated from s to w in one iteration if no global syn-
chronization barrier is enforced (see Fig. 4b).

Optimizations formessage propagation. We introduce two
optimizations to address the inefficiency of message propa-
gation when performing AΔ. As will be seen shortly, both
optimizations require that algorithm A is correct under the
asynchronous execution model.
Selective processing. This optimization estimates the state
change of a vertex v in the i-th iteration asΔxv = |xiv−xi−1

v |,
and schedules those vertices with Δxv ≥ τ to execute their
vertex programs, where τ is a predefined threshold. The ver-
tices with Δxv < τ are skipped to accumulate messages.
Thus, selective processing improves message propagation
performance by increasing the vertex program utilization of
AΔ.

Setting an appropriate value for the threshold parameter
τ is crucial to ensure the convergence of algorithm AΔ. If
τ is set to an extremely small value, e.g., τ = 0, selective
processing becomes ineffective because all the vertices that
received messages will be selected for processing. On the
contrary, if τ is set to a large value, the iterationmay terminate
before reaching the convergence condition as theremay be no
vertices with changes larger than τ to be processed, resulting
in incorrect results. Therefore, the threshold should be set in
accordance with the convergence condition of AΔ.

In general, there are types of convergence conditions
for vertex-centric algorithms (a) the change of each vertex
between two consecutive iterations is smaller than a pre-
defined value t , and (b) the sum of changes of all vertices
between two consecutive iterations is smaller than a value
T . For case (a), we can simply set τ = t . When the change
of each vertex is less than τ , no vertices will be selected for
processing, indicating convergence. For case (b), τ can be set
as T /|V |, where |V | is the number of vertices. This choice
ensures that when the change of each vertex is smaller than
T /|V |, the sum of the changes of all vertices is also smaller
than T , guaranteeing the convergence of iterative computa-
tion.

The next problem is to predict the changes of vertex states,
which is not easy. Nevertheless, it is doable for accumulative
algorithms. Indeed, by Eq.4, we can use the aggregation of
messages to predict the vertex state change. For example
Δxv = ∑

m∈Mv
m holds for PageRank, where Mv is the set

of messages sent to v.
Fast message propagation. This optimization enables a ver-
tex to update its state with all the receivedmessages that have
not been consumed, including those received in the current
iteration, rather than only the messages from the previous
iteration. As shown in Fig. 4b, the vertex u is updated with
the message sent by s in the current iteration, similarly for
vertices v and w. In this way, messages can be propagated
more efficiently.

Fast message propagation helps accelerate the conver-
gence of iterative computation. On the one hand, messages
generated by the current iteration maymake the states of ver-

123

796 S. Gong et al.

tices closer to their converged states. If a vertex v is updated
with the states of its neighbors that are closer to convergence,
the state of v will also be closer to the converged state after
updating. On the other hand, updating verticeswith newmes-
sages, generating and propagating new messages to others
further enables the messages to propagate more efficiently
[56]. For example, in Fig. 4b, the message m is propagated
from s to w only using 1 iteration instead of 3 iterations.
Optimization applicability and correctness. Observe that
both optimizations require asynchronous message propaga-
tion and processing of AΔ, i.e., AΔ permits non-uniform
processing of vertices and no global synchronization bar-
rier is enforced. Both optimizations cannot be applied to the
incremental algorithm obtained via the MV-policy since the
incremental processing of AΔ is essentially synchronized,
i.e.,AΔ restores themessages and replays the computation by
following the BSP model. Similarly, the optimizations can-
not be applied to an incremental algorithm AΔ obtained via
theME-policy. In contrast, the theorem below shows that if a
vertex-centric algorithm is MF-applicable or MP-applicable,
then both optimizations can be applied to the incremental
counterpartAΔ, without worrying about the correctness. The
rationale is that ifA is eitherMF-applicable orMP-applicable,
then both A and AΔ are correct under the asynchronous
model.

Theorem 4 (Correctness of optimizations) The incremen-
tal counterpart AΔ of an MF-applicable or MP-applicable
algorithmA converges correctly with the asynchronous opti-
mizations.

Proof The computation of AΔ has two phases. In the first
phase, AΔ computes intermediate states X̂0 over G ⊕ ΔG
and generates initial messages M̂

0; in the second phase,
AΔ restores the computation from (X̂0, M̂0) as in A. By
Theorem 1 and Theorem 2, the computation starting from
(X̂0, M̂0) converges to the correct result over G⊕ΔG under
the synchronous model. As pointed out in previous studies, if
the update functionH and the aggregation function U ofAΔ

share the same function andAΔ satisfies (C2) and (C3), then
any asynchronous run ofAΔ converges to the same answer as
that deduced in synchronous model (see Theorem 1 of [56]).
The result follows by observing that bothMF-applicable and
MP-applicable algorithms satisfy these prerequisites. ��
Remark Fastmessagepropagation acceleratesmessageprop-
agation and speeds up vertex updates, making it effective for
allMF-applicable andMP-applicable algorithms. In contrast,
the effectiveness of selective processing varies among differ-
ent algorithms.

(1) Selective processing is typically effectivewith algorithms
that employ sum or product as aggregation and update func-
tions, such as PageRank and PHP. These algorithms aim for

high-precision convergence, where vertex states continually
change and convergence is only reached when changes are
very small. Therefore, τ can be set to a value strictly larger
than “0” and vertices whose change is greater than τ are
selected for processing, ensuring both convergence and but
also acceleration.
(2) If the aggregation and update functions involve min or
max. To ensure convergence with selective processing, we
must set the threshold τ = 0. That is, selective process-
ing becomes ineffective, as it degenerates to processing all
vertices with message. Typical algorithms falling into this
category includes SSSP and weakly connected components
(see Sect. 7.5).

6 Ingress

As a proof of concept, we design and implement an incre-
mental graph computing system Ingress.

6.1 Vertex-centric API

Following the vertex-centric model of Sect. 2, Ingress pro-
vides the API, shown in Fig. 5, to users for writing batch
vertex-centric algorithms. Here D and W are the template
types of vertex states and edge properties, respectively. In
addition, the initial values of the vertex states and mes-
sages should be set via the init_v and init_m interfaces,
respectively. function, which is specified The aggregation
function H is implemented using the aggregate inter-
face. Note that aggregate has only two input parameters,
while function H can naturally take any number of inputs.
However, aggregate can be generalized to support differ-
ent numbers of input parameters if H has the associative
property (i.e., condition (C2) of Sect. 4 holds). That is,
H(x0, x1, x2) = H(H(x0, x1), x2). We let aggregate
have two input parameters for the simplicity of operator
extraction, which will be used in automatic condition check-
ing (see below). Without loss of generality, we also provide
another interface for function H, which can take a vector of
elements as input. The update functionU of the vertex-centric
model is specified by the update interface, for adjusting
vertex states; and the interface generate in the API corre-
sponds to propagation function G, for generating messages.

Using thisAPI, the implementationof the batchSSSP algo-
rithm of Example 1(b) is shown in Fig. 6.

6.2 Automatic memoization policy selection

As presented in Sect. 3, there exist multiple memoization
policies for incrementalization, which lead to different space
costs. Though their formal applicability conditions are pro-
vided in Sect. 4, it is nontrivial for non-expert users to choose

123

Ingress: an automated incremental graph processing system 797

Fig. 5 The vertex-centric API of Ingerss

the best-fit one. Ingress automatically selects the optimal
memoization policy with the help of Satisfiability Modulo
Theories (SMT) solver Z3 [36]. SMT studies the problem
of deciding whether a given first-order formula is satisfiable,
i.e., if there is an assignment of proper values to uninterpreted
functions and constant symbols to make the formula to be
true. The SMT solver Z3 asserts a formula and may return
“satisfiable” (sat), “unsatisfiable” (unsat) or “unknown”.

The initial step of policy selection uses a parser in Ingress
to extract the three functionsH,U and G of the vertex-centric
model, from the implementations of interfacesaggregate,
update and generate, respectively. Then the sufficient
conditions on these functions (see Sect. 4) are converted into
different Z3 formulas by our predefined Z3 templates. For
instance, condition (C1) states whether U has a reverse func-
tion U−. Its Z3 assertion template is shown as follows:

(assert(forall ((x1 Real) (x2 Real) (x3 Real))
(= (f x1 x3)) (f x1 (f (f (f1 x2) x2) x3)))).

Heref represents the update functionU extracted fromuser’s
program, and f1 is a declared function (i.e., U−) to be
searched for. Additionally, the whole set of variables x1,
x2 and x3 corresponds to the input set M in condition (C1),
while x2 itself constitutes the subset M ′. If the assertion for-
mula gets “sat” in Z3, (C1) is satisfied and the satisfiable
function f1 (i.e., U−) can be automatically found. Condi-
tions (C2) and (C3) are the same as the that of monotonic
recursive aggregation defined in [51], so we reuse their Z3
templates. The Z3 template for condition (C4) is shown as
follows:

(assert (not (forall ((x1 Real) (x2 Real))
(or (= (f x1 x2) x1) (= (f x1 x2) x2))))).

It states that f returns either one of its two inputs. Note that
Z3 cannot determine “whether a formula Y is always true?”,
but only answers “whether it is satisfiable?”. To verify a prop-
erty Y that should always be true, we convert “Y is always
true” into “NOT Y is not satisfiable”. Therefore, if the above
Z3 assertion returns “unsat”, condition (C4) is verified true.
Condition (C5) can be simply validated by static program
analysis (i.e., whether the output of generate depends on
only one of its input parameters).

Fig. 6 The implementation of SSSP algorithm

With such automated condition verification mechanism,
Ingress automatically chooses thememoization policy as fol-
lows. At first, if H and U are identical and conditions (C2)
and (C3) are both satisfied, it prefers to selectMF andMP as
candidate policies. Next, if condition (C1) is satisfied, then
MF policy is chosen; otherwise when condition (C4) holds,
MP policy is chosen. If the first two preferable memoization
policies are not feasible, Ingress chooses the MV policy by
checking whether conditions (C1), (C2) and (C5) hold. For
the rest cases, the ME policy is selected by default.

Policy selection can be conducted offline, whose cost
depends on the characteristics of the vertex-centric programs
only, i.e., H, U and G, rather than the large-scale graphs.
In fact, deciding the satisfiability of a first-order formula is
undecidable in general [15], e.g., in the presence of inte-
ger arithmetic with multiplication [32]. However, as verified
in our experiments, for functions of most common vertex-
centric algorithms, e.g., those in Example 1, Z3 can respond
quickly when checking the above formulae (see Sect. 7).

6.3 Distributed runtime engine

The distributed runtime engine of Ingress is developed
on top of libgrape-lite [28] (an open-source version of
GRAPE [10]), which is designed to be a highly efficient, flex-
ible, and scalable platform for distributed graph computation.
The graph structure and the computation states are stored
independently in libgrape-lite, which is supremely suitable
for incremental graph computation since the state mainte-
nance and the graph structure adjustment have to be separated
in incremental processing. Ingress inherits the graph storage
backend and graph partitioning strategies from libgrape-lite.
Besides, it has the following new modules.
Vertex-centric programming. Libgrape-lite only supports
block-centric programming. Ingress extends it to achieve
vertex-centric programming. Specifically, Ingress spawns a
new process on eachworker to handle the assigned subgraph.

123

798 S. Gong et al.

It adopts the CSC/CSR optimized graph storage of libgrape-
lite for fast query processing of the underlying graphs. For
each vertex, it invokes the user-specified vertex-centric API
to perform the aggregate, update, and generate
computations. The generated messages are batched and sent
out together after processing the whole subgraph in each
iteration. Ingress relies on the message passing interface of
libgrape-lite for efficient communication with other workers.
Data maintenance. Ingress launches an initial batch run on
the original input graph. It preserves the computation states
during the batch iterative computation, guided by the selected
memoization policy, e.g., preserving the converged vertex
states only as inMF policy or the effective messages withMP
policy. After that, Ingress is ready to accept graph updates
and execute the deduced incremental algorithms to update
the states. The graph updates can include edge insertions
and deletions, as well as newly added vertices and deleted
vertices. In particular, the changed vertices with no incident
edges are encoded in “dummy” edgeswith one endpoint only.
Furthermore, changes to edge proprieties are represented by
deletions of old edges and edge insertions with the new prop-
erties.
Optimized asynchronous execution. The parallel execution
engine of libgrape-lite run in the synchronous model by
default. Ingress extends it to support both synchronous and
asynchronous execution models. The asynchronous execu-
tion model is equipped with selective processing and fast
message propagation optimizations as discussed in Sect. 5.
Ingress employs Z3 implicitly to ensure the correctness
when running in the asynchronous model. This is because
Ingress determines its execution model based on the mem-
oization policy automatically selected by Z3. For a given
vertex-centric algorithm, if MF or MP policy is applied,
Ingress utilizes the asynchronous execution model since
MF-applicable and MP-applicable algorithms can run in the
asynchronous model without worrying the correctness (The-
orem 4). Otherwise, Ingress defaults to the synchronous
model.
Incremental processing. Ingress starts the incremental com-
putation from those vertices involved in the input graph
updates, which are referred to as affected vertices. Using
the message deduction techniques presented in Sect. 4, for
each of these affected vertices, Ingresswill generate the can-
celation messages and compensation messages based on the
new edge properties and the preserved states. These mes-
sages are sent to corresponding neighbors. Only the vertices
that receive messages are activated by Ingress to perform
the vertex-centric computation, and only the vertices whose
states are updated can propagate newmessages to their neigh-
bors. This process proceeds until the convergence condition
is satisfied.

Table 3 Real-life graphs

Graph #Vertices #Edges

Twitter-2009 (TW) [40] 41,652,230 1,468,365,183

UK-2005 (UK) [48] 39,459,925 936,364,282

Euro-Road (ER) [6] 50,912,018 108,109,320

US-Road (UR) [41] 23,947,347 57,708,624

Friendster (FS) [53] 65,608,366 1,806,067,139

7 Experimental study

We evaluate Ingress thoroughly from various aspects.

7.1 Experimental setup

We evaluated Ingress with five incremental algorithms
deduced from (i) two MF-applicable algorithms PageRank
and PHP [16], (ii) two MP-applicable algorithms SSSP and
ConnectedComponents (CC) [3], and (iii) oneMV-applicable
algorithm GCN-forward. The batch CC algorithm aims to
finds all connected components, where U=H=min and
G(xiv,m

i
v, PE (v,w))=mi

v . It is MP-applicable, i.e., (C2)-
(C4) hold. In the inference process ofGCN-forward, we used
K = 3 randomly generated weight matrices, where the sizes
of thematrices are 128×64, 64×32 and 32×16, respectively.
By default, for PageRank, PHP, SSSP and CC, Ingress runs
in the asynchronous model with selective processing and fast
message propagation enabled, and runs in the synchronous
model for GCN-forward. Both PageRank and PHP offer two
ways to set up the convergence condition. Unless stated oth-
erwise, we terminate them when the sum of the change of all
vertices is smaller than T = 10−2.
Datasets and updates. We used four real-life graphs in our
evaluation (see Table 3), including social networks Twitter
(TW) [40] and Friendster (FS) [53], web graph UK-2005
(UK) [48], and road networks Euro-Road (ER) [6] and US-
Road (UR) [41].Here the largest dataset FS is used to evaluate
the distributed runtime performance of Ingress. We also
designed a graph generator for evaluating the performance
of the systems on generated synthetic graphs.

We constructed graph updates ΔG by randomly adding
new edges to G and removing existing edges from G. The
number of added edges and deleted edges are the same,
unless stated otherwise. The updates ΔG refer to topolog-
ical changes by default.
Competitors. We compared Ingress with five state-of-the-
art vertex-centric incremental graph processing systems,
Torando [44], GraphBolt [31], DZiG[30], KickStarter [50],
and RisGraph[11].We also implemented a competitor on top
of libgrape-lite [28], denoted as IngressR, which reperforms
the vertex-centric computation over the updated graph start-

123

Ingress: an automated incremental graph processing system 799

ing from scratch. It is used to validate the effectiveness of
incremental processing.

Since no prior system covers as many algorithms as
Ingress for incrementalization, we only compared Ingress
with each competitor on the algorithms it specializes in.
KickStarter and RisGraph have the state-of-art perfor-
mance on MP-applicable SSSP and CC, but they cannot
handle PageRank, PHP and GCN-forward due to its single-
dependency requirement on the vertex states. Tornado returns
erroneous results for SSSP, CC and GCN-forward since the
initial states have impact on the final result. GraphBolt and
DZiG is supposed to support all, but its implementations
for SSSP, CC and GCN-forward are nontrivial and not open-
sourced. In light of this, we only tested PageRank and PHP
(resp. SSSP and CC) on GraphBolt, DZiG, and Tornado (resp.
KickStarter and RisGraph).
Environments. We used AliCloud ecs.r6.13xlarge instance
(52vCPU, 384GB memory) for experiments conducted on
a single machine. To evaluate Ingress in a distributed envi-
ronment, we adopted a cluster of 32 AliCloud ecs.r6.6xlarge
instances (24vCPU, 192GB memory).

7.2 Overall performance

Wefirst evaluated the overall performance of Ingress, includ-
ing both the response time and space cost, by comparing it
with competitors. Since GraphBolt, DZiG, KickStarter and
RisGraph can only run on a single machine with multi-core
support, this set of experiments and the following ones were
conducted on a single machine except the distributed evalu-
ation in Sect. 7.8 below.

7.2.1 Performance on graph topology updates

We first evaluated the performance of Ingress with graph
topology updates. We fixed the size of topological updates
as |ΔG|=1%|G|. When reporting response time, we omit
the cost for policy selection since it can be done within 50
milliseconds for all tested algorithms.
Response time. Figure7 shows the normalized response
time of each algorithm executed in different systems. Here
the response time of IngressR is treated as the base-
line, i.e., IngressR finishes in unit time. We can see that
Ingress outperforms others except Risgraph in all the cases.
Specifically, Ingress achieves 6.71×−47.47× (17.83× on
average) speedup over GraphBolt, 3.41×−24.05× (10.99×
on average) speedup over DZiG, 2.0×−35.85× (11.88×
on average) speedup over Tornado, 1.34×−7.22× (2.45×
on average) speedup over KickStarter, and 1.20×−49.23×
(12.03× on average) speedup over IngressR. RisGraph has
comparable performance to Ingress on SSSP and CC, e.g.,
for SSSP, Ingress outperforms RisGraph on datasets UR and
UK, while RisGraph outperforms Ingress on TW and ER.

Ingress is indeed very efficient, e.g., taking only 2.5 s for
PHP on the UK dataset, as opposed to 61, 19, and 26s by
GraphBolt, DZiG and Tornado, respectively. The MF policy
(for PageRank and PHP) and theMP policy (for SSSP andCC)
exhibit substantial superiority compared with the MV policy
(for GCN-forward). This is under expectation because MF
andMP require less amount of recomputation and memoized
states.
Space cost. We measured the size of the memory for storing
computation states. Figure8 depicts the space cost of each
system. We find that Ingress benefits greatly from its flexi-
ble memoization strategy. It is much more memory efficient
than GraphBolt and DZiG for PageRank and PHP, as shown
in Fig. 8a, b. This is because the MF engine of Ingress does
not store any intermediate states, while GraphBolt and DZiG
maintain states across iterations. Tornado starts from the pre-
viously converged states, which needs no additional memory
either. IngressR also holds no intermediate results. There-
fore, one can find similar space costs for Ingress, IngressR,
and Tornado. However, Ingress is much faster than the other
two (Fig. 7a, b). For SSSP and CC, Ingress chooses the MP
engine to store a small set of paths. This incurs more space
than IngressR, which is under expectation. However, Ingress
requires lessmemory thanKickStarter andRisGraph (Fig. 8c,
d). This is because KickStarter and RisGraph sorts additional
information for the paths [11, 50]. ForGCN-forward, Ingress
adopts the MV engine, recording more intermediate results,
hence takes morespace than IngressR, i.e., recomputation
(Fig. 8e).

7.2.2 Performance on edge weight updates

We then evaluated the performance of Ingress with edge
weight updates. For a fair comparison, when evaluating the
performance of each system, each edge weight update is sim-
ulated by deleting an edge first and then adding a new edge
with an updated weight. Similar to the evaluation on topol-
ogy updates, we generated edge weight updates randomly
and fixed the update size by |ΔG| = 1%|G|. We only tested
PHP and SSSP since the two can be executed on weighted
graphs.

Figure9 reports the normalized response time of algo-
rithms PHP and SSSP executed in each system, where we
still use the response time of IngressR as the baseline. Fig-
ure10 shows the space cost of each system. It is shown that
similar to the graph topology change, Ingress also outper-
forms other systems when changing the edge weights and
uses fewer memory footprints thanks to its different memo-
ization policy.

123

800 S. Gong et al.

Fig. 7 Running time comparison

Fig. 8 Space cost comparison

Fig. 9 Runtime comparison with edge weight change

Fig. 10 Space cost comparison with edge weight change

7.3 Sensitivity to updates

We next evaluated the impact of the input updates on the
performance of incremental graph processing. Varying the
size |ΔG| of input updatesΔG from 1 to 20% of the size |G|
of the original graph G, Fig. 11 shows the running time for
the incremental computation of PageRank, SSSP and GCN-

forward in different systems over the dataset UK. We find
the following.
(1) For PageRank and GCN-forward, almost all the incre-
mental graphprocessing systems take longer to process larger
graph updates ΔG, as expected. For SSSP, the response time
of all systems is not sensitive to the size of ΔG. This is
because even if the size ofΔG is small, i.e., |ΔG| = 1%|G|,
ΔG still contains quite a few “upstream” edges close to the
source vertex. Observe that an upstream edge update can
result in a large number of vertices that require updates.
(2) For PageRank and SSSP, Ingress consistently outper-
forms other incremental processing systems. For GCN-
forward, Ingress takes more time than IngressR when
|ΔG| ≥ 10%|G|. Regarding this result, we analyzed the
vertex activation log and found that the input updates affect
almost all the vertices, making the cost of incremental pro-
cessing close to that of recomputation i.e.,IngressR. As a
result, Ingress spends more time than IngressR due to addi-
tional state maintenance costs.
(3) Since the number of inserted edges and that of deleted
edges are the same in our randomly created input updates
ΔG, the size of the updated graph remains the same, i.e.,
|G ⊕ ΔG| = |G|. IngressR reperforms the batch compu-
tation on the updated graph with a fixed size, so it is not
sensitive to |ΔG|. Observe that the runtime of IngressR for
SSSP fluctuated. This is because the runtime of SSSP is sen-
sitive to the topology of the graph. A tiny topology change
of the graph may cause the execution time of SSSP to vary
greatly.
(4) Ingress is very effective in the incremental computation
of MF-applicable algorithm PageRank. In fact, it takes less

123

Ingress: an automated incremental graph processing system 801

Fig. 11 Sensitivity to |ΔG|

Fig. 12 Sensitivity to |G| (time)

Fig. 13 Sensitivity to |G| (space)

than 2 seconds when |ΔG| is up to 20% of |G|, and is still
faster than recomputation (i.e.,IngressR).

The space costs of all the systems are almost stable when
varying |ΔG|. This is because that thememory usage of these
systems only depends on the size |G| of original graph, rather
than |ΔG|.

7.4 Sensitivity to graph sizes

We also conducted experiments to evaluate the impact of
the graph size |G| on the performance of incremental graph
processing. Here we used synthetic graphs produced by a
generator. The graphs have up to 47 million vertices and
115 million edges and follow the node degree distribution
of real-life graphs, e.g., UR. We fixed |ΔG| = 0.57M , i.e.,
0.57 million of edge updates. Varying the size of synthetic
graphs from 47 million vertices and 115 million edges to
191 million vertices and 461 million edges, denoted as |G|
to 4|G|, Figs. 12 and 13 report the running time and space
costs of different systems, respectively.
(1) We find that the response time of all systems gradually
increases as the graph size grows. This is because the number
of vertices that are affected by |ΔG| also increases slowly.
Compared to IngressR that conducts recomputation and other
incremental graph processing systems, the response time of
our Ingress is less sensitive to the increase of |G|. This is

Fig. 14 The effectiveness of asynchronous optimizations

because the time complexity of Ingress mainly depends on
|ΔG|, rather than |G|. Tornado updates previous results by
directly starting the iterative computation on the new graph
with the converged states, so its running time also depends on
|G| and exhibits a fast-increasing rate. GraphBolt and DZiG
are more sensitive to the size of |G| than Ingress. This is
because more vertices are affected by ΔG and both systems
update more vertex intermediate states than Ingress, which
takes more time.
(2) Thanks to our memoization-free (MF) technique, Ingress
shows substantial superiority over GraphBolt and DZiG
on space cost. Ingress is also more space efficient than
KickStarter and RisGraph with its MP policy. We find that
KickStarter and RisGraph use more space to maintain the
dependency information than Ingress. These are consistent
with the results in Sect. 7.2. In practice, the user can ben-
efit more from the high space efficiency of Ingress when
processing larger graphs, not to mention that Ingress is able
to automatically choose the best-fit memoization engine for
different algorithms without users’ intervention.

7.5 Effectiveness of asynchronous optimizations

To verify the effectiveness of optimizations proposed in
Sect. 5, we first ran Ingress without any optimizations
(Ingress w/o opt), we then turned on the functionalities of
selective processing (Ingress w/ sp), the fast message prop-
agation (Ingress w/ fmp), and both optimizations (Ingress
w/ sp+fmp). Since both optimizations can only be applied
on MF-applicable and MP-applicable algorithms. We took
PageRank and SSSP as the test workloads in this evaluation.
The size of the graph updates was set as |ΔG| = 1%|G|. Fig-
ure14 shows the normalized response time of Ingress with
different optimizations. We find the following.
(1) Fast message propagation is effective for both PageRank
and SSSP. It alone improves PageRank and SSSP by 1.42×
and 1.55× on average, respectively. This is because fast mes-
sage propagation accelerates the message propagation and
speeds up vertex updates.
(2) Selective processing alone improves the performance of
PageRank by 1.79× on average, up to 3.21×. However, it

123

802 S. Gong et al.

Fig. 15 The impact of threshold parameter setting methods on
PageRank convergence

has little effect on SSSP. This is because SSSP takes min as
its aggregation and update functions and in that case selec-
tive processing degenerates to processing all vertices with
messages (see Sect. 5).
(3) With both optimizations enabled, the performance of
PageRank is improved by 1.67 × −3.51×.

7.6 Impact of threshold parameter settingmethods

We further evaluated the impact of two threshold parame-
ter setting methods in selective processing on convergence
acceleration.PageRank serves as theworkload since it adapts
to both methods, τ = t and τ = T /|V |. In order to use the
same τ value, we set T = 10−2 and t = T /|V |, so that
τ = 10−2/|V | in both cases. Then a vertex is selected for
processing only if its change is larger than 10−2/|V |. Fix-
ing |ΔG| = 1%|G|, Fig. 15 reports the convergence states
of PageRank over time on the UK dataset. To this end, we
pre-computed convergence states x∗

v offline for each vertex
v and used

∑
v∈V |xv − x∗

v | as the distance to convergence.
(1) PageRank correctly converges in 2.63 s (2.87 s without
fmp) and 3.48 s (5.81 s without fmp) for τ = t and τ =
T /|V |, respectively. This verifies the correctness of selective
processing in ensuring convergence.
(2) Selective processing significantly accelerates the conver-
gence of PageRank, whether with or without fast message
propagation optimization. On average, selective process-
ing accelerates the convergence of PageRank by 13.58×,
up to 26.38×. This is because selective processing greatly
improves the utilization of vertex programs by skipping
vertices with accumulated changes below the threshold τ .
In addition, selective processing improves the convergence
speed better than fast message propagation in both settings.
(3) Selective processing has a better convergence accelera-
tion effect for the case τ = t than for the case τ = T /|V |. On
average, it improves the convergence by 24.36× for τ = t ,
while for the case τ = T /|V |, it improves the convergence
by 2.79×. Note that we set τ = 10−2/|V | in both cases.
The difference in acceleration is due to the performance gap
of the corresponding baselines without selective processing.
On average, it takes 77s (153s without fmp) for PageRank to
converge when requiring the change of every vertex between

Fig. 16 Resetting versus trimming on SSSP

two consecutive iterations is below 10−2/|V |, while in the
other case, it is only 6.23 s (9.25 s without fmp).

7.7 Resetting versus trimming

We next evaluated the effectiveness of the resetting-based
rollback (Rst) for MP-applicable algorithms, comparing it
with the trimming-based rollback (Trm) adopted by Kick-
Starter (see Sect. 4.2). To ensure a fair comparison and
eliminate the impact of system implementation, we have
made our best to implement Trm within Ingress. Fixing
|ΔG| = 1%|G|, we took SSSP as the test workload since
its incremental computation requires rollback. We recorded
the normalized total time of rollback and iterative computa-
tion, alongwith their breakdown, in Fig. 16a. Here the time of
Rst plus the time for the subsequent iterative computation is
the baseline. The comparison of rollback time and incremen-
tal iterative computation time after rollback are presented in
Fig. 16b, c respectively. We find the following.
(1) The overall performance of SSSP using Rst and Trm is
generally comparable. While Rst incurs less cost than Trm,
Trm beats Rst in the subsequent iterative computation after
rollback. On the UK dataset, Rst outperforms Trm by 1.51×.
In that case where the overall cost is dominated by the roll-
back process, Rst incurs substantially fewer overheads than
Trm (see below).
(2) As anticipated, Trm constantly takes more time than Rst
on all datasets. On dataset UK, Trm takes 2.3× longer than
Rst. This is because 95% of the vertices are affected by ΔG,
leading to more overheads in Trm than in Rst since Trim has
more sophisticated processing logic.
(3) The iterative computation after Trm performs slightly
better than that after Rst. We analyzed the log and found the
following: (i) on average 41% fewer vertices are reset to the
initial values in Trm compared to Rst; (ii) after two rounds of
iterations following Rst, the number of vertices with initial
values is already less than that after Trm. In other words,
Trm can be effectively replaced by Rst plus two subsequent
iterative computation. When the number of iterations after
rollback is very large, such as more than 100 rounds in UR
and ER, the performance gains brought by Trim are reduced
significantly.

123

Ingress: an automated incremental graph processing system 803

Fig. 17 Distributed runtime performance over FS

7.8 Distributed runtime performance

We evaluated the distributed runtime of Ingress, which
is essential for handling large-scale graphs. As GraphBolt
and KickStarter do not support distributed computation, we
compared Ingress with Tornado and IngressR only in the
distributed environment. We applied PageRank, SSSP and
GCN-forward over the large FS graph, on our Alicloud clus-
ter. Varying the number of workers from 2 to 32 in the cluster,
Fig. 17 shows the response time of different systems. One can
see that Ingress needs shorter running time than IngressR and
Tornado on different-sized clusters and shows good scala-
bility. In particular, for SSSP, Ingress is much faster than
the recomputation-based IngressR, say 31×–88× speedup.
This highlights the need of incremental processing for big
graphs. For GCN-forward, Ingress becomes slower when the
number of workers increases from 16 to 32. This is due to
the increased communication cost, which is larger than the
actual computational cost for incremental processing that is
already very small.

8 Related work

Incremental graph processing systems. There have been sys-
tems developed for incremental graph processing, e.g., [21,
31, 43, 44, 50, 57]. Tornado [44] is an incremental iterative
processing system that is built on top of Storm. It only focuses
on those graph computations that can converge to the same
state from various initial states. GraphIn [43] incrementally
handles dynamic graphs through fixed-sized batches. Kick-
Starter [50], RisGraph [11] and GraphBolt [31] are three
dependency-driven systems. KickStarter and RisGraph are
able to execute graph algorithms that are monotonic, and
deduce safe approximation results upon edge deletions, to fix
the approximation errors via iterative computation. Graph-
Bolt keeps track of the dependencies through the memoized
aggregated values among iterations. When input updates
arrive, it refines the dependencies iteration-by-iteration to
do incremental computation. Tripoline [21] uses graph trian-
gle inequalities to accelerate incremental graph computation
by employing the previous computation results. TDGraph
[57] is the first programmable accelerator to augment the

many-core processor for high-performance streaming graph
processing. Apart from these, [54] proposes a new message
passing policy for vertex-centric programming, which only
exchanges meaningful results via Δ-messages. Although it
helps reduce the transmitted messages, changes to input
graphs are not allowed. Extending timely dataflow [37],
differential dataflow [35] achieves streaming processing by
enforcing a partial order on the versions of computations.
However, it stills needs to maintain a number of interme-
diate versions. There has been work on incrementalizing
generic programs, e.g., [1, 4, 26], often at the instruction
level. They are hard to be applied for incremental graph pro-
cessing directly.

This work differs from the prior work in the following. (1)
We target the incrementalization of generic vertex-centric
algorithms, beyond the scope of specific classes of com-
putations that satisfy certain conditions [44, 50]. (2) We
introduce four types of memoization policies to facilitate
the incrementalization and provide sufficient conditions for
their applicability, which have not been considered in pre-
vious work. (3) We make the process of incrementalization
accessible to non-expert users, rather than asking nontrivial
operators from the users [31].

There have also been systems proposed, e.g., Cavs [52]
for improving the performance of training and inference of
dynamic neural network models. They focus on the changes
to models rather than the updates to data graphs, hence are
orthogonal to this work.
Incremental graph algorithms. A number of incremental
graph algorithms have been proposed for, e.g., regular path
queries [7], strongly connected components [19], subgraph
isomorphism [23], k-cores [25], graph partitioning [8] and
triangle counting [34]. In contrast to these ad hoc methods,
we propose to automatically deduce incremental algorithms
from the batch counterparts by a generic approach, making
incremental graph processing easier. Close to this work is [9],
which focuses on incrementalizing graph-centric algorithms
based on fixepoint computation. Instead, this work targets on
vertex-centric algorithms and introduces a flexible memoiza-
tion scheme to optimize the memory usage in incremental
graph processing, which is not study in [9].

9 Conclusion

We have proposed Ingress, a system that optimizes mem-
ory usage for incremental vertex-centric algorithms. Ingress
employs four memoization policies to handle various vertex-
centric algorithms, along with identified conditions for their
application. Our experiments confirm Ingress as a promising
tool for incremental graph processing. One topic for future
work is to extend Ingress to support the incrementalization
of graph-centric algorithms.

123

804 S. Gong et al.

Acknowledgements The work is supported by the National Natu-
ral Science Foundation of China (62202301, 62072082, U2241212,
62202088, 62137001, 62302027), the 111 Project (B16009), the Fun-
damental Research Funds for the Central Universities (N2216012,
N2216015), and a research Grant from Alibaba Innovative Research
(AIR) Program.

Appendix

A1. Proof of Lemma 1

Proof Following the computationprocess of anMF-applicable
A as shown in Eq. (4), we have that

X
k = U(Xk−1 ∪ M

k−1) (a)

= U
(
U(Xk−2 ∪ M

k−2) ∪ M
k−1

)
(b)

= U(X0 ∪ M
0 ∪ M

1 ∪ M
2 ∪ · · · ∪ M

k−1) (c)

= U(
X
0 ∪ M

0 ∪ G(M0) ∪ · · · ∪ Gk−1(M0)
)

(d)

= U
(

X
0 ∪

k−1⋃

�=0

G�(M0)

)

. (e)

In the above equations, lines (a) and (b) are due to the prop-
erty (C2) as defined inSect. 4.1; line (c) follows froma simple
induction; and line (d) is true because of Eq. (4) and the prop-
erty (C3). ��

A2. Proof of Lemma 2

Proof The incremental MF-applicable A on G ⊕ ΔG starts
from the previous computation status (see Algorithm 1). By

Lemma1,wehave that X̂0 = X
k = U

(
X
0 ∪ ⋃k−1

�=0 G�(M0)
)
.

It remains to verify M̂0. LetMv = ⋃k−1
�=0 m

�
v be themessages

received by v in the computation over G. Observe the fol-
lowing.
(1) Algorithm 1 generates two sets of messages, M+

v and
M−

v , in case that the edges related to v are evolved,
i.e., G(Mv) �= Ĝ(Mv). By Algorithm 1, we have that

U
(
Ĝ(Mv) � G(Mv)

)
= U(M+

v ∪ M−
v).

(2) If the edges related to v are not evolved, we have that
G(Mv) = Ĝ(Mv). By (C1) and (C2), it holds that:

U
(
Ĝ(Mv) � G(Mv)

)
= U

(
Ĝ(Mv) ∪ U− ◦ U ◦ G(Mv)

)

= U
(
Ĝ(Mv) \ G(Mv)

)
= U(0).

That is, the messages in Ĝ(Mv) and G(Mv) can be canceled
out w.r.t. function U . Thus there is no need to generate these
messages in incremental computation over G ⊕ ΔG.

According to Algorithm 1, the initial messages M̂
0 for

the incremental computation consist of U(M+
v ∪ M−

v) for
vertices with evolved edges. By the above analysis, vertices
without evolved edges contribute empty even if the corre-
sponding messages are also generated. As a consequence,
we can express M̂0 as follows:

M̂
0 = U

(
⋃

v∈V
Ĝ(Mv) �

⋃

v∈V
G(Mv)

)

= U
(

Ĝ
(

⋃

v∈V

k−1⋃

�=0

m�
v

)

� G
(

⋃

v∈V

k−1⋃

�=0

m�
v

))

= U
(

Ĝ
(
k−1⋃

�=0

G�(M0)

)

� G
(
k−1⋃

�=0

G�(M0)

))

.

��

A3. Proof of Lemma 3

Proof Since the batch algorithm A is MP-applicable, i.e.,
condition (C4) holds, each state xkv of an unreset vertex v in
X
k
N is determined by an effective message generated when

running A on G, denoted as mc
v . Hence xkv = mc

v . Observe
that the right-hand side of Eq. (8) refers to the result of exe-
cuting A over the reserved graph GR (see Lemma 1). Then
if for each unreset vertex v, the effective message mc

v is the
same as the corresponding effective message generated for v

when invoking A over GR, then Eq. (8) holds. To show this
precondition, it suffices to prove that mc

v is transmitted from
another unreset vertex v′ and (v′, v) is not a deleted edge in
ΔG. This is because the computation of A strictly follows
the propagation of messages and it can be formally verified
by induction on the rounds of the computation.

We next prove that each effective messagemc
v is sent from

another unreset vertex via an edge that is not deleted by con-
tradiction. Assume by contradiction that (i) a reset vertex
v′ sends mc

v to the unreset v or (ii) mc
v is transmitted along

a deleted edge (v′, v). (i) If v′ has been reset, then v must
also be a reset vertex as Algorithm 2 propagates ⊥ along the
paths formed by all effective messages, including mc

v . (ii) If
(v′, v) is a deleted edge, then the state of v should also be
reset since the deleted (v′, v) initiates a cancelation message
in Algorithm 2. Hence either case leads to a contradiction.
The correctness of Eq.8 follows. ��

A4. Proof of Lemma 4

Proof When messages ⊥ are propagated in Algorithm 2, the
initial X̂0 includes the current states for both reset and unreset
vertices. By Lemma 3 and the definition of changed graph

123

Ingress: an automated incremental graph processing system 805

GC , we have that X̂0 = U(
X
0
R ∪ ⋃k−1

�=0 G�
R(M0

R)
) ∪ X

0
C =

U
(
X
0
R ∪ ⋃k

�=0 M
�
R

)
∪ X

0
C .

We next analyze the initial compensation messages M̂0

initiated by Algorithm 2. By its operations, we can see that
each initial compensation message can be sent from either an
unreset vertex in VR or a reset vertex in VC . In light of this, we
denote by M̂r and M̂c the collections of initial compensation
messages sent from unreset and reset vertices, respectively.

Suppose that an unreset vertex v sends an initial compen-
sation message to v′. Due to the logic of Algorithm 2 (line 4),
v′ must be a reset vertex or (v, v′) is an evolved edge. Hence
edge (v, v′) cannot appear in the reserved graph GR under
both cases. Recall that M+

v denotes the initial compensation
messages sent from v. Then for each unreset vertex v ∈ VR ,
M+

v = U ◦Ĝ(xkv)\U ◦GR(xkv). This expression also indicates
that no actual message is created on unreset v if none of v’s
adjacent edges is evolved or covers reset vertices. Based on
this observation and Lemma 3, we have

M̂
r =

⋃

v∈VR

(U ◦ Ĝ(xkv) \ U ◦ GR(xkv)
)

=
⋃

v∈VR

k⋃

�=0

(U ◦ Ĝ(m�
v) \ U ◦ GR(m�

v)
)

=
k⋃

�=0

(U ◦ Ĝ(M�
R) \ U ◦ GR(M�

R)
)
.

Putting this and the fact that M̂c=M
0
C together, i.e., the

initial messages constructed at reset vertices are the same
as their counterparts created in the changed graph, we have

M̂
0 = M

0
C ∪ ⋃k

�=0

(
U ◦ Ĝ(M�

R)\U ◦ GR(M�
R)

)
. ��

References

1. Acar, U.A.: Self-adjusting computation. Ph.D. thesis, CMU (2005)
2. Baluja, S., Seth, R., Sivakumar, D., Jing, Y., Yagnik, J., Kumar,

S., Ravichandran, D., Aly, M.: Video suggestion and discovery for
youtube: taking random walks through the view graph. In: WWW,
pp. 895–904 (2008)

3. Bang-Jensen, J., Gutin, G.Z.: Digraphs-Theory, Algorithms and
Applications, 2nd edn. Springer, Cham (2009)

4. Cai, Y., Giarrusso, P.G., Rendel, T., Ostermann, K.: A theory of
changes for higher-order languages: incrementalizing λ-calculi by
static differentiation. In: PLDI, pp. 145–155 (2014)

5. Chang, X., Liu, X., Wen, J., Li, S., Fang, Y., Song, L., Qi, Y.:
Continuous-time dynamic graph learning via neural interaction
processes. In: CIKM, pp. 145–154 (2020)

6. Europe-OSM. https://www.cise.ufl.edu/research/sparse/matrices/
DIMACS10/europe_osm.html (2010)

7. Fan,W., Hu, C., Tian, C.: Incremental graph computations: Doable
and undoable. In: SIGMOD, pp. 155–169 (2017)

8. Fan, W., Liu, M., Tian, C., Xu, R., Zhou, J.: Incrementalization of
graph partitioning algorithms. PVLDB 13(8), 1261–1274 (2020)

9. Fan, W., Tiao, C., Xu, R., Yin, Q., Yu, W., Zhou, J.: Incremental-
izing graph algorithms. pp. 459–471 (2022)

10. Fan, W., Xu, J., Wu, Y., Yu, W., Jiang, J., Zheng, Z., Zhang, B.,
Cao, Y., Tian, C.: Parallelizing sequential graph computations. In:
SIGMOD, pp. 495–510 (2017)

11. Feng, G., Ma, Z., Li, D., Chen, S., Zhu, X., Han, W., Chen, W.:
Risgraph: A real-time streaming system for evolving graphs to
support sub-millisecond per-update analysis at millions ops/s. In:
SIGMOD, pp. 513–527 (2021)

12. Fredman, M.L., Tarjan, R.E.: Fibonacci heaps and their uses in
improved network optimization algorithms. J. ACM 34(3), 596–
615 (1987)

13. Gong, S., Tian, C., Yin, Q., Yu, W., Zhang, Y., Geng, L., Yu, S.,
Yu, G., Zhou, J.: Automating incremental graph processing with
flexible memoization. PVLDB 14(9), 1613–1625 (2021)

14. Gonzalez, J.E., Low, Y., Gu, H., Bickson, D., Guestrin, C.: Pow-
ergraph: distributed graph-parallel computation on natural graphs.
In: OSDI, pp. 17–30 (2012)

15. Grädel, E., Kolaitis, P.G., Vardi, M.Y.: On the decision problem for
two-variable first-order logic. Bull. Symb. Log. 3(1), 53–69 (1997)

16. Guan, Z., Wu, J., Zhang, Q., Singh, A.K., Yan, X.: Assessing and
ranking structural correlations in graphs. In: SIGMOD, pp. 937–
948 (2011)

17. Hamilton, W.L., Ying, Z., Leskovec, J.: Inductive representation
learning on large graphs. In: NIPS (2017)

18. Hammer, M.A., Khoo, Y.P., Hicks, M., Foster, J.S.: Adapton: com-
posable, demand-driven incremental computation. In: PLDI, pp.
156–166 (2014)

19. Holm, J., de Lichtenberg, K., Thorup, M.: Poly-logarithmic deter-
ministic fully-dynamic algorithms for connectivity, minimum
spanning tree, 2-edge, and biconnectivity. J. ACM 48(4), 723–760
(2001)

20. Jeh, G., Widom, J.: Simrank: a measure of structural-context sim-
ilarity. In: KDD, pp. 538–543 (2002)

21. Jiang, X., Xu, C., Yin, X., Zhao, Z., Gupta, R.: Tripoline: gener-
alized incremental graph processing via graph triangle inequality.
In: EuroSys, pp. 17–32 (2021)

22. Katz, L.: A new status index derived from sociometric analysis.
Psychometrika 18(1), 39–43 (1953)

23. Kim, K., Seo, I., Han, W., Lee, J., Hong, S., Chafi, H., Shin, H.,
Jeong, G.: Turboflux: a fast continuous subgraph matching system
for streaming graph data. In: SIGMOD, pp. 411–426 (2018)

24. Kipf, T.N., Welling, M.: Semi-supervised classification with graph
convolutional networks. In: ICLR (2017)

25. Li, R., Yu, J.X., Mao, R.: Efficient core maintenance in large
dynamic graphs. TKDE 26(10), 2453–2465 (2014)

26. Liu, Y.A.: Efficiency by incrementalization: an introduction. High.
Order Symb. Comput. 13(4), 289–313 (2000)

27. Luo, X., Liu, L., Yang, Y., Bo, L., Cao, Y., Wu, J., Li, Q., Yang, K.,
Zhu, K.Q.: Alicoco: Alibaba e-commerce cognitive concept net.
In: SIGMOD, pp. 313–327 (2020)

28. Libgrape-Lite. https://github.com/alibaba/libgrape-lite
29. Malewicz, G., Austern, M.H., Bik, A.J., Dehnert, J.C., Horn, I.,

Leiser, N., Czajkowski, G.: Pregel: a system for large-scale graph
processing. In: SIGMOD, pp. 135–146 (2010)

30. Mariappan,M., Che, J., Vora, K.: Dzig: Sparsity-aware incremental
processing of streaming graphs. In: EuroSys, pp. 83–98 (2021)

31. Mariappan, M., Vora, K.: Graphbolt: Dependency-driven syn-
chronous processing of streaming graphs. In: EuroSys, pp. 1–16
(2019)

32. Matijasevič, Y.V.: Diophantine representation of recursively enu-
merable predicates. In: Studies in Logic and the Foundations of
Mathematics, vol. 63, pp. 171–177 (1971)

33. McCune, R.R., Weninger, T., Madey, G.: Thinking like a vertex:
a survey of vertex-centric frameworks for large-scale distributed
graph processing. ACM Comput. Surv. 48(2), 1–39 (2015)

123

https://www.cise.ufl.edu/research/sparse/matrices/DIMACS10/europe_osm.html
https://www.cise.ufl.edu/research/sparse/matrices/DIMACS10/europe_osm.html
https://github.com/alibaba/libgrape-lite

806 S. Gong et al.

34. McGregor, A., Vorotnikova, S., Vu, H.T.: Better algorithms for
counting triangles in data streams. In: PODS, pp. 401–411 (2016)

35. McSherry, F., Murray, D.G., Isaacs, R., Isard, M.: Differential
dataflow. In: CIDR (2013)

36. de Moura, L.M., Bjørner, N.: Z3: an efficient SMT solver. In:
TACAS, pp. 337–340 (2008)

37. Murray, D.G., McSherry, F., Isaacs, R., Isard, M., Barham, P.,
Abadi,M.: Naiad: a timely dataflow system. In: SOSP, pp. 439–455
(2013)

38. Page, L., Brin, S., Motwani, R., Winograd, T.: The pagerank cita-
tion ranking: bringing order to the web. Technical report, Stanford
InfoLab (1999)

39. Pearl, J.: Reverend Bayes on inference engines: a distributed hier-
archical approach. In: AAAI, pp. 129–138 (1982)

40. Rossi, R.A., Ahmed, N.K.: The network data repository with inter-
active graph analytics and visualization. In: AAAI (2015). http://
networkrepository.com

41. Road-USA-Graph. https://www.cise.ufl.edu/research/sparse/
matrices/DIMACS10/road_usa.html (2011)

42. Schieber, B., Vishkin, U.: On finding lowest common ancestors:
simplification and parallelization. SIAM J. Comput. 17(6), 1253–
1262 (1988)

43. Sengupta, D., Sundaram,N., Zhu, X.,Willke, T.L., Young, J.,Wolf,
M., Schwan, K.: Graphin: an online high performance incremental
graph processing framework. In: Euro-Par, pp. 319–333 (2016)

44. Shi, X., Cui, B., Shao, Y., Tong, Y.: Tornado: a system for real-time
iterative analysis over evolving data. In: SIGMOD, pp. 417–430
(2016)

45. Sukhbaatar, S., Szlam, A., Fergus, R.: Learning multiagent com-
munication with backpropagation. In: NIPS (2016)

46. Size of Wikipedia (2020). https://en.wikipedia.org/wiki/
Wikipedia:Size_of_Wikipedia

47. Tian, Y., Balmin, A., Corsten, S.A., Tatikonda, S., McPherson, J.:
From “think like a vertex” to “think like a graph”. PVLDB 7(3),
193–204 (2013)

48. UK-2005. https://www.cise.ufl.edu/research/sparse/matrices/
LAW/uk-2005.html (2005)

49. Valiant, L.G.: A bridging model for parallel computation. CACM
33(8), 103–111 (1990)

50. Vora, K., Gupta, R., Xu, G.: Kickstarter: Fast and accurate com-
putations on streaming graphs via trimmed approximations. In:
ASPLOS, pp. 237–251 (2017)

51. Wang, Q., Zhang, Y., Wang, H., Geng, L., Lee, R., Zhang, X.,
Yu, G.: Automating incremental and asynchronous evaluation for
recursive aggregate data processing. In: SIGMOD, pp. 2439–2454
(2020)

52. Xu, S., Zhang, H., Neubig, G., Dai,W., Kim, J.K., Deng, Z., Ho, Q.,
Yang, G., Xing, E.P.: Cavs: an efficient runtime system for dynamic
neural networks. In: ATC, pp. 937–950 (2018)

53. Yang, J., Leskovec, J.: Defining and evaluating network communi-
ties based on ground-truth. In: ICDM, pp. 1–8 (2015)

54. Zakian, T.A.K., Capelli, L.A.R., Hu, Z.: Incrementalization of
vertex-centric programs. In: IPDPS, pp. 1019–1029 (2019)

55. Zhang, Y., Gao, Q., Gao, L., Wang, C.: Priter: a distributed frame-
work for prioritized iterative computations. In: SOCC, pp. 1–14
(2011)

56. Zhang, Y., Gao, Q., Gao, L., Wang, C.: Maiter: an asynchronous
graph processing framework for delta-based accumulative iterative
computation. TPDS 25(8), 2091–2100 (2013)

57. Zhao, J.,Yang,Y., Zhang,Y., Liao,X.,Gu,L.,He,L.,He,B., Jin,H.,
Liu, H., Jiang, X., Yu, H.: Tdgraph: a topology-driven accelerator
for high-performance streaming graph processing. In: ISCA, pp.
116–129 (2022)

58. Zheng, L., Li, Z., Li, J., Li, Z., Gao, J.: Addgraph: anomaly detec-
tion in dynamic graph using attention-based temporal GCN. In:
IJCAI (2019)

59. Zhu, X., Chen, W., Zheng, W., Ma, X.: Gemini: A computation-
centric distributed graph processing system. In:OSDI, pp. 301–316
(2016)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such
publishing agreement and applicable law.

123

http://networkrepository.com
http://networkrepository.com
https://www.cise.ufl.edu/research/sparse/matrices/DIMACS10/road_usa.html
https://www.cise.ufl.edu/research/sparse/matrices/DIMACS10/road_usa.html
https://en.wikipedia.org/wiki/Wikipedia:Size_of_Wikipedia
https://en.wikipedia.org/wiki/Wikipedia:Size_of_Wikipedia
https://www.cise.ufl.edu/research/sparse/matrices/LAW/uk-2005.html
https://www.cise.ufl.edu/research/sparse/matrices/LAW/uk-2005.html

	Ingress: an automated incremental graph processing system
	Abstract
	1 Introduction
	2 Preliminaries
	3 Incrementalization framework
	4 Flexible memoization
	4.1 Incrementalization via memoization-free
	4.2 Incrementalization via memoization-path
	4.3 Incrementalization via memoization-vertex

	5 Asynchronous processing optimization
	6 Ingress
	6.1 Vertex-centric API
	6.2 Automatic memoization policy selection
	6.3 Distributed runtime engine

	7 Experimental study
	7.1 Experimental setup
	7.2 Overall performance
	7.2.1 Performance on graph topology updates
	7.2.2 Performance on edge weight updates

	7.3 Sensitivity to updates
	7.4 Sensitivity to graph sizes
	7.5 Effectiveness of asynchronous optimizations
	7.6 Impact of threshold parameter setting methods
	7.7 Resetting versus trimming
	7.8 Distributed runtime performance

	8 Related work
	9 Conclusion
	Acknowledgements
	Appendix
	A1. Proof of Lemma 1
	A2. Proof of Lemma 2
	A3. Proof of Lemma 3
	A4. Proof of Lemma 4
	References

