
IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 35, NO. 11, NOVEMBER 2024 2147

Towards Efficient Graph Processing in
Geo-Distributed Data Centers

Feng Yao , Qian Tao , Shengyuan Lin , Yanfeng Zhang , Wenyuan Yu ,
Shufeng Gong , Associate Member, IEEE, Qiange Wang , Ge Yu , Senior Member, IEEE,

and Jingren Zhou , Fellow, IEEE

Abstract—Iterative graph processing is widely used as a sig-
nificant paradigm for large-scale data analysis. In many global
businesses of multinational enterprises, graph-structure data is
usually geographically distributed in different regions to sup-
port low-latency services. Geo-distributed graph processing suffers
from the Wide Area Networks (WANs) with scarce and hetero-
geneous bandwidth, thus essentially differs from traditional dis-
tributed graph processing. In this paper, we propose RAGraph, a
Region-Aware framework for geo-distributed graph processing. At
the core of RAGraph, we design a region-aware graph processing
framework that allows advancing inefficient global updates locally
and enables sensible coordination-free message interactions and
flexible replaceable communication module. In terms of graph data
preprocessing, RAGraph introduces a contribution-driven edge
migration algorithm to effectively utilize network resources. RA-
Graph also contains an adaptive hierarchical message interaction
engine to switch interaction modes adaptively based on network
heterogeneity and fluctuation, and a discrepancy-aware message
filtering strategy to filter important messages. Experimental results
show that RAGraph can achieve an average speedup of 9.7× (up to
98×) and an average WAN cost reduction of 78.5% (up to 97.3%)
compared with state-of-the-art systems.

Index Terms—Graph processing, geo-distributed data centers,
heterogeneous network.

Received 20 March 2024; revised 31 July 2024; accepted 21 August 2024.
Date of publication 3 September 2024; date of current version 24 September
2024. This work was supported in part by the National Natural Science Foun-
dation of China under Grant U2241212, Grant 62072082, Grant 62202088, and
Grant 62137001, in part by the 111 Project under Grant B16009, in part by
the Joint Funds of Natural Science Foundation of Liaoning Province under
Grant 2023-MSBA-078, in part by the Fundamental Research Funds for the
Central Universities under Grant N2216015 and Grant N2416011, and a research
grant from Alibaba Innovative Research (AIR) Program. Recommended for
acceptance by P. D’Ambra. (Corresponding authors: Yanfeng Zhang; Shufeng
Gong.)

Feng Yao, Shengyuan Lin, Shufeng Gong, Qiange Wang, and Ge Yu
are with the School of Computer Science and Engineering, Northeastern
University, Shenyang 110819, China (e-mail: yaofeng@stumail.neu.edu.cn;
linshengyuan@stumail.neu.edu.cn; wangqiange@stumail.neu.edu.cn; gongsf
@mail.neu.edu.cn; yuge@mail.neu.edu.cn).

Qian Tao, Wenyuan Yu, and Jingren Zhou are with Alibaba Group,
Hangzhou 311121, China (e-mail: qian.tao@alibaba-inc.com; wenyuan.ywy
@alibaba-inc.com; jingren.zhou@alibaba-inc.com).

Yanfeng Zhang is with the School of Computer Science and Engineer-
ing, Northeastern University, Shenyang 110819, China, also with the Na-
tional Frontiers Science Center for Industrial Intelligence and Systems Op-
timization, Northeastern University, Shenyang 110819, China, and also with
the Key Laboratory of Data Analytics and Optimization for Smart Industry
(Northeastern University), Ministry of Education, Shenyang 110819, China
(e-mail: zhangyf@mail.neu.edu.cn).

Digital Object Identifier 10.1109/TPDS.2024.3453872

I. INTRODUCTION

I TERATIVE graph processing has emerged as a significant
paradigm in many fields. With the rapid growth in the size of

graph-structured data, there has been a surge in research efforts
aimed at extending graph processing to distributed environments
to facilitate computation over large-scale graphs. These studies
cover multiple directions, including graph partitioning [1], [2],
the design of processing models [3], [4], [5], and the develop-
ment of parallel algorithms [6], [7].

Unfortunately, most existing frameworks assume that the
graph-structured data is distributed to multiple machines within
a single-site data center, equipped with high network bandwidth
and homogeneous communication links. While in real-world
application scenarios, geographically distributing the graph-
structured data across multiple data centers is often necessary
due to various constraints. A typical example is managing
global-scale social networks across countries. Facebook has
established over 20 data centers located in Europe, Asia, and
America, and almost 90% of its daily active users are outside
North America [8]. Another common application with geo-
graphically distributed graphs is federated graph computation
[9], in which multiple data owners share partial access per-
mission to their local graphs stored in private data centers and
collaboratively execute graph analytics on the data union. In
such geo-distributed applications, multiple data centers are con-
nected by Wide Area Networks (WANs), which results in scarce
and heterogeneous network bandwidth [10], [11]. Regulatory
and privacy concerns [12] may also prohibit aggregating graph
data to a central site. Therefore, traditional distributed graph
processing designed with uniform scheduling strategies is no
longer effective.

We summarize two essential challenges that lead to the inef-
ficiencies in geo-distributed iterative graph processing through
an illustrative example.

Example 1: Fig. 1(a) illustrates the network topology of a
AliCloud ECS geo-distributed cluster. The cluster consists of
three geo-distributed data centersD1,D2, andD3, each of which
is an 8-node cluster connected by 10 Gbps Ethernet. In contrast,
the network bandwidth between data centers can only reach up
to 100 Mbps and be heterogeneous due to diverse WAN con-
nections. Moreover, the WAN links are unstable due to network
fluctuation, which may occur even in a short period. Traditional
distributed graph processing systems treat the worker as peer

1045-9219 © 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Northeastern University. Downloaded on April 06,2025 at 07:19:33 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0009-0007-8172-5108
https://orcid.org/0000-0002-8969-906X
https://orcid.org/0009-0000-0771-6755
https://orcid.org/0000-0002-9871-0304
https://orcid.org/0009-0006-5641-2452
https://orcid.org/0000-0001-5898-5621
https://orcid.org/0000-0002-4847-6070
https://orcid.org/0000-0002-3171-8889
https://orcid.org/0000-0002-4220-2634
mailto:yaofeng@stumail.neu.edu.cn
mailto:linshengyuan@stumail.neu.edu.cn
mailto:wangqiange@stumail.neu.edu.cn
mailto:gongsf@mail.neu.edu.cn
mailto:gongsf@mail.neu.edu.cn
mailto:yuge@mail.neu.edu.cn
mailto:qian.tao@alibaba-inc.com
mailto:wenyuan.ywy@alibaba-inc.com
mailto:wenyuan.ywy@alibaba-inc.com
mailto:jingren.zhou@alibaba-inc.com
mailto:zhangyf@mail.neu.edu.cn

2148 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 35, NO. 11, NOVEMBER 2024

Fig. 1. An example of geo-distributed graph processing. (a) The bandwidth
of geo-distributed networks. (b) Performance of geo-distributed and single-site
iterative graph processing. (c) Performance breakdown of sync/async parallel
processing modes on geo-distributed networks.

workers and assume each pair of them has the same network
bandwidth. Based on this, their optimization and scheduling
strategies are of a global uniform mindset, which leads to
hardly adapting to heterogeneous geo-distributed systems with
hierarchy network connections.

To expose the challenges raised by the above issues in iterative
graph processing, we run the PageRank algorithm on Twitter
graph [13] on two clusters with different configurations. The first
cluster consists of 24 AliCloud ECS instances, all located within
a single-site data center. These instances are interconnected
via a 10Gbps Ethernet network. The second cluster is also
equipped with 24 identical ECS instances, deployed in a geo-
distributed cluster shown in Fig. 1(a). We test a state-of-the-art
synchronous parallel system, GRAPE [6], on both clusters (i.e.,
Single-Site-Sync and Geo-Sync) and, additionally, an advanced
asynchronous parallel processing system, Maiter [14], on the
geo-distributed cluster (i.e., Geo-Async). The overall computa-
tion, communication, and blocking time are reported in Fig. 1(b).
Fig. 1(c) shows the performance breakdown of geo-distributed
iterative graph processing under two parallel processing models
(sync and async). Compared with processing in a single-site data
center, most of the increased running time in geo-distributed data
centers is communication and blocking time, with computation
time being comparatively insignificant. �

Example 1 reveals two essential challenges of the geo-
distributed iterative graph processing due to the hierarchical and
heterogeneous networks.

Imbalance of Message Transmission: Message transmis-
sion time between data centers is much longer than that within a
data center, which results in communication time among data
centers occupying most of the execution time, as shown in
Fig. 1(b). Therefore, reducing cross-datacenter communication
is the key to geo-distributed graph processing. In addition, the
imbalance and fluctuation of network transmission between data

centers make inefficient utilization of WAN resources on partial
transmission links. Worse, successive iterations exacerbate the
imbalanced message transmission in iterative graph processing,
which is more time-consuming.

Inefficiency of Graph Processing Model: Synchronous
graph processing models, e.g., the Bulk Synchronous Parallel
(BSP) model [15], require coordinated computation and
communication among vertices in each iteration. When it
comes to geo-distributed data centers, the bandwidth among
which is highly heterogeneous, the barriers will block the
messages (i.e., coordinated waiting) in each superstep and
dramatically increase the time cost. Back to Fig. 1(c), D1 and
D2 get stuck in blocking until D3 finishes communication, thus
resulting in a long blocking time of Geo-Sync. Conversely,
Geo-Async under Asynchronous Parallel (AP) model [5] allows
workers to execute independently to avoid coordinated waiting
but incurs frequent communication and high transmission cost.
Therefore, both synchronous and asynchronous parallel models
are not well-qualified for geo-distributed graph processing.

Among various graph processing systems, Monarch [16] and
GeoGraph [17] are designed for geo-distributed graph process-
ing. Monarch reduces WAN usage for synchronous parallel
processing by optimizing local computation under the GAS
model. GeoGraph reduces communication over the WANs by
constructing hierarchical clustering among data centers. Both
of them enhance the performance of geo-distributed graph pro-
cessing tasks, but inevitably coordinate with other workers on
the WANs and fail to consider the impact of network fluctuation.

RAGraph: To address these problems, we design and imple-
ment a Region-Aware framework for iterative graph algorithms
in geo-distributed environments. The framework (1) allows
advancing inefficient global updates to local computation to
optimize execution time, (2) designs a two-layer coordination-
free message interaction view to eliminate coordinated wait-
ing, and (3) mitigates the impact of network congestion by
replacing communication roles. The framework implements
unified message management through the proxy in combination
with the above designs. Regarding data preprocessing for the
Region-Aware framework, we establish a vertex contribution
metric to characterize the ability of a vertex to generate and
propagate influential messages. Subsequently, considering both
the contribution metric and network heterogeneity, we introduce
an edge migration algorithm to effectively enhance the utiliza-
tion of scarce network resources. Furthermore, based on the
Region-Aware framework, we propose two runtime optimiza-
tions, including an adaptive hierarchical message interaction
engine and a discrepancy-aware message filtering strategy. The
adaptive hierarchical message interaction engine proposes two
message interaction ideas of eager/lazy for network heterogene-
ity, and switches between both modes adaptively by analyzing
the communication link status to address the impact of network
fluctuation. On the other hand, we develop an adaptive bucket
structure in discrepancy-aware message filtering. The range of
buckets adaptively adjusts with iterations to filter the important
messages of the current phase from the messages generated by
different iterations. The above effective components comprise
RAGraph, a geo-distributed graph processing system.

Authorized licensed use limited to: Northeastern University. Downloaded on April 06,2025 at 07:19:33 UTC from IEEE Xplore. Restrictions apply.

YAO et al.: TOWARDS EFFICIENT GRAPH PROCESSING IN GEO-DISTRIBUTED DATA CENTERS 2149

A preliminary version of this paper appeared in [18]. This
manuscript enhances the framework’s completeness and robust-
ness from the perspective of graph data preprocessing. Specifi-
cally, we make the following new contributions:
� We introduce a vertex contribution metric to characterize

the ability of a vertex to generate and propagate influential
messages, which in turn reflects its contribution to conver-
gence.

� We propose a contribution-driven edge migration algo-
rithm that simultaneously considers contribution metric
and network heterogeneity to improve the utilization of
scarce network resources.

� We integrate the edge migration algorithm into RAGraph
and conduct experimental evaluations. Experiments show
that the preprocessing step further leads to a 1.23–2.7×
speedup and a 14.7%–49.4% reduction in WAN cost over
the previous framework performance.

II. PRELIMINARIES

This section reviews the preliminaries for the vertex-centric
model and monotonic property of iterative graph algorithms.

Graphs: A graph G = (V,E,C) consists of a finite set V
of vertices, a set E of directed edges with each (u, v) ∈ E
representing a directed edge from vertex u to vertex v, and
a series of functions C which represents the characterizations
C

(i)
V (v) or C(j)

E (e) owned by vertex v in V or edge e in E.
Vertex-Centric Model: In vertex-centric graph processing

model [19], a program P is executed iteratively on the in-
put graph G for each vertex v, say Pv , and interacts with
the programs on v’s neighbors in each iteration until the
states of the vertices converge. Formally, P can be represented
by a triple (A,U , I) for each vertex, where the aggregation
function A aggregates the messages received from neighbors,
update function U updates the vertex state, and interaction
function I defines how vertices interact. Specifically, For a
vertex v at the ith iteration, the program Pv performs as
follows:

xi
v = A(M i−1

v)

siv = U(si−1
v , xi

v)

mi
v,w = I(siv, xi

v, CE(v, w)) (∀w ∈ Nout(v)) (1)

where M i−1
v is defined as the set of messages sent from the

vertices pointing to v, i.e., M i−1
v = {mi−1

u,v | e(u, v) ∈ E}. xi
v

is the aggregation result of v obtained by A and siv denotes the
current state of vertex v at round i. Based on the state si−1

v of
the previous round and the aggregation result xi

v , v updates its
state siv by U . Finally, vertex v generates the messages for each
out edge (v, w) based on siv , xi

v, and CE(v, w), and sends to v’s
neighbors by I. Here Nout(v) = {w | e(v, w) ∈ E}.

Monotonic Property: Many iterative graph algorithms in
vertex-centric programs exhibit monotonicity. That is, the ver-
tex state varies monotonically until convergence. Compared
with the vanilla program in (1), these algorithms natively have
identical A and U , and I does not take the state as the input,

TABLE I
A LIST OF GRAPH ALGORITHMS WITH MONOTONIC PROPERTY

i.e., I(xi
v, CE(v, w)). Besides, A and I satisfy the monotonic

conditions.
Monotonic Conditions: A, I satisfy monotonic conditions if:

(C1) A(X ∪ Y)=A(Y ∪X) and A(A(X) ∪ Y)=A(X ∪ Y)
(C2) I(A(X ∪ Y)) = A(I(X) ∪ I(Y))

Condition (C1) indicates that A is commutative and asso-
ciative [14], [20] so that messages can be partially aggregated
and updated by A. Condition (C2) relaxes the restriction on
the composition order of A and I. In other words, A can be
eliminated from a series of sequential A, I operations. It also
states that the input of I contains the intermediate result and
omits the vertex state [21]. Henceforth, we denote the set of
partial messages from the element group ∗ as M i

∗ and use A
and U interchangeably.

Table I summarizes some typical iterative graph algorithms
that satisfy the monotonic conditions. Conversely, some graph
algorithms do not adhere to the monotonic conditions. For
example, GCN-Forward [22], whose aggregation function A
is sum, satisfies condition (C1), but the activation functions
used as interaction functions, such as ReLU and Sigmoid, do
not satisfy condition (C2). In addition, algorithms like Graph
Coloring [23] and Triangle Counting [24] require simultaneous
access to complete neighbor messages, thereby not meeting the
monotonic conditions.

Example 2: We take an iterative graph algorithm, delta-based
PageRank [14], as an example of execution in a monotonic
fashion, which can be represented as follows:
� A(M i−1

∗,v) = sum(M i−1
∗,v); A(si−1

v , xi
v) = sum(si−1

v , xi
v);

� I(xi
v, CE(v, w)) = d× xi

v/Nv (∀w ∈ Nout(v)).
Here d is a constant damping factor, and Nv denotes the

out-degree of a vertex v in graph G. Initially, s0v = 0 and
M0

v = {1− d} for all v ∈ V . When executing, since aggrega-
tion function A (i.e., sum) has commutative and associative
properties satisfying condition (C1), the vertex v can gather
partial messages from incoming neighbors and use them to
update its state monotonically. Then v computes the message
for interaction, i.e., d× xi

v/Nv , by the interaction function I
from the gathered partial messages and propagates the message
to outgoing neighbors. It is evident thatA andI satisfy condition
(C2). �

Authorized licensed use limited to: Northeastern University. Downloaded on April 06,2025 at 07:19:33 UTC from IEEE Xplore. Restrictions apply.

2150 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 35, NO. 11, NOVEMBER 2024

Fig. 2. An example of Region-Aware framework. (a) Cross-datacenter ping-pong effect. (b) Two-layer view of local-global interaction. (c) A replacement
communication strategy. (d) Region-Aware proxy design.

III. REGION-AWARE GRAPH PROCESSING FRAMEWORK

This section begins with three observations under the mono-
tonic property to draw inspiration for RAGraph’s framework
design, then proposes the design details of the framework.

A. Observations

We start with a toy example and three observations that
could help optimize geo-distributed graph processing. In a geo-
distributed cluster, as reported in Fig. 1(a), a sample graph is
given with 12 vertices distributed, as shown in Fig. 2(a).

Observation 1: Ping-Pong Effect: Consider the execution of
PageRank at the blue arrows in Fig. 2(a). For the message
initiated from v10 transferred via v3 to v12, v3 first receives
the message m(10,3) from v10, and then generates a message
m(3,12) to send to v12 with valued×m(10,3)/Nv3

, which suffers
from inefficient WAN transmission. We call this the ping-pong
effect. An alternative way is to use message m(10,3) to directly
generate m(3,12) in data center D3 by d×m(10,3)/Nv3

, if D3

has knowledge of the vertex v3’s out-degree Nv3
. Consequently,

the locally generated messages (e.g., m(3,12)) can be used di-
rectly for subsequent computations inD3 without waiting for the
cross-datacenter propagation. Afterward, m(10,3) is sent to v3,
as message m(3,12) has been applied from v10 to v12 without v3,
m(10,3) only interacts via v3 with other neighbors of v3 except
v12. Since communications between data centers are inefficient,
by avoiding the round-trip transmission waiting, this can boost
the message passing and result in a shorter running time.

In addition, the ping-pong effect also occurs in other
communication-intensive boundary structures. As the red bidi-
rectional arrow in Fig. 2(b) shows, both v6 and v10 can compute
locally via the ping-pong effect by using the messages sent to
each other. Besides, as the yellow arrows show, D1 can use
messages m(1,6) and m(2,6) from v1 and v2 to locally generate
the message m(6,3) in advance.

Observation 2: Inefficient Uniform Interaction: Consider the
imbalance of network bandwidth between the inside (i.e., local)
and outside (i.e., global) of the data center and among data
centers. The general approach of applying a uniform interaction
pattern suffers from efficiency gaps due to imbalanced networks,
e.g., BSP model [15]. Besides, the local-global alternate execu-
tion suffers from LAN-WAN bandwidth imbalance, resulting
in local message interaction being subject to inefficient global
message interaction. This motivated us to layer the message

interaction based on the network and connect the layers via
vertex replicas.

Based on the above considerations, we propose a two-
layer coordination-free message interaction view, as shown in
Fig. 2(b), to eliminate forced global message interaction per iter-
ation and coordination on global. TakePageRank as an example.
At the lower layer of the view, a data center, e.g., D2, computes
local PageRank scores sv via locally generated partial messages,
i.e., d× sum(M∗,v)/Nv , where M∗,v = {∪m(u,v) | u ∈ VD2

},
on the subgraph as an independent execution unit without forced
global message interaction. The replicas (e.g., v6 in D1 and
D3) initiate the lower-upper layer interaction in different data
centers only when necessary. At the upper layer of the view,
global message interactions are performed via replicas without
full attendance to eliminate coordinated waiting and provide
fresh global messages, i.e., M∗,v = {∪m(u,v) | u ∈ V \ VD2

},
for lower-layer computations in D2. Afterward,VD2

can imme-
diately use the received M∗,v for local computation without
coordination.

Observation 3: Replica Replaceable Communication: In
practice, the bandwidth between data centers is allocated based
on typical or average usage rather than peak usage [25], resulting
in intermittent network congestion (a.k.a. network fluctuation).
When network congestion occurs, the network throughput on
the data center link drops, resulting in round-trip of message
delays.

Based on the message passing of v6 in the upper layer in
Fig. 2(b) with the original vertex v6 in D2 and replicas of
v6 in D1 and D3. Consider the communication pattern shown
in the upper part of Fig. 2(c), and still take PageRank as an
example. The replicas of v6 send messages to the original v6
in D2 at any time. Correspondingly, the original v6 aggre-
gates part or all of the messages from the replicas and local
neighbors, i.e., xv6

= sum(M∗,v6
), where M∗,v ⊆ {m(D1,v6) ∪

m(D2,v6) ∪m(D3,v6)}, and generates new messages, i.e., d×
xv6

/Nv6
, to be scattered back to D1 and D3. Such one-to-many

communications result in a large inflow and outflow of messages
on the ”one” side (i.e., D2). Transmission delays are intolerable
when congestions occur on D2.

Intuitively, if any replica of v6 knows the out-degree Nv6
, the

aggregation and generation of messages can still proceed. So we
can find a substitute to share the congested communication. As
shown in the lower part of Fig. 2(c), a replica of v6 in the current
congestion-free data center, D3, is selected as a replacement for

Authorized licensed use limited to: Northeastern University. Downloaded on April 06,2025 at 07:19:33 UTC from IEEE Xplore. Restrictions apply.

YAO et al.: TOWARDS EFFICIENT GRAPH PROCESSING IN GEO-DISTRIBUTED DATA CENTERS 2151

the original v6 in D2 to handle communications from v6 in D1

and D2.

B. Region-Aware Message Management

The observations in Section III-A inspire us to design a
Region-Aware message management framework, the structure
of which is depicted in Fig. 2(d). Specifically, each data center
Dk constructs a proxy Pk,l for each remote data center Dl

(k �= l). Each proxy uniformly maintains the corresponding
datacenter-wide replicas. That is, the proxy is responsible for
the global message interaction and replaceable communication
at the upper layer and assisting acceleration of the ping-pong
effect at the lower layer in the two-layer interaction view, e.g.,
P3,1 generates the message sent back from v3 to v12 directly
with cached message mv3

.
Formally, we define the workflow of the Region-Aware mes-

sage management as follows:

For any vertex v ∈ Vk :

lxi
v = A ({mi−1

u,v | u ∈ Vk}
)
, (2)

gxi
v = A ({mi−1

u,v | u ∈ V \ Vk}
)
, (3)

siv = A (
si−1
v ,A (

lxi
v, gx

i
v

))
, (4)

mi
v,w = I (A (

lxi
v, gx

i
v

)
, CE(v, w)

)
for w ∈ Vk, (5)

mi
v,w = I (A (

lxi
v, {mi−1

u,v | u ∈ V \ Vl}
)
, CE(v, w)

)
(6)

for w ∈ Vl(l �= k).

For any proxy Pk,l :

mi
Pk,w

= I (A ({mi
v,w | v ∈ Vk}

))
for w ∈ Vl, (7)

mi+1
Pl,u

= I (
mi

Pk,w
, CE(w, u)

)
for u ∈ Vk and w ∈ Vl. (8)

For any vertex v, in each iteration, v in data center Dk first
aggregates the messages received from its local neighbors (2)
and other data centers (3), then updates its state in the ith
round based on the aggregation results (4). It finally generates
messages to its local neighbors (5) and remote neighbors (6).
Equation (6) indicates that the generated messages sent to the
remote proxy inDl are only based on the messages from the data
centers except for Dl, since our optimization corresponding to
Observation 1 (i.e., the ping-pong effect) has already applied
the effect of the messages from Dl in last round. All vertex
operations (2)–(6) occur on the lower layer of the two-layer
interaction view.

For any proxy Pk,l, for two-layer interaction view, Pk,l takes
different interaction functions for upper-layer message interac-
tion and lower-layer message management. Specifically, at the
upper layer, Pk,l sends the cached messages to the remote data
center Dl through a direct interaction function I (7) without
coordinating with other proxies. At the lower layer, considering
the ping-pong effect, Pk,l directly computes the message that
will be sent back to local neighbor u from remote neighbor w
through the cached message to apply it to u one step ahead
through the interaction function I (8).

Example 3: We employ the process of PageRank as an exam-
ple to illustrate the above workflow:
� A(M i−1

∗,v) = sum(M i−1
∗,v); A(si−1

v , xi
v) = sum(si−1

v , xi
v);

� I(xi
v, CE(v, w)) = d× xi

v/Nv (∀w ∈ Nout(v));
� I(xi

Pk,w
) = xi

w (∀w ∈ Vl).
PageRank uses sum to aggregate messages from local (i.e.,

lxi
v) and remote (i.e., gxi

v) neighbors and update state siv . Since
condition (C2) holds, the interaction functionI, i.e.,d× xi

v/Nv ,
can be applied to multiparty operations. In the ping-pong effect,
the proxy uses the cached global messages xi

w to generate new
local messages. In the two-layer view, vertex v in the lower
layer can continuously generate local and global messages via
I from lxi

v or gxi
v, and use I in the upper layer to send global

messages xi
w without coordination. In addition, the proxy can

perform I replacing the congested side when it knows the v’s
out-degree Nv . �

C. Theoretical Analysis

This subsection provides a theoretical analysis for the proper
execution of the Region-Aware framework. RAGraph performs
layered interaction in the hierarchical network and coordination-
free message interaction between replicas with ping-pong com-
putation may confuse the process. We introduce Delta State
Conflict-free Replicated Data Type (δ-CRDT) [26], [27] to guar-
antee the Strong Eventual Consistency between replicas (i.e., all
correct replicas reach the same state without conflicts).
δ-CRDT provides a mutation function mδ for an update oper-

ation, and the state transition of each replica by joining (i.e., �)
the current state s and mδ(s), i.e., s′ = s �mδ(s). Interactions
between replicas are occurred by joining each other’s mutation
updates mδ(s∗).

Assume (1) � is associative, commutative, and idempotent
(i.e., ACI property), (2) the object has causal consistency assur-
ance, and (3) mδ(s) on each replica is joined to each other at
least once, then δ-CRDT guarantees that all replicas eventually
reach a consistent convergence state without conflicts.

Applying CRDT to Graph Processing: Back to the iterative
graph processing with monotonic property, A and I can be
analogous to the join (i.e., �) and mutation (i.e., mδ) functions
of δ-CRDT respectively. Specifically, the state of vertex v after
i iterations is:

siv = A(si−1
v ,A(M i−1

v)) (9)

= A
(
si−1
v ,∪j

k=1m
i−1
k,v

)
(10)

= A(si−1
v ∪ I(xi−1

1,v) ∪ ... ∪ I(xi−1
j,v)) (11)

where mi−1
k,v = I(xi−1

k,v). Following the conditions (C1) and
(C2), (9) can be reorganized to obtain (11). Eq. (11) can be con-
sidered that part of the messages (e.g.,mi−1

v,v) come from v, while

others (e.g., ∪j
k=1{mi−1

k,v | k �= v}) come from the replicas. As
a result, all replicas use A to join the new messages through the
mutation of I. We next explore in detail the feasibility of A and
I to ensure the correct execution following δ-CRDT.

Causal Consistency: Causal consistency means that all
“causally” related (or potentially related) events must appear

Authorized licensed use limited to: Northeastern University. Downloaded on April 06,2025 at 07:19:33 UTC from IEEE Xplore. Restrictions apply.

2152 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 35, NO. 11, NOVEMBER 2024

in the same order. δ-CRDT guarantees correct causality by
specifying the causal merging of a group of mutation updates.
For iterative graph processing, following monotonic property,
we have:

Theorem 1: Consider iterative graph processingP withA and
I for multi-replica participation. If A and I satisfy the mono-
tonic conditions, then RAGraph withA, I andP guarantees that
successive joins on individual proxies have no causality. �

Proof sketch: Based on monotonic property, the state sn of a
vertex after n iterations is:

sn = A (
sn−1,A(Mn−1)

)

= A (A(sn−2,A(Mn−2)) ∪ A ◦ I(A(Mn−2))
)

= A (
s0 ∪ (A ◦ I)(M0) ∪ . . . ∪ (A ◦ I)n(M0)

)
(12)

Here ◦ is the function composition operator, which represents a
set of operations to be applied consecutively, e.g., A ◦ I(M) =
A(I(M)). s0 and M0 denote the initial vertex state and the
intermediate message set, respectively. For arbitrary round i,
i > 0, we have A(M i) = A ◦ I(A(M i−1)) = A ◦ I(M i−1)
and M i = ∪jm

i under monotonic conditions. We decompose
the set M0 (i.e., sn = A((s0 ∪ (A ◦ I)(∪jm

0) ∪ ... ∪ (A ◦
I)n(∪jm

0))). Following condition (C2), any unorderedm (e.g.,
{mi,mi−3,mi+3}) can be joined to act on I. Therefore, when
the set M0 is dispersed among the replicas, there is no causality
in the message delivery between the proxies under the estab-
lished correct rules. �

ACI Property: δ-CRDT guarantees eventual consistency and
convergence of replicas via the ACI property. However, as men-
tioned previously, condition (C1) defines the commutative and
associative properties ofA but has no constraint on idempotence
(i.e., A(X,X) = X). For example, PageRank’s aggregation
function sumdoes not satisfy the idempotent property. The idem-
potent property avoids duplicate delivery anomaly. Theorem 2
gives system constraints to guarantee the equivalence with ACI
property.

Theorem 2: Assume an underlying reliable communication
protocol. If each message is aggregated by A to each replica
exactly once, and the replica performs exactly-once interaction
with its neighbors by I, then all replicas reach the same state
without time constraint. �

Proof sketch: Define an elementary message as one that does
not go through other vertices except its destination. Our observa-
tion is that for a pair of adjacent verticesu, v in different data cen-
ters Dk and Dl, respectively, there will be only one elementary
message from u to v, the path of which is u −→ Pk,l −→ v. The
value of the message will be affected by the interaction function
I and I in path u −→ Pk,l andPk,l −→ v, respectively. Since I
does not change the input, the value of the message from u to v
is exactly I(xi

u, CE(u, v)), same as the value directly received
from u.

From the vertex-centric model, the result of the complete mes-
sage obtained by vertex v in round ith is A({mi−1

u,v | e(u, v) ∈
E}). Based on (2) and (3), the intermediate result of v in the
ith round would be A(lxi

v, gx
i
v) = A({mi−1

u,v | e(u, v) ∈ E}).
Therefore, when aggregating gxi

v from other replicas exactly

Fig. 3. The distribution of message values on the boundary vertices.

once, a complete and correct message result from the current
round is obtained. �

IV. CONTRIBUTION-DRIVEN EDGE MIGRATION

This section further explores the data preprocessing optimiza-
tion for cross-datacenter message transmission efficiency from
a data placement perspective.

Data in geo-distributed environments is generated and main-
tained at the nearest data center. The attempt to replace all edges
among data centers for achieving optimal communication cost
results in extensive data transmission, which is unaffordable in
real production environments [28]. Moreover, as the graph data
evolves, the existing placement of edges becomes no longer
optimal. For the above reasons, RAGraph transforms the edge
repartitioning problem to edge migration, focusing on only
incrementally modifying the placement of a minor number of
edges on the boundary.

In iterative graph processing, the message value of vertex
interaction reflects the contribution of the vertex to the conver-
gence of the algorithm [29], [30]. In a geo-distributed cluster
configuration depicted in Fig. 1(a), we count the distribution
of message values for boundary vertices on an iteration step
when performing PageRank on the Wiki graph [31] and Google
graph [32] using the graph processing system GRAPE [6]. As
shown in Fig. 3, less than 5% of the vertices have large-valued
messages, while a substantial number exhibit messages with
low contributions. Transmitting messages from a large number
of low-contribution vertices across data centers is inefficient, as
it depletes valuable network resources while offering minimal
contributions to convergence.

Basic Idea: Edge migration aims at more efficient message
interaction on the boundary by migrating edges with low-
contribution message propagation in scarce and heterogeneous
networks. Specifically, RAGraph evaluates the boundary ver-
tices in considering contribution and network bandwidth, and
based on the evaluation scores, low-contribution edges are relo-
cated within the dependent data centers until high-contribution
vertices appear on the boundary.

We first define the vertex contribution (C) to measure the
degree of influence of vertex generation and propagation of
messages. Following the vertex-centric model, the contribution
of a vertex v depends on its capability to collect numerous
or significant message values from incoming neighbors, or to
initiate widespread interactions through outgoing neighbors.

Authorized licensed use limited to: Northeastern University. Downloaded on April 06,2025 at 07:19:33 UTC from IEEE Xplore. Restrictions apply.

YAO et al.: TOWARDS EFFICIENT GRAPH PROCESSING IN GEO-DISTRIBUTED DATA CENTERS 2153

The contribution metric Cv of vertex v is formulated as:

Cv =
∑

u∈Nin(v)

α · wu,v · D(u)∑
w∈Nout(u)

wu,w
+D(v), (13)

whereα is a decay factor, 0.8 by default.D(v) denotes the degree
of vertex v, and wu,v is the weight of edge (u, v), which is set to
1 on the unweighted graph. Here Nin(v) = {u | e(u, v) ∈ E}
and Nout(u) = {w | e(u,w) ∈ E}.

Objective Function: Given a set of data centers D =
{D1, ..., Dh} and a set of boundary vertices Vb = {v1, ...vn}.
The average network transmission rate R from Di to Dj is
denoted as RDi,Dj

. Intuitively, a higher C and R correspond
to more efficient message interaction, resulting in an overall
increase in communication gain. Therefore, our objective is to
find an optimal migration scheme that maximizes the overall
communication gain:

Og = max
∑
v∈Vb

∑
Dj∈D(v)

Cv ·RDi,Dj
. (14)

Here the original vertex of v is in Di, and D(v) denotes the data
center set where replicas of vertex v are located.

Geo-distributed graph processing primarily focuses on mes-
sage interaction. We use vertex contribution to characterize the
data center load, i.e., LDi

=
∑

v∈Vi
Cv . The load constraint is

formulated to balance the message interaction cost as follows:

max
Di

∑
v∈Vi

Cv
1
h

∑
v∈V Cv

≤ 1 + ξ (15)

where imbalance factor ξ is a constant satisfying 0 ≤ ξ ≤ 1.
Edge Migration: For graph data naturally distributed over data

centers, we first extract the vertex contribution C in parallel
and obtain the average network transmission rate R on each
network link. Subsequently, according to metric C and R, we
propose a heuristic edge migration algorithm. The core idea is to
continuously search for high contribution vertices as boundary
vertices near the boundary based on the contribution metric.
Meanwhile, traversed low-contribution edges are sent to the
corresponding remote data centers to balance the load.

Algorithm 1 describes the whole process of edge migration
on contribution basis. Each data center Di and its corresponding
graphGi arrange the remaining data centers in descending order
based on R (Line 2). For each pair of data centers, we migrate
edges from the high load side to the low load side and calculate
the load difference between the two (Line 5–6). In the perform-
ing migration data center, we establish a migration buffer mb to
cache edges designated for transmission (Line 7). Subsequently,
we sort the boundary vertices of the data center pair in increasing
order of contribution (Line 8). For each boundary vertex, a
breadth-first search (BFS) is performed to collect the set of edges
E ′ from candidate neighbors whose contributions are less than
that boundary vertex. We then determine whether the inclusion
of E ′ exceeds the tolerable imbalance load difference. If not,
we add E ′ to mb; otherwise, we incrementally add edges in E′

to mb until the capacity is saturated (Line 9–19). Finally, we
transmit the edges in mb to the corresponding data center and
update the load on both sides (Line 20–21).

Algorithm 1: Edge Migration Algorithm.

When the graph changes, performing contribution measure-
ment and incrementally updating the data center load on the
topology surrounding the change is only necessary. Afterward,
edge migration is executed according to Algorithm 1.

Task Outsourcing: Upon migrating specific edges to a remote
data center, the corresponding graph processing tasks are also
outsourced to that data center. After the migration, the data center
globally updates the location information for these migrated
vertices, while the proxy concurrently updates the maintained
information. The above operations ensure that these migrations
can be processed like local vertices by the remote data center,
while freeing the original data center from executing processing
tasks on these vertices.

V. HETEROGENEOUS-AWARE MESSAGE PASSING

MANAGEMENT

This section presents two important runtime optimizations
based on the Region-Aware framework.

A. Adaptive Hierarchical Message Interaction

To adapt to the heterogeneous and fluctuating networks, we
design an adaptive hierarchical message interaction engine. Our
approach derives from two insights into the message passing
in geo-distributed environments. First, as shown in Example 1,
the bandwidth of WANs is highly heterogeneous. As a re-
sult, the commonly adopted real-time message passing in the
asynchronous model would generate frequent cross-datacenter
communication and cause an intolerant overhead. In contrast,
an alternative way is to prioritize computation of subgraph
within the data center to achieve significant message interaction
with less frequent communication but ignores precious WAN
resource utilization. A better way is to consider combining the
two in the network status.

Authorized licensed use limited to: Northeastern University. Downloaded on April 06,2025 at 07:19:33 UTC from IEEE Xplore. Restrictions apply.

2154 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 35, NO. 11, NOVEMBER 2024

Second, the data transmission rate between data centers fluc-
tuates significantly [33]. Meanwhile, during the iterative com-
putation, the number of vertices activated for computing in data
centers changes dynamically, which leads to a variable amount
of transmitted messages. From this perspective, RAGraph needs
to adaptively switch message interaction strategies based on the
current network transmission status.

Basic Idea: Based on the above considerations, we design and
implement an adaptive hierarchical message interaction engine
on the proxy. The key idea of the engine is to allow hierarchical
message interactions and to adaptively choose the message inter-
action strategies based on the status of the network. The proxies
in the Region-Aware framework are equipped with two types
of message interactions: eager message interaction for timely
vertex updates and lazy message interaction for significant vertex
updates.

For the part of the network with low latency (including intra-
region and part of inter-region networks), the proxy adopts an
eager mode, sending messages eagerly to the corresponding data
center as soon as they are generated. In eager message interac-
tion, the sender proxy can proactively determine when to send
the messages to the other proxy. In contrast, for the part of the
network with high latency, the sender proxy adopts a lazy mode
in which the receiver proxy decides when to fetch messages
from the lazy sender proxy. Specifically, in the receiver proxy,
when the cached messages tend to achieve local convergence,
and no external messages are received, a ”fetch” request is sent
to the corresponding data center. Correspondingly, the sender
proxy keeps accumulating messages and sends the accumulated
messages when receiving the ”fetch” request, which we name
lazy message interaction.

How to choose the message interaction mode? Here we
propose an adaptive strategy to switch the mode based on the
network fluctuation and message traffics. We define τ as the
average bandwidth of the global network and μ as the maximum
message size for the remote vertices of each proxy’s. During the
execution, each proxy counts the average transmission data size
Sδt and average network transmission rateR in the time window
ΔT , and adaptively selects the message interaction mode based
on their ratio: if Sδt/R < λ · μ/τ , the proxy will execute in
eager mode and otherwise switch to lazy mode. Here λ is a
configurable parameter, which is set to 0.6 in our experiments.

The structure of the engine is shown in Fig. 4. The engine
contains the proxies for message interaction betweenDk andDl.
Proxies on different links in the data center can exhibit different
eager/lazy modes. The message interaction engine of each proxy
includes a detector and a switcher. The detector is responsible
for recording Sδt and R, while the switcher decides which mode
to use and notifies the remote proxy. Note that the intra-region
networks use the eager mode by default.

B. Discrepancy-Aware Message Filtering

Due to the heterogeneity of WAN networks, imbalanced com-
munications occur in geo-distributed graph processing, where
a vertex may receive highly discrepant messages generated at
different iterations. Some of these important messages can make

Fig. 4. Adaptive hierarchical interaction engine structure.

Algorithm 2: Discrepancy-Aware Message Filtering.

a large change to the vertex state, producing more significant up-
dates thus advancing convergence. However, the range of mes-
sage variability changes dynamically as the process proceeds,
making it difficult to capture the current important messages.

Basic Idea: RAGraph employs buckets with adaptive ranges
to filter important messages to reduce the impact of network
status on message filtering. Specifically, each proxy maintains
the messages to be propagated and assigns them to different
buckets according to their values. Those unimportant messages
(i.e. with a small change in value) will be delayed until they
have accumulated enough importance. With the values of overall
messages decreasing along with iterations, the ranges of the
buckets adaptively vary to capture current important messages.

Algorithm 2 illustrates the pseudocode of the discrepancy-
aware message filtering strategy in a proxy. Each proxy in
RAGraph maintains 3 buckets B1, B2, and B3, storing unim-
portant, lowly important, and highly important messages respec-
tively. The ranges of B1, B2, and B3 are denoted as (0, δB1],
(δB1, δB2], and (δB2,∞), respectively. Each message will be
categorized into buckets based on its value (line 3). If the number
of messages in B3 is below a ratio of the total number of
messages, the system will decrease the ranges of buckets because
the highly important messages are rare (lines 6–8). The ranges
of buckets will be divided by a unified variable δk, and thus the
ratio of δB1 to δB2 stays invariable. Formally, we let

δk =
δBk−1

1 + δBk−1
2

2Δxk
, δBk

i =
δBk−1

i

δk
for i = 1, 2

Authorized licensed use limited to: Northeastern University. Downloaded on April 06,2025 at 07:19:33 UTC from IEEE Xplore. Restrictions apply.

YAO et al.: TOWARDS EFFICIENT GRAPH PROCESSING IN GEO-DISTRIBUTED DATA CENTERS 2155

Fig. 5. Buckets for message filtering. Cycle: cached outward message (the
darker the color, the larger the values).

TABLE II
DATASET DESCRIPTION

where Δxk denotes the average value of outgoing messages at
time tk. By dividing δk, the average value of messages is exactly
at the middle ofB2. Thus, the distribution of message values can
be well depicted. Fig. 5 illustrates the process of the strategy in
a proxy.

Detection of Shifting Distribution: We may encounter a sit-
uation that |B3| ≤ γ

∑3
i=1 |Bi| while at the same time |B2| �

|B1|. Such a fluctuating distribution counters the intuition that
B2 should contain a number of messages due to the continuously
decreasing process of the ranges. In practice, |B2| � |B1| indi-
cates that a considerable number of messages are still passing in
the network and have not been received, which is caused by the
gap between computation and communication. In such a case, we
choose to make the buckets unchanged until the shifting stops.
Thus, we additionally require |B2| ≥ σ|B1| (line 5 in Algorithm
2) to avoid shifting distribution from the decrease of ranges.

VI. EXPERIMENTAL EVALUATION

A. Experimental Setup

Datasets and Test Algorithms: We use five real-world
datasets (see Table II) in our experiments, including Web-
Google [32], Enwiki-2013 [31], Arabic-2005 [34], UK-2005
[35], and Twitter-2010 [13]. Graphs are partitioned in the com-
mon uniform-chunk strategy unless otherwise stated. That is,
vertices are ordered in their local IDs and uniformly partitioned
in different data centers. We use four typical monotonic graph
algorithms in the experiments, including PageRank [14], Pe-
nalized Hitting Probability (PHP) [36], Single Source Shortest
Path (SSSP) [37] and Connected Components (CC) [38].

Competitors: We compare RAGraph with a representative
distributed graph processing system, GRAPE [6], and two state-
of-the-art geo-distributed graph processing systems, Monarch

[16] and GeoGraph [17]. All competitors and the corresponding
test algorithms are implemented on top of libgrape-lite [39].

Environments: All algorithms are implemented in C++, and
the average result of three runs is reported. AliCloud ECS
clusters from five regions are chosen as geo-distributed data
centers for evaluation, including Qingdao, China; Singapore;
Sydney, Australia; Frankfurt, Germany; Virginia, USA. Each
data center is allocated 16 AliCloud ecs.r5.2xlarge instances
(8vCPU, 64GB memory).

B. Overall Performance

We first evaluate the overall performance of RAGraph, in-
cluding running time and WAN cost, by comparing it with
competitors.

Running time: Fig. 6 shows the running time of PageRank,
PHP, SSSP, and CC algorithms in the compared systems. As
can be seen from the results, RAGraph outperforms others in all
cases. Specifically, RAGraph achieves 4.38×−98.42× (15.61×
on average) speedup over GRAPE, 4.18× −19.59× (8.65× on
average) speedup over Monarch, and 2.88× −10.51× (5.3×
on average) speedup over GeoGraph. RAGraph does perform
iterative graph algorithms efficiently in geo-distributed environ-
ments. This is attributed to RAGraph’s unique message interac-
tion and communication optimization designs, which accelerate
global message interaction, eliminate coordinated waiting times,
and reduce the data transmission between data centers.

WAN cost: We measure the transmitted data size across data
centers via WANs for each system. Fig. 7 shows the WAN
cost of each system. As can be observed, RAGraph incurs
the smallest WAN cost on all tested conditions. Specifically,
RAGraph reduces WAN cost by 64.3% −97.3% (84.4% on
average) compared with GRAPE, 58.3% −96.8% (81.3% on
average) compared with Monarch, and 50% −92% (70.4% on
average) compared with GeoGraph. The communication gains
arise from the message filtering optimization and effective graph
data placement strategies proposed in RAGraph.

C. Performance Gain Analysis

The performance of RAGraph mainly comes from the flex-
ible Region-Aware framework, two runtime optimizations for
heterogeneous-aware message passing, and graph data place-
ment optimizations. In this subsection, we quantitatively analyze
the gain from the above strategies. Specifically, we report the
running time and WAN cost of the test algorithms by succes-
sively enabling RAGraph components, including Region-Aware
framework in Section III, adaptive hierarchical message in-
teraction, discrepancy-aware message filtering (introduced in
Section V), and data placement optimizations in Section IV,
denoted RA, RA+ Hi, RA+ Hi+ Fi, and RAGraph respec-
tively. The results are compared with the traditional synchronous
graph processing system libgrape-lite [39] and its asynchronous
version modified based on Maiter [14], which we denote Sync
and Async, respectively.

The normalized running time and WAN cost of Sync, Async,
RA, RA+ Hi, and RAGraph for PageRank and SSSP are re-
ported in Fig. 8. The results for PHP and CC show a similar

Authorized licensed use limited to: Northeastern University. Downloaded on April 06,2025 at 07:19:33 UTC from IEEE Xplore. Restrictions apply.

2156 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 35, NO. 11, NOVEMBER 2024

Fig. 6. Running time comparison.

Fig. 7. WAN cost comparison.

Fig. 8. Performance gain from RAGraph.

trend, and we omit the figures due to space limitations. The
running time of the RAGraph is reported as the unit time
(i.e., 1). From Fig. 8, one can find that the running time
and WAN cost are reduced after applying each component of
RAGraph in turn. Specifically, Region-Aware framework can
achieve 1.09×−2.06× speedup compared withSync, and 1.56×
−3.8× speedup compared with Async. By further enabling the
adaptive hierarchical message interaction, RA+ Hi achieves
1.33× −1.67× speedup and reduces 16% −40.1% WAN cost
compared with RA. The discrepancy-aware message filtering
method (RA+ Hi+ Fi) achieves a 2.03× −6.58× speedup and
a 43.7% −94.7% reduction in WAN cost. Finally, startup graph
data placement optimizations (RAGraph) lead to 1.23× −2.7×
speedup and 14.7%−49.4% WAN cost reduction. This validates
the efficacy of the proposed Region-Aware framework and opti-
mization strategies. Another observation is that Async produces
the largest running time and WAN cost in most cases. This
verifies our claim in Section I that traditional distributed graph
processing systems cannot solve the problems in geo-distributed
environments well. Besides, compared with Sync, the gain of
running time from the Region-Aware architecture (i.e., the gap
betweenRA andSync) is more significant than that of WAN cost.

Fig. 9. Performance Breakdown.

This indicates that the Region-Aware framework can largely
eliminate coordinated waiting times in Sync.

D. Performance Breakdown

As discussed in Example 1, the overall runtime consists of
computation, communication, and blocking time. To study the
effect of each component on RAGraph, we run PageRank and
SSSP on the TW graph and profile the running time of each
component recorded in the data center located in Singapore. The
result is shown in Fig. 9. We can see that the communication and

Authorized licensed use limited to: Northeastern University. Downloaded on April 06,2025 at 07:19:33 UTC from IEEE Xplore. Restrictions apply.

YAO et al.: TOWARDS EFFICIENT GRAPH PROCESSING IN GEO-DISTRIBUTED DATA CENTERS 2157

Fig. 10. Edge migration cost.

Fig. 11. Sensitivity to network status.

blocking take up most of the running time, while computation is
lightweight. Compared with competitors, RAGraph eliminates
the blocking time and generates the least communication.

E. Edge Migration Cost

We evaluate the cost of the edge migration algorithm, Fig. 10
shows the running time of the algorithm and the ratio of edges
to be migrated on all five test graphs. The overall running time
during the algorithm’s execution is composed of three parts:
the computation of vertex contribution, the search of candi-
date edges for migration, and the execution of edge migration.
The proportion of running time for each component is shown
in Fig. 10(a). In geo-distributed environments, the limitations
of network bandwidth significantly impact the efficiency of
transmitting migrated edges, making it the primary cost factor.
This cost is directly proportional to the ratio of migrated edges.
Besides, the ratio of edge migration is related to the raw edge
positions. A poor raw edge allocation leads to a higher ratio of
edge migration to optimize the boundary vertex contribution and
balance the load with a more significant performance increase.

F. Sensitivity to Network Heterogeneity

This subsection evaluates the impact of network heterogeneity
on the systems. We use different data center locations around
the world to build low/medium/high-heterogeneity networks.
Specifically, the low-heterogeneity network is constructed based
on data centers in China (including Beijing, Shanghai, Qing-
dao, Hangzhou, and Guangzhou); the medium-heterogeneity
network is based on Asia-wide data centers (including Tokyo,
Japan; Singapore; Seoul, Korea; Beijing, China; and Mumbai,
India); and high-heterogeneity network is based on world-
wide data centers (configuration see Section VI-A). Fig. 11
shows the result of PageRank and SSSP in different sys-
tems on the WK graph. Compared with the competitors, RA-
Graph achieves 1.73×−3.4× speedup on the low-heterogeneity

Fig. 12. Sensitivity to Θ and λ.

network, 2.16×−3.95× speedup on the medium-heterogeneity
network, and 3.42×−9.09× speedup on the high-heterogeneity
network. RAGraph shows substantial superiority on the high-
heterogeneity network, which validates the effectiveness of the
Region-Aware framework.

G. Sensitivity to Parameter Settings

We evaluate the impact of the two configurable parameters,
i.e., λ and Θ, which control the eager/lazy mode switching in
Section V-A and the algorithm convergence, respectively. We
run PageRank on WK graph, varying Θ from 10−7 to 10−1 and
λ from 0.2 to 0.8. For the experiment associated with λ, we
normalize the running time of all cases with λ = 0.2 as unit
time. As shown in the lower part of Fig. 12, as λ increases, more
proxies turn into eager mode but may suffer high latency net-
works resulting in inefficiencies, and RAGraph reaches its best
performance when λ is set to 0.6. For the experiment associated
with Θ, we run Pagerank on RAGraph and GRAPE and report
the speedup of RAGraph over GRAPE under different Θ. As
shown in the upper part of Fig. 12, the convergence threshold
change has less effect on the effectiveness of RAGraph.

H. Scalability

We finally test the scalability of RAGraph by enlarging the
number of data centers. As the number of data centers increases,
more cross-datacenter messages will be triggered, which limits
the performance of the systems. To evaluate the impact of scaling
the number of data centers on RAGraph, we run PageRank
with the number of geo-distributed data centers varying from
2 to 8. Using the TW graph, the whole is partitioned into the
corresponding number of parts placed in each data center using
the uniform-chunk method. We take the running time on 2 data
centers as the baselines, and Fig. 13 shows the result from
RAGraph and the competitors. As the number of data centers
increases, GeoGraph and RAGraph grow slower than GRAPE
and Monarch, and RAGraph performs the best. GeoGraph de-
rives scaling gain from the clustering of data centers. While
the more independent region computation and communication
optimization allow RAGraph to gain better scalability.

Authorized licensed use limited to: Northeastern University. Downloaded on April 06,2025 at 07:19:33 UTC from IEEE Xplore. Restrictions apply.

2158 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 35, NO. 11, NOVEMBER 2024

Fig. 13. Scalability.

VII. RELATED WORKS

Graph-Structured Data Processing: A large number of tra-
ditional graph processing systems have been developed for
large-scale graph data analysis. The Bulk Synchronous Parallel
model [15] is introduced into graph processing by Pregel [4] and
adopted by most distributed graph processing systems [1], [3],
[6]. While some systems, such as GraphLab [5], Maiter [14],
and GRAPE+ [40], use the asynchronous parallel model (AP)
to eliminate synchronization overhead. PowerSwitch [41] uses
a hybrid mode for adaptive switching between sync and async
during computation. Galois [42] and Priter [29] design priority
scheduling from the algorithmic perspective, but may be limited
by the impact of network transmission status on data scheduling.
LazyGraph [43] involves replicas in local computation and sets a
global sync data coherency stage to get a global view of replicas
for lazy data consistency. Additionally, POCLib [44] introduces
orthogonal processing on compression, enabling efficient data
analysis directly on compressed data regardless of the processing
type. This offers new opportunities to further reduce network
costs in geo-distributed environments through data compres-
sion. On the other hand, Monarch [16] and GeoGraph [17] are
designed for geo-distributed graph processing. Both of them
exhibit excellent performance, but inevitably coordinate with
other workers on the WANs and fail to consider the impact of
network fluctuation.

RAGraph strives to optimize the heterogeneous and fluc-
tuating network in geo-distributed environments, eliminating
coordinated waiting times and reducing communication costs
through unique message interactions and communication opti-
mization designs. By implementing a Region-Aware framework
and two runtime optimizations, it achieves a 7.6× speedup
and an 83.6% reduction in WAN cost on average compared to
traditional Sync and Async systems and a 3.91× speedup and a
58.7% reduction in WAN cost on average compared to Monarch
and GeoGraph.

Monotonic Data Analysis: The monotonicity idea has been
widely used in many fields. PowerLog [20] proposes monotonic
recursive aggregate evaluation in Datalog, which provides theo-
retical guarantees for incremental and asynchronous execution

of recursive aggregation programs. RisGraph [45] supports anal-
ysis for monotonic algorithms on evolving graphs to achieve
high throughput and low latency simultaneously. KickStarter
[46] proposes an incremental graph computing model for mono-
tonic algorithms to produce correct results and converge quickly.
GoGraph [47] leverages monotonicity to reorder the vertex pro-
cessing sequence, thereby reducing the number of graph compu-
tation iterations. RAGraph exploits monotonicity to accelerate
cross-region execution efficiency and enable coordination-free
iterative processing.

Geo-Distributed Data Analysis: Several works focus on de-
signing more efficient big-data analysis frameworks in geo-
distributed environments. For example, Medusa [48] allows
geo-distributed computation without modifying the Hadoop
semantics. GeoDis [49] optimizes data-intensive jobs by con-
sidering data localization and migration. Both of them are
MapReduce-based. Lube [50] and Tetrium [51] are Spark-based
frameworks. Lube reduces the response time by optimizing
runtime bottlenecks, and Tetrium considers network and com-
putational resources to achieve multiple resource allocation.
Zhou et al. [52] develop an online control framework based
on Lyapunov optimization, achieving dynamic balance among
electricity costs, carbon emissions, and SLA in geo-distributed
data centers. λGrapher [53] introduces an innovative server-
less computing framework for GNN serving, which achieves
resource efficiency through graph sharing and fine-grained re-
source allocation. Volley [54] employs an iterative optimization
algorithm to adjust data placement based on data access patterns
and the geographical locations of clients. Yugong [28] optimizes
bandwidth usage across Alibaba’s geo-distributed data centers
through strategic project placement, table replication, and job
outsourcing. RAGraph introduces an edge migration strategy
that adapts to the iterative nature and complex dependencies of
the graph algorithms, taking into account contribution metrics
and network heterogeneity. This further achieves an average
system performance improvement of 1.74× speedup and a 35%
reduction in WAN cost.

VIII. CONCLUSION

We design and implement RAGraph, which consists of a
Region-Aware framework, an edge migration algorithm, and
two runtime optimizations for geo-distributed graph process-
ing. First, we design a Region-Aware framework based on
three helpful observations: the ping-pong effect optimization
for accelerating inefficient global updates, a two-layer view for
coordination-free message interaction, and a replaceable com-
munication strategy for network congestion. Additionally, we
introduce an edge migration algorithm based on vertex contri-
bution to effectively utilize network resources. Furthermore, we
develop the adaptive hierarchical message interaction, allowing
RAGraph to adaptively choose between two message interaction
modes based on network status and message traffic. Finally,
we propose a discrepancy-aware message filtering strategy to
adaptively filter important messages in a discrepancy range of
messages.

Authorized licensed use limited to: Northeastern University. Downloaded on April 06,2025 at 07:19:33 UTC from IEEE Xplore. Restrictions apply.

YAO et al.: TOWARDS EFFICIENT GRAPH PROCESSING IN GEO-DISTRIBUTED DATA CENTERS 2159

REFERENCES

[1] X. Zhu, W. Chen, W. Zheng, and X. Ma, “Gemini: A computation-centric
distributed graph processing system,” in Proc. 12th USENIX Symp. Oper-
ating Syst. Des. Implementation, 2016, pp. 301–316.

[2] R. Chen, J. Shi, Y. Chen, B. Zang, H. Guan, and H. Chen, “PowerLyra:
Differentiated graph computation and partitioning on skewed graphs,”
ACM Trans. Parallel Comput., vol. 5, no. 3, pp. 13:1–13:39, 2018.

[3] J. E. Gonzalez, Y. Low, H. Gu, D. Bickson, and C. Guestrin, “Pow-
erGraph: Distributed graph-parallel computation on natural graphs,” in
Proc. 12th USENIX Symp. Operating Syst. Des. Implementation, 2012,
pp. 17–30.

[4] G. Malewicz et al., “Pregel: A system for large-scale graph processing,”
in Proc. ACM SIGMOD Int. Conf. Manage. Data, 2010, pp. 135–146.

[5] Y. Low, J. Gonzalez, A. Kyrola, D. Bickson, C. Guestrin, and J. M.
Hellerstein, “Distributed graphlab: A framework for machine learning
in the cloud,” in Proc. VLDB Endowment, vol. 5, no. 8, pp. 716–727,
2012.

[6] W. Fan et al., “Parallelizing sequential graph computations,” in Proc. ACM
SIGMOD Int. Conf. Manage. Data, 2017, pp. 1889–1892.

[7] W. Fan et al., “Parallelizing sequential graph computations,” ACM Trans.
Database Syst., vol. 43, no. 4, pp. 18:1–18:39, 2018.

[8] “Facebook daily active users (DAUS),” 2021. [Online]. Available:
https://investor.fb.com/investor-events/event-details/2021/Facebook-
Q2--2021-Earnings/default.aspx

[9] Y. Yuan, D. Ma, Z. Wen, Z. Zhang, and G. Wang, “Subgraph matching over
graph federation,” in Proc. VLDB Endowment, vol. 15, no. 3, pp. 437–450,
2021.

[10] Q. Pu et al., “Low latency GEO-distributed data analytics,” ACM SIG-
COMM Comput. Commun. Rev., vol. 45, no. 4, pp. 421–434, 2015.

[11] A. Rabkin, M. Arye, S. Sen, V. Pai, and M. J. Freedman, “Making every
bit count in {Wide-Area} analytics,” in Proc. 14th Workshop Hot Topics
Operating Syst., 2013, pp. 1–6.

[12] P. Voigt and A. Von dem Bussche, “The eu general data protection regu-
lation (GDPR),” in A Practical Guide, vol. 10, 1st ed. Berlin, Germany:
Springer, 2017, pp. 10–5555.

[13] P. Boldi, M. Rosa, M. Santini, and S. Vigna, “Layered label propaga-
tion: A multiresolution coordinate-free ordering for compressing social
networks,” in Proc. Int. Conf. World Wide Web, 2011, pp. 587–596.

[14] Y. Zhang, Q. Gao, L. Gao, and C. Wang, “Maiter: An asynchronous graph
processing framework for delta-based accumulative iterative computa-
tion,” IEEE Trans. Parallel Distrib. Syst., vol. 25, no. 8, pp. 2091–2100,
Aug. 2014.

[15] L. G. Valiant, “A bridging model for parallel computation,” Commun.
ACM, vol. 33, no. 8, pp. 103–111, 1990.

[16] A. P. Iyer, A. Panda, M. Chowdhury, A. Akella, S. Shenker, and I. Stoica,
“Monarch: Gaining command on GEO-distributed graph analytics,” in
Proc. 10th USENIX Conf. Hot Topics Cloud Comput., 2018, Art. no. 5.

[17] Y. Yuan, D. Ma, Z. Wen, Y. Ma, G. Wang, and L. Chen, “Efficient graph
query processing over GEO-distributed datacenters,” in Proc. Int. ACM
SIGIR Conf. Res. Develop. Inf. Retrieval, 2020, pp. 619–628.

[18] F. Yao et al., “RAGraph: A region-aware framework for GEO-distributed
graph processing,” in Proc. VLDB Endowment, vol. 17, no. 3, pp. 264–277,
2024.

[19] R. R. McCune, T. Weninger, and G. Madey, “Thinking like a vertex:
A survey of vertex-centric frameworks for large-scale distributed graph
processing,” ACM Comput. Surv., vol. 48, no. 2, pp. 25:1–25:39, 2015.

[20] Q. Wang et al., “Automating incremental and asynchronous evaluation for
recursive aggregate data processing,” in Proc. ACM SIGMOD Int. Conf.
Manage. Data, 2020, pp. 2439–2454.

[21] S. Gong et al., “Automating incremental graph processing with flexible
memoization,” in Proc. VLDB Endowment, vol. 14, no. 9, pp. 1613–1625,
2021.

[22] T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” in Proc. Int. Conf. Learn. Representations, 2017,
pp. 1–14.

[23] D. W. Matula, G. Marble, and J. D. Isaacson, “Graph coloring algorithms,”
in Graph Theory and Computing, San Francisco, CA, USA: Academic
Press, 1972, pp. 109–122.

[24] M. Al Hasan and V. S. Dave, “Triangle counting in large networks: A
review,” Wiley Interdiscipl. Rev.: Data Mining Knowl. Discov., vol. 8, no. 2,
2018, Art. no. e1226.

[25] X. Tao, K. Ota, M. Dong, W. Borjigin, H. Qi, and K. Li, “Congestion-aware
traffic allocation for geo-distributed data centers,” IEEE Trans. Cloud
Comput., vol. 10, no. 3, pp. 1675–1687, Jul.-Aug., 2022.

[26] M. Shapiro, N. Preguiça, C. Baquero, and M. Zawirski, “Conflict-free
replicated data types,” in Proc. Stabilization, Saf. Secur. Distrib. Syst.:
13th Int. Symp., 2011, pp. 386–400.

[27] P. S. Almeida, A. Shoker, and C. Baquero, “Efficient state-based crdts by
delta-mutation,” in Proc. Int. Conf. Netw. Syst., 2016, pp. 62–76.

[28] Y. Huang et al., “Yugong: Geo-distributed data and job placement at scale,”
in Proc. VLDB Endowment, vol. 12, no. 12, pp. 2155–2169, 2019.

[29] Y. Zhang, Q. Gao, L. Gao, and C. Wang, “Priter: A distributed framework
for prioritized iterative computations,” in Proc. Proc. 2nd ACM Symp.
Cloud Comput., 2011, pp. 1–14.

[30] Y. Zhang, X. Liao, H. Jin, L. Gu, G. Tan, and B. B. Zhou, “Hotgraph:
Efficient asynchronous processing for real-world graphs,” IEEE Trans.
Comput., vol. 66, no. 5, pp. 799–809, May 2017.

[31] P. Boldi and S. Vigna, “The webgraph framework I: Compression tech-
niques,” in Proc. Int. Conf. World Wide Web, 2004, pp. 595–602.

[32] “Web-Google,” 2002. [Online]. Available: https://www.cise.ufl.edu/
research/sparse/matrices/SNAP/web-Google.html

[33] K. Bogdanov, M. P. Quirós, G. Q. M. Jr, and D. Kostic, “Toward automated
testing of Geo-distributed replica selection algorithms,” in Proc. ACM
SIGCOMM Comput. Commun. Rev., 2015, pp. 89–90.

[34] “Arabic-2005,” 2015. [Online]. Available: https://law.di.unimi.it/webdata/
arabic-2005/

[35] “Uk-2005,” 2005. [Online]. Available: https://law.di.unimi.it/webdata/uk-
2005/

[36] Y. Wu, R. Jin, and X. Zhang, “Fast and unified local search for random walk
based k-nearest-neighbor query in large graphs,” in Proc. ACM SIGMOD
Int. Conf. Manage. Data, 2014, pp. 1139–1150.

[37] V. T. Chakaravarthy, F. Checconi, P. Murali, F. Petrini, and Y. Sabharwal,
“Scalable single source shortest path algorithms for massively parallel
systems,” IEEE Trans. Parallel Distrib. Syst., vol. 28, no. 7, pp. 2031–2045,
Jul. 2017.

[38] T. Hsu, V. Ramachandran, and N. Dean, “Parallel implementation of
algorithms for finding connected components in graphs,” in Proc. Parallel
Algorithms, DIMACS Workshop, 1994, vol. 30, pp. 23–41.

[39] “libgrape-lite,” 2020. [Online]. Available: https://github.com/alibaba/
libgrape-lite

[40] W. Fan et al., “Adaptive asynchronous parallelization of graph algorithms,”
ACM Trans. Database Syst., vol. 45, no. 2, pp. 1–45, 2020.

[41] C. Xie, R. Chen, H. Guan, B. Zang, and H. Chen, “SYNC or ASYNC: Time
to fuse for distributed graph-parallel computation,” in Proc. 20th ACM
SIGPLAN Symp. Princ. Pract. Parallel Program., 2015, pp. 194–204.

[42] D. Nguyen, A. Lenharth, and K. Pingali, “A lightweight infrastructure for
graph analytics,” in Proc. 24th ACM Symp. Operating Syst. Princ., 2013,
pp. 456–471.

[43] L. Wang et al., “Lazygraph: Lazy data coherency for replicas in distributed
graph-parallel computation,” ACM SIGPLAN Notices, vol. 53, pp. 276–
289, 2018.

[44] F. Zhang, J. Zhai, X. Shen, O. Mutlu, and X. Du, “POCLib: A high-
performance framework for enabling near orthogonal processing on com-
pression,” IEEE Trans. Parallel Distrib. Syst., vol. 33, no. 2, pp. 459–475,
Feb. 2022.

[45] G. Feng et al., “RisGraph: A real-time streaming system for evolving
graphs to support sub-millisecond per-update analysis at millions ops/s,”
in Proc. ACM SIGMOD Int. Conf. Manage. Data, 2021, pp. 513–527.

[46] K. Vora, R. Gupta, and G. Xu, “KickStarter: Fast and accurate compu-
tations on streaming graphs via trimmed approximations,” in Proc. 22nd
Int. Conf. Architectural Support Program. Lang. Operating Syst., 2017,
pp. 237–251.

[47] Y. Zhou et al., “Fast iterative graph computing with updated neighbor
states,” in Proc. IEEE 40th Int. Conf. Data Eng., 2024, pp. 2449–2462.

[48] P. A. Costa, X. Bai, F. M. Ramos, and M. Correia, “Medusa: An efficient
cloud fault-tolerant MapReduce,” in Proc. 16th IEEE/ACM Int. Symp.
Cluster, Cloud Grid Comput., 2016, pp. 443–452.

[49] M. W. Convolbo, J. Chou, C.-H. Hsu, and Y. C. Chung, “GEODIS: Towards
the optimization of data locality-aware job scheduling in geo-distributed
data centers,” Computing, vol. 100, pp. 21–46, 2018.

[50] L. Zhao, Y. Yang, A. Munir, A. X. Liu, Y. Li, and W. Qu, “Optimizing Geo-
distributed data analytics with coordinated task scheduling and routing,”
IEEE Trans. Parallel Distrib. Syst., vol. 31, no. 2, pp. 279–293, Feb. 2019.

[51] C. Hung, G. Ananthanarayanan, L. Golubchik, M. Yu, and M. Zhang,
“Wide-area analytics with multiple resources,” in Proc. Proc. 13th Eur.
Conf., 2018, pp. 1–16.

[52] Z. Zhou, F. Liu, R. Zou, J. Liu, H. Xu, and H. Jin, “Carbon-aware online
control of GEO-distributed cloud services,” IEEE Trans. Parallel Distrib.
Syst., vol. 27, no. 9, pp. 2506–2519, Sep. 2016.

Authorized licensed use limited to: Northeastern University. Downloaded on April 06,2025 at 07:19:33 UTC from IEEE Xplore. Restrictions apply.

https://investor.fb.com/investor-events/event-details/2021/Facebook-Q2--2021-Earnings/default.aspx
https://investor.fb.com/investor-events/event-details/2021/Facebook-Q2--2021-Earnings/default.aspx
https://www.cise.ufl.edu/research/sparse/matrices/SNAP/web-Google.html
https://www.cise.ufl.edu/research/sparse/matrices/SNAP/web-Google.html
https://law.di.unimi.it/webdata/arabic-2005/
https://law.di.unimi.it/webdata/arabic-2005/
https://law.di.unimi.it/webdata/uk-2005/
https://law.di.unimi.it/webdata/uk-2005/
https://github.com/alibaba/libgrape-lite
https://github.com/alibaba/libgrape-lite

2160 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 35, NO. 11, NOVEMBER 2024

[53] H. Hu, F. Liu, Q. Pei, Y. Yuan, Z. Xu, and L. Wang, “λGrapher: A resource-
efficient serverless system for GNN serving through graph sharing,” in
Proc. Int. Conf. World Wide Web, 2024, pp. 2826–2835.

[54] S. Agarwal, J. Dunagan, N. Jain, S. Saroiu, A. Wolman, and H. Bhogan,
“Volley: Automated data placement for geo-distributed cloud services,”
in Proc. Proc. 7th USENIX Conf. Netw. Syst. Des. Implementation, 2010,
Art. no. 2.

Feng Yao received the MS degree in computer sci-
ence from Northeastern University, China, in 2021.
He is currently working toward the PhD degree
in computer science from Northeastern University,
China. His research interests include cloud computing
and distributed graph processing.

Qian Tao recieved the PhD degree in computer sci-
ence and technology from Beihang University, China,
in 2021. He is currently an engineer in Alibaba Group,
China. His research interests include graph neural
networks, graph computations, and large language
models.

Shengyuan Lin is currently working toward the un-
dergraduation degree majoring in computer science
with Northeastern University, China. His research
interests include distributed and parallel computation,
distributed graph processing.

Yanfeng Zhang received the PhD degree in com-
puter science from Northeastern University, China, in
2012. He is currently a professor with Northeastern
University, China. His research consists of distributed
systems and big data processing. He has published
many papers in the above areas. His paper in SoCC
2011 was honored with “Paper of Distinction”.

Wenyuan Yu received the PhD degree from the Uni-
versity of Edinburgh. He is a senior staff engineer and
director with Alibaba Group. At Alibaba, he leads the
Fusion Computing team, the Institute for Intelligent
Computing, focusing on machine learning systems
and graph computing. He is the founder and project
lead of GraphScope, Alibaba’s open-source large-
scale graph computing system, and the CNCF’s data
sharing system, Vineyard. His research, published in
top-tier international conferences and journals, has
earned him recognition including Best Paper at SIG-

MOD 2017 and VLDB 2010, and the SIGMOD Research Highlight Award, in
2018. Prior to Alibaba, Wenyuan was a founding member of 7Bridges Ltd. and
a Research Scientist at Facebook.

Shufeng Gong (Associate Member, IEEE) received
the PhD degree in computer science from North-
eastern University, China, in 2021. He is currently a
lecturer with Northeastern University, China. His re-
search interests include cloud computing, distributed
graph processing, and data mining.

Qiange Wang received the PhD degree in computer
science from Northeastern University, China, in 2022.
He is currently working toward the postdoctoral re-
search fellow with the National University of Singa-
pore. His research interests include distributed graph
processing, learning, and management systems.

Ge Yu (Senior Member, IEEE) received the PhD de-
gree in computer science from the Kyushu University
of Japan, in 1996. He is now a professor with North-
eastern University, China. His current research inter-
ests include distributed and parallel systems, cloud
computing, Big Data management, and blockchain
techniques and systems. He has published more than
200 papers in refereed journals and conferences. He
is the CCF fellow and the ACM member.

Jingren Zhou (Fellow, IEEE) is chief technology
officer with Alibaba Cloud, where he spearheads
cutting-edge technology innovation and product de-
velopment. Prior to this role, he led the develop-
ment of advanced techniques for personalized search,
product recommendation, and advertisement with Al-
ibaba’s e-commerce platform and Alipay’s online
payment platform. He is an esteemed researcher
in cloud-computing, databases, and large-scale ma-
chine learning. He has served as committee chairs
for many prestigious academic conferences and pub-

lished more than 100 papers in renowned journals and conferences. He received
his PhD in Computer Science from Columbia University.

Authorized licensed use limited to: Northeastern University. Downloaded on April 06,2025 at 07:19:33 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

