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The growing volume of graph data may exhaust the main memory. It is crucial to design a disk-based
graph storage system to ingest updates and analyze graphs efficiently. However, existing dynamic graph
storage systems suffer from read or write amplification and face the challenge of optimizing both read
and write performance simultaneously. To address this challenge, we propose LSMGraph, a novel dynamic
graph storage system that combines the write-friendly LSM-tree and the read-friendly CSR. It leverages the
multi-level structure of LSM-trees to optimize write performance while utilizing the compact CSR structures
embedded in the LSM-trees to boost read performance. LSMGraph uses a new memory structure, MemGraph,
to efficiently cache graph updates and uses a multi-level index to speed up reads within the multi-level
structure. Furthermore, LSMGraph incorporates a vertex-grained version control mechanism to mitigate the
impact of LSM-tree compaction on read performance and ensure the correctness of concurrent read and write
operations. Our evaluation shows that LSMGraph significantly outperforms state-of-the-art (graph) storage
systems on both graph update and graph analytical workloads.
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1 Introduction

Real-time analysis of large-scale dynamic graph data has become a key requirement in various
fields, extensively applied in recommendation systems [39, 50, 76, 79], fraud detection [34, 78, 84],
community management [65, 82], network monitoring [15, 43, 44] and so on. Designing an efficient
dynamic graph storage system capable of rapid data storage and effective real-time graph analysis
is increasingly crucial and challenging. Such a system must not only support fast real-time graph
analysis, but also efficiently ingest updates, especially in scenarios where graphs are updated
frequently, such as social networks, e-commerce, and smart city management [44, 72, 86, 89].
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Fig. 1. An example of a graph storage system working in an e-commerce platform, where users or items
represent vertices and the interactions between users and items are regarded as edges of the graph.

Real-world Example. Consider a graph storage system that stores the user-item graphs on a
large-scale e-commerce platform, such as Alibaba Taobao [13]. Fig. 1 shows a toy example of
the graph storage system, where users or items represent vertices, and the interactions between
users and items, such as favorite and buy, are regarded as edges of the graph. The system should
maintain graph updates and support graph analysis tasks such as product recommendation and
fraud detection. However, the massive number of users and their frequent behaviors bring huge
challenges to the graph storage system. First, Taobao has approximately 400 million daily active
users [49], each generating an average of 10 behavioral data records per day [87]. This means
that Taobao generates approximately 46,000 behavioral data records per second. Therefore, the
storage system must support fast data ingestion. Second, the average size of each behavioral data is
approximately 31 bytes [87]. Given the high data generation rate, a 1 TB RAM will be exhausted in
less than 9 days, i.e., 1 TB/(4 x 10% users X 10 bh./day x 31 bytes) ~ 8.9 days, where bh. refers to
customer behaviors such as buying and favoriting. Therefore, the storage system needs to efficiently
digest updates using limited memory and persist them on disks. In this paper, we default to using
SSDs as persistent storage, as they provide a good balance between storage capacity, price, and
performance. Third, graph data needs to be analyzed using graph algorithms, such as using PageRank
for product recommendations [39, 50] and Label Propagation for fraud detection [78, 84]. Therefore,
the storage system needs to support fast queries for these graph analysis algorithms.

Existing Disk-based Dynamic Graph Storages. A naive method is to extend the existing memory-
based dynamic graph storage systems [36, 89] to disk-based ones by the utilization of automatic
memory and disk mapping tools like mmap [27]. When updates occur on the graph data stored on
disk, these systems automatically load the graph data into memory using mmap to perform in-place
graph updates. However, this strategy leads to significant read/write amplification, although it
makes data operations easier. This is because even if only one edge is updated, mmap must read the
entire data page from the disk into memory and then write back the entire page after the updates.

On the other hand, there are some dynamic graph storage systems specifically designed for disks,
e.g., LLAMA [54] and GraphSSD [55], which use Compressed Sparse Rows (CSR) [70] to improve
read performance since CSR is friendly to both random and sequential access to graphs due to its
efficient offset index and compactness. However, the compactness of CSR leads to a large amount
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of data movement when inserting new data, which decreases graph update performance. Although
LLAMA overcomes data movement by generating new CSRs in batches, a large number of CSR
fragments are generated as updates continuously arrive. To access all neighbors of a vertex, it is
required to read data from multiple CSRs, which results in a lot of random I/Os and decreases graph
query performance.

Finally, some graph databases, such as NebulaGraph [10] and Dgraph [7], leverage Log-Structured
Merge-tree (LSM-tree) [60] designed primarily for key-value stores to improve write performance.
NebulaGraph [10] takes each vertex or edge as a key, and the properties of the vertex or edge as the
value. However, when Nebula accesses all the edges of a vertex, the non-contiguous storage of these
edges results in a large number of random reads, which decreases read performance. Dgraph [7]
takes each vertex as a key, and the associated edges as the value. However, when Dgraph updates
an edge of a vertex, it requires updating the whole edge block (as a value), which results in severe
write amplification. This deficiency is more pronounced for vertices with more edges. In summary,
these works suffer from problems in reading or writing as they ignore the properties of the graphs.

Dilemma. It is challenging to design a graph storage system for persistent storage since there is
a dilemma in optimizing read and write performance. In terms of optimizing write performance,
a log structure is preferred with only sequential writes (e.g., LSM-tree [60]). However, due to the
random arrival order of updated edges, the edges of a vertex can be dispersed throughout the whole
log-structured storage, which decreases the read performance when accessing all the edges of a
vertex. In terms of optimizing read performance, a compact and sorted structure (e.g., CSR [70]) is
preferred with efficient indexing and sequential reads. However, it requires significant overhead
due to the data movement to maintain compactness when edges are inserted or deleted.

Insight. LSM-tree [61] is a log structure known for its excellent write performance, implemented
by caching recent writes in memory and then performing sequential writes to persistent storage.
On the contrary, CSR [70] is a widely used graph storage structure with excellent graph query
performance due to its continuous storage of edges for each vertex and efficient vertex/edge index.
It is worthwhile to design a novel graph storage structure by combining LSM-tree and CSR so that
the structure can simultaneously leverage high performance in the writing of LSM-tree and high
performance in the reading of CSR.

Our solution. Based on the above insight, we propose LSMGraph, a novel dynamic graph storage
system that takes advantage of both LSM-tree and CSR. From a memory perspective, we design an
efficient memory cache structure for graph data, MemGraph, which can not only rapidly ingest
graph updates but also effectively persist LSM-style data structures to disk. From a disk perspective,
we propose organizing the graph data into multiple levels similar to the LSM-tree, and each level
maintains a part of the graph data in CSR format. When the storage of the i-th level is full, a
compaction is performed in the background, asynchronously merging the CSR of the i-th level into
the next level. In this way, the online continuous data movement overhead of CSR is replaced by
the offline periodical compaction overhead of LSM-tree. It is noteworthy that although the edges of
a vertex are stored continuously in each CSR, they may span multiple CSRs across different levels,
which results in the need to locate their position in multiple files and decreases read performance. To
enhance read performance, we design a multi-level index that records the positions of each vertex’s
edges on multiple levels to avoid many random searches. Additionally, we design a vertex-grained
version control mechanism to mitigate the compaction overhead and allow concurrent read/write
operation during compaction.
To sum up, our contributions are summarized as follows.
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o A novel dynamic graph storage system LSMGraph that leverages the write performance of LSM-
tree and the read performance of CSR (Section 3).

o A memory cache structure MemGraph that manages the cached graph updates efficiently before
flushing them to disk (Section 4.1).

o A multi-level index that supports fast reading of a vertex’s edges from multiple CSRs on different
levels (Section 4.2).

o A vertex-grained version control mechanism that maximizes read and write performance during
CSR compaction, while simultaneously guaranteeing the correctness of reading and writing
(Section 4.3).

o A high-performance implementation and a comprehensive evaluation to verify the efficiency of
our LSMGraph (Section 5). Experiments show that for graph update, LSMGraph achieves an average
speedup of 36.12x over LiveGraph, 2.85x over LLAMA, and 8.07x over RocksDB. For graph
analysis, LSMGraph achieves an average speedup of 24.4x over LiveGraph, 3.1X over LLAMA,
30.8% over RocksDB, and 6.6x over MBFGraph.

2 Background

In this section, we first introduce graph workloads and their requirements for graph storage and
then review the design of CSR and LSM-trees.

2.1 Graph and Graph Workloads

Graph. Given a graph G = (V, E), where V is a finite set of vertices and E C V X V is a set of edges.
The property of each edge (u,v) € E is denoted by p, ,, which indicates properties such as weight
and label, and can be empty.

Graph Update. Graph update is the operation of modifying or updating graph data. It includes
adding and deleting vertices/edges and modifying properties of vertices/edges. The graph storage
system should support the rapid storage of updates and adjust the structure of the graph according
to the updates.

Graph Analysis. Graph analysis algorithms, such as PageRank, SSSP, Label Propagation, etc.,
require discovering relationships between entities in graph data and some valuable insights. The
most basic operation in the graph analysis algorithm is to scan all edges of a vertex [38, 89].
Therefore, to achieve efficient graph analysis, the graph storage structure should support fast
neighbor scanning. Besides, algorithms such as triangle counting for graph pattern matching
require scanning of ordering neighbors for fast intersections [14, 37, 57]. Therefore, the graph
storage system should support both ordered and unordered scanning neighbors.

2.2 CSR and LSM-tree

We next introduce two storage structures, CSR and LSM-tree, and analyze their read and write
performance in terms of storing graphs.

CSR. Compressed Sparse Row (CSR) [70] is a type of compressed sparse matrix, which stores the
non-zero elements of the matrix in multiple dense arrays. As shown in Fig. 2, CSR utilizes three
arrays to store a graph: offset array, edge array, and property array.

o The offset array stores the offset of the first edge of each vertex in the edge array.
o The edge array stores the associated edges of each vertex, i.e., destination vertices, in a continuous
manner.
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Fig. 2. An example graph and its CSR. Fig. 3. A classic implementation of LSM-tree.

o The property array stores the properties corresponding to each edge in the edge array, such as
weights.

It stores sparse graphs in a compact and contiguous format, providing excellent spatial locality and
space efficiency, making it widely adopted in many graph systems [35, 45, 59, 75, 80, 88].

Read Performance Analysis. In CSR, edges are stored in the edge array and indexed by an offset
array. When reading a vertex’s edges, the first edge’s offset in the edge array can be obtained from
the offset array using the vertex ID, requiring only one memory I/O, i.e., O(1) memory I/O, as the
offset array is usually cached in memory in the existing graph systems. Then, the edge data is
loaded from the disk with one disk I/O according to the offset, i.e., O(1) disk I/O. Additionally, to
obtain edge properties, an extra disk I/O is required. The primary reason for storing edges and
properties separately in CSR is to accommodate different types of graph analysis algorithms, as
some algorithms only need the graph’s topology without edge properties, e.g., BES.

Write Performance Analysis. Due to the compactness of CSR, the cost of inserting and deleting

edges in CSR is expensive because these operations may result in a significant data movement to
maintain compactness. In the worst-case workload, inserting an edge into a CSR requires moving
all edges/properties in the edge/property array and modifying all offsets in the offset array. To
mitigate the overhead, we partition the edge array by the block size B, ensuring that each I/O
operation can move a maximum of B edges. Here, B donates the size of a block, i.e., the number of
edges in one block. The amortized disk I/O times for data movement is O(%), and the memory
I/0O times for modifying the offset is O(|V]).

LSM-tree. The Log-Structured Merge-tree (LSM-tree) [61] is designed to improve the performance
of writing ordered data to disk. Fig. 3 shows a classic implementation of LSM-tree, which has been
widely adopted in numerous key-value stores [9, 12, 23, 40, 46, 56]. It consists of an in-memory
MemTable and disk-based Sorted String Tables (SSTable) organized on multiple levels. The Memtable
is typically implemented with a skip list that supports fast insertions and queries. The SSTable is a
fixed-size immutable structure stored on disk in an ordered manner, where the data is sorted based
on the keys.

In an LSM-tree, data is typically organized using key-value pairs. When storing graph data, it is
better to take the edge e(src, dst) as the key and the property of the edge as the value [89], where
the src and dst represent the IDs of the edge’s source and destination vertex.

Write Performance Analysis. LSM-tree first caches graph updates in Memtable, i.e., a skip list. In-
serting an edge incurs O(log(P)) memory I/Os, since a binary search is performed, where P is
the maximum number of edges that can be cached in MemTable. When the MemTable is full, it
is flushed to the disk in SSTable format. LSM-tree employs a multi-level structure to store data
on disk. The SSTable flushed from memory is stored at Ly. When the number of SSTables at L;
reaches a threshold, the LSM-tree compacts these SSTables from L; to L;;1. The capacity of each
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Table 1. Comparison of Memory and Disk I/O Complexities for Different Structures.

Structure Read Write
Memory I/0 |Disk I/O [Memory I/0 | Disk I/O
CSR o(1) o) | oqvh [odEh)
LSM-tree | O(log(IE])) | O(L) | O(log(P)) |O (%)
LSMGraph|  O(1) o) | o(og@) |o (%)

level grows exponentially by a factor of T, i.e., the capacity of L; is P - T* edges. To facilitate query
performance, we only consider the leveling compaction strategy [28, 29], in which compaction can
be regarded as a multi-way merge that sorts data by key so that the edges of each vertex are stored
contiguously at the current level. Notably, the compaction process always occurs asynchronously
in the background, thus hiding the overhead of data movement from writing tasks. The I/O cost of
updating an edge is amortized through the subsequent merge operations in which the updated edge

participates. In a worst-case workload, all updates reach the largest level L = {logT (% . %ﬂ
This means that each edge will be merged across all levels without being discarded by a more recent
edge at a smaller level [29]. Before reaching capacity, the edges at each level undergo an average
of O(T) merge operations, and across O(L) levels, there are a total of O(T - L) merge operations.
We divide the total number of merge operations by the block size B since every disk I/O during a
merge operation copies B edges from the original SSTables to the new SSTable. Thus, the amortized
disk I/O times for one update is O(%) I/0.

From the above analysis, we can see that LSM-tree improves writing performance in three aspects.
1) It caches and reorders random arrival edges and writes them to the disk in an append-only manner.
2) The expensive online data movement is replaced by the offline compaction periodically. 3) It
employs a multi-level structure to organize disk data to mitigate write amplification of compaction.

Read Performance Analysis. In LSM-tree, the edges of a vertex may be distributed across both the
MemTable in memory and the SSTables on disk. For edges in MemTables, query operations require
O(log(P)) times memory I/O. For edges in SSTables, given that each level’s SSTables and their
internal data are ordered, enable binary search queries to locate the relevant data block that contains
the queried vertex in O(log(|E|)) memory I/Os. Then a Bloom filter [21, 28, 30] is used to detect
whether the found data block needs to be loaded from the disk. For example, RocksDB’s blocked
Bloom filters require only one memory I/O per query [30]. Since P is usually much smaller than
|E|, the total memory I/O complexity is O(log(|E|)). If the Bloom filter query returns true, one disk
I/O is needed to load the data block. In the worst-case workload, each level contains edges for the
vertex, which requires loading multiple data blocks. Therefore, the total disk I/O is O(L).

Compared to graph-aware structures like CSR, LSM-trees have poorer read performance in two
aspects. 1) Reading a vertex’s edges involves a large amount of memory I/O, and in the worst case,
requires disk I/Os equal to the maximum number of levels. 2) LSM-tree’s SSTables store data as
key-value pairs and organize them in fixed quantities without considering the semantics of graphs.
In contrast, CSR indexes edges by source vertex ID and stores all edges compactly by source vertex.
It was reported that LSM-tree is on average 55 times slower than CSR in reading edges of vertices
[89].

Some graph databases [7, 10, 48] use LSM-tree based storage systems to store graph data, such
as NebulaGraph [10], Dgraph [7] and ByteGraph [48]. In NebulaGraph [10], keys store vertices
or edges, while values store the properties of vertices or edges. Dgraph [7] stores vertices as keys
and edges of a vertex as the value. Additionally, ByteGraph [48] stores the edges of each vertex
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as a tree structure in memory, with each node of the tree stored as a key-value pair. It should be
noted that these systems use existing LSM-tree based systems as their underlying storage, such as
RocksDB [12] for NebulaGraph and ByteGraph, and Badger [6] for Dgraph. This approach, which
treats LSM-tree based system as a black box, does not incorporate the structural properties and
workload characteristics of graphs, and thus still suffers from the same read performance issues
analyzed above for LSM-trees.

3 Opportunities and Overview
3.1 Combination Opportunities

As we analyzed in Section 2.2, CSR has been widely adopted in static graph systems [35, 45, 59, 75, 80,
88], as it optimizes read performance through compact storage and efficient indexing. In contrast,
LSM-tree, with its multi-level structure that replaces random write with periodical sequential
write, has become the preferred storage structure for databases that prioritize write performance
[9, 12, 23, 40, 46, 56].

Given the advantages and disadvantages of CSR and LSM-tree, neither structure is ideally suited
for supporting both high read and write performance on its own. Fortunately, we now identify two
opportunities to combine their advantages for this work.

Opportunity #1: Utilize LSM-tree to hide the movement overhead of CSR. As analyzed in
Section 2.2, when inserting or deleting edges, CSR may move enormous data to keep compactness,
which is unacceptable as it results in significant I/O overhead on disk. The design of the LSM-tree
that turns random writes into sequential writes and online data movement into offline periodic
compactions, which is the reason why the LSM-tree has good write performance, can be used to
manage CSR to avoid the overhead of online data movement.

Opportunity #2: Utilize CSR to accelerate graph reading. LSM-tree is non-graph-aware. For
some frequent query operations, such as reading all edges of a vertex or finding k-hop neighbors
of a vertex, will result in a large number of random reads. Suppose the graph data at each level in
the LSM-tree is stored in CSR format. In that case, the efficient index and graph-aware storage of
CSR, in which the edges of each vertex are stored continuously and ordered on the disk, will be
exploited when reading the graph data to improve read performance.

Although there are opportunities to combine their advantages to build new structures that provide
high read and write performance, it is non-trivial to efficiently embed CSR into the LSM-tree, as
several challenges need to be addressed.

Write. Like LSM-tree, to provide high write performance, it first caches updates in memory, then
flushes them to disk. To efficiently flush the cached updates to disk, the edges of each vertex should
be stored continuously. A simple method is to reserve a fixed contiguous space for each vertex in
memory to store its edges. However, the number of edges of each vertex varies, typically following
a power-law distribution. This means that when a high-degree vertex’s space is full, it is necessary
to expand the capacity and move data, while vertices with few edges will waste memory resources.
Therefore, designing a cache structure that can be efficiently updated and flushed to disk presents
a challenge.

Read. While the multi-level structure of LSM-tree provides efficient write performance, it compli-
cates the query operations. Since the edges of a vertex may be distributed across multiple levels,
extensive lookups are required at each level to locate the data in existing LSM-tree designs, resulting
in poor read performance. Designing an index to accelerate the location of a vertex’s edges in a
multi-level structure is challenging.
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Fig. 4. Overall architecture of LSMGraph.

Write-Read Concurrency. In an LSM-tree architecture, the cached data in memory is continuously
flushed, disk files are dynamically compacted and new files are generated. If a query operation
encounters deleted or duplicate data, it will lead to incorrect results. It is a challenge to design an
efficient version management strategy that ensures each vertex reads the correct version of the
data while maintaining high parallelism.

Based on the above two opportunities, we design an efficient disk-based dynamic graph storage
system LSMGraph and overcome the mentioned challenges.

3.2 Overview

The overall architecture of LSMGraph is shown in Fig. 4.

Architecture. As shown in Fig. 4, the system consists of four components, i.e., MemGraph, multi-
level CSR, multi-level index, and vertex-grained version controller. MemGraph is an efficient in-
memory structure to cache recently arrived graph updates efficiently. CSRs organized on different
levels are stored on disk and the multi-level index is built to read the edges of vertices from CSRs of
different levels efficiently. Vertex-grained version controller is used to support concurrent read/write
operations and mitigate the impact of compaction on read/write performance.

Workflow. The read and write workflow of LSMGraph is as follows.

Write. In LSMGraph, when the graph update arrives, e.g., the added edges or deleted edges, they are
firstly inserted into the MemGraph (Section 4.1). As graph updates continue to be inserted, once
the MemGraph reaches its capacity limit, it is flushed to Ly on disk with the CSR format. Note that,
to improve write performance, the MemGraph is directly written to Ly without compacting with
CSRs at Ly. When the number of CSR files at Ly reaches its limit, compaction is triggered to merge
multiple CSR files at Ly and L; into a new CSR, which is then written to L; (Section 4.2.1). There is
only one CSR on each level, except for Ly, and it can be divided into several segments. Similarly to
LSM-tree, when L; reaches its capacity limit, compaction is triggered to merge CSR segments and
write them to L;;1. The multi-level index is also updated after compaction (Section 4.2.2).

Read. When performing graph analysis algorithms, there are different query requests, such as
reading a vertex/edge, reading all edges of a vertex, etc. We take reading all edges of vertex v, as
an example to demonstrate the query process, as it covers the most common query flow. When the
query operation is triggered to read the edges of vertex vy, LSMGraph utilizes vertex-grained version
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Table 2. Degree distribution of cached data in LSM-tree memory cache structure.

Degree [1,2] [3,4] [58] [9,16] >16

IT-2004 [1] 96.35% 2.85% 0.64% 0.15% 0.01%
UK-2007 [22] 93.53% 3.55% 1.59% 0.74% 0.58%
Twitter [67] 89.45% 5.66% 2.94% 1.19% 0.76%
Friendster [2] 94.57% 4.58% 0.81% 0.04% 0.00%

controller to obtain a set of accessible data, denoted as version, which includes MemGraph and the
index of vy in the multi-level index. LSMGraph first searches and reads data from the MemGraph
recorded in the version. Then, according to the index in the version, LSMGraph can obtain the
position information of v;’s edges on each level, and read the corresponding data based on this
information (Section 4.3).

4 System Design

In this section, we present the details of each core component in LSMGraph.

4.1 Memory Cache Structure

In LSM-tree, the MemTable is used to cache random writes and enhance write performance by
converting these into sequential disk writes, making it a crucial component of the system. However,
MemTable is primarily designed for key-value data and does not consider the characteristics of
graph data and workloads, rendering it inadequate for graph storage requirements. Therefore,
designing a memory cache structure that supports fast graph updates and queries is critical for
improving both the read and write performance of LSMGraph.

We present the following two important observations before describing the detailed design of
LSMGraph’s memory cache structure.

Observation 1. For LSM-tree based works such as RocksDB[12], the MemTable is typically imple-
mented as a skip list. A popular implementation [10, 89] for storing graphs using these works
takes an edge as a key-value pair, where the vertex ID pair (i.e., <src, dst>) of the edge serves as
the unique key, and the edge property as the value. The edges are usually sorted by source vertex
ID (i.e., src) in ascending order and destination vertex ID (i.e., dst) in second ascending order. For
any inserted edge, the MemTable needs to search for the correct position in the skip list based
on the key, and then insert it to maintain the overall key-sorted order of the skip list. Since the
MemTable stores all edges of all vertices in the same skip list, inserting and querying edges for a
vertex require a complexity of O(log n), where n is the total number of stored edges. Furthermore,
as introduced in Section 2.1, a common operation in graph analysis tasks is scanning all the edges
of a vertex. However, scanning all edges of a vertex in the MemTable is not efficient due to the
discontinuous memory storage of the skip list. Since MemTable is not optimized for the traits of
graph data and workloads, simply applying MemTable’s design would lead to poor insertion and
query performance.

Observation 2. In most scenarios, e.g., shopping networks, social networks, and web networks,
graphs often follow a power-law distribution [18, 32, 83]. Table 2 illustrates the degree distribution
of vertices in the memory cache structure of LSM-tree (with a size of 64MB default in RocksDB) when
storing the real-world graph datasets (see Table 3 for details). It can be observed that approximately
95% of the vertices have no more than 4 edges, while less than 1% of the vertices have more than 16
edges. This inspires us to consider the characteristics of data distribution when designing memory
cache structures.
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Fig. 5. An example of MemGraph.

MemGraph. Based on the above observations, we design a new memory cache structure for graph
data, Fig. 5 illustrates the structure of MemGraph. The MemGraph utilizes a hashmap to store
vertex IDs and the address of their first edge. On one hand, the hashmap provides approximate
array-like query performance. On the other hand, since MemGraph stores only a part of the graph
data at a time, the vertices are sparse, and using a hashmap as an index can save more memory
than using an array. The MemGraph employs an edge array and a skip list to store the neighbors of
low-degree and high-degree vertices respectively. This design choice is based on the consideration
of the power-law nature of graphs, as we mentioned in Observation 2. Storing low-degree vertices
in an array since the array provides good spatial locality, which enables fast scanning and quicker
flushing to disk. However, storing high-degree vertices in the array may cause a large amount of
data movement when inserting edges. Thus, for high-degree vertices, we store their edges in a skip
list, which has a better insertion performance and logarithmic query complexity.

Specifically, for vertices with low degrees, we store their edges in the edge array. Different from
the edge array in CSR, the edge array in MemGraph is divided into multiple equally sized segments,
and each segment only stores the edges of one vertex. Note that, to prevent data movement, the
assignment of each segment on the edge array does not follow the order of the source vertices.
Instead, segments are assigned based on the order in which the edges arrive, e.g., the first segment
is allocated to the source vertex of the first arriving edge. In Fig. 5, with the segment size set to 2,
the unique outgoing edge of vertex vs is stored in the first segment of the edge array, as e(vs, vg) is
the first arriving edge. For vertices with edges larger than the segment size, MemGraph inserts
their edges into a skip list. As shown in Fig. 5, vertex vy has three edges that exceed the size of the
array segment, so its edges are stored in a skip list.

4.2 Multi-level CSR

In this section, we first introduce the structure of multi-level CSR, which incorporates vertex-aware
compaction. We then introduce the multi-level index to facilitate efficient reading of graph data.

4.2.1 Compact Multi-level CSR. As we mentioned in Section 2.2, the multi-level structure of the
LSM-tree effectively mitigates the write amplification of compaction, thus, we also employ a multi-
level structure to organize CSRs on disk. As shown in Fig. 4, unlike the LSM-tree, where there are
multiple fixed-size SSTables, we ensure that there is only one CSR at L; (i > 0), while multiple
CSRs are allowed at Ly to flush MemGraph more quickly. For each level, the capacity, similar to an
LSM-tree, grows exponentially by a factor of T, with T = 10 by default. We divide the CSR at L;
(i > 0) into multiple segments, each stored in a separate file. When determining the size of each CSR
segment, we try to balance the size of each segment as much as possible while ensuring that the
edges of each vertex are assigned to the same segment. This approach ensures load balancing during
compaction and avoids accessing multiple segments when reading the edges of a vertex within a
level. However, if a vertex has many edges, the segment containing these edges may become very
large, leading to more severe read and write amplification during compaction. To address this, we
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Fig. 6. Details of CSR (segment) file on disk.

allow each vertex with many edges to be stored in a separate segment. By segmentation, when
the CSR’s size at L; (i > 0) exceeds the capacity of L;, only one of the segments (denoted as S;) is
compacted to L;; without affecting the other data of the CSR at L;. Meanwhile, only a few segments
at L;y; are involved in compaction, i.e., segments at L;;; whose edges have the same source vertex
with edges in S;. Regarding Ly, its multiple CSRs originate from the flushing of MemGraph, and
their vertex ranges almost always overlap. If each CSR is compacted to the next level individually,
it would cause many identical files at the next level to be compacted multiple times. Therefore,
we require all overlapping CSRs of Ly to be compacted to the next level in a single compaction to
reduce write amplification.

Compared to the simple graph data stored in Fig. 2, the CSR file requires more information to be
persisted on disk, such as metadata to support data recovery and lookup, as well as timestamps
for snapshot isolation. Additionally, in each CSR segment, there is only a part of vertices” edges.
Employing the original CSR storage format would result in space wastage, which requires allocating
arrays with the size of the number of vertices. These differences prompt us to design a new CSR
storage format for CSR (segment) on disk tailored to the requirements of LSMGraph.

CSR Storage Format. Similar to the original CSR, we divide a CSR into two separate files, the
edge file and the property file, as shown in Fig. 6. For the edge file, it comprises four parts, header,
Bloom filter, edge offsets and edge bodies. The header stores the metadata of the edge file, including
the number of edge bodies, the number of edge offsets, the maximum and minimum source vertex
IDs of the edges within the file, and the creation timestamp of the file. The Bloom filter, a highly
compact probabilistic representation of a set, is used to roughly filter whether a particular edge
is in the file, which could speed up edge queries. Specifically, the two vertex IDs (64 bits each) of
an edge are hashed into 32-bit integers and then concatenated into a 64-bit integer to serve as
the key for the Bloom filter. Edge offsets record a set of pairs (src, of fset), where src represents a
vertex ID in the current file, and of fset records the offset of the first edge of vertex src. The role of
of fset is similar to the offset array in the CSR shown in Fig. 2. Since each CSR segment only stores
edges of a part of vertices, we use edge offsets instead of the offset array in CSR (Fig. 2(b)) to reduce
index size. Edge bodies store the data of each edge that comprises (dst, ts, of fset, marker). Here,
dst represents the destination vertex ID of the edge, ts denotes the timestamp when the edge was
inserted, serving for fine-grained snapshot isolation, offset stores the offset of the property of this
edge in the property file, as depicted in Fig. 6, and marker indicates whether the edge is deleted.

Compaction is a key operation to maintain the multi-level structure of LSMGraph, and it de-
termines the data movement between different levels. We further introduce the details of the
compaction in the following, which combines the characteristics of graph data.

Vertex-aware Compaction. For the CSR segments that will be compacted, we first select the edges
with the smallest source vertex ID from all the CSR segments. Then, we sort them in ascending
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Fig. 7. An example of compacting two CSR segments.

order based on the destination vertex ID, and write them into the same CSR segment sequentially.
If the CSR segment has become very large, we write them into a new CSR segment to keep each
CSR segment in a reasonable size. After that, we compact the next vertex’s edges similarly. In this
way, the edges of each vertex are compacted into the same segment, and the edges are sorted in
ascending order based on the destination vertex ID.

Example 1: Fig. 7 shows an example of two CSR segments being compacted from level L, to
level Ly, where level L, is initially empty. CSR{ denotes the j-th CSR or CSR segment at L;. First,
consider edge offset (v, 0) of CSRg indicating the first edge as edge (vo, v;) and edge offsets (v,
0) of CSR; indicating the first edge as edge (vo, v4). Obviously, through the offset information, we
can determine that they belong to the same source vertex (vy), and the edge (v, v1) of CSRg has a
smaller destination vertex ID, so it needs to be written to the CSR file (CSR?) of L;. Then, consider
the next edge offset (v, 1) of CSR) indicating e(v;, v3) of a new source vertex (v;). The edge waiting
for compaction in CSR; is still e(vo, v4) of the source vertex vy. Therefore, by comparing the source
vertices, the source vertex vy of CSRé is the unique minimum, and e(v, v4) that will be written to
CSRY. Repeat the above process. When the third edge e(vy, v3) needs to be written, CSR? reaches
the size limit (if each CSR file is limited to 2 edges), and since this edge is the new source vertex
(v1), so this edge is written into the new file CSR]. The final compaction result is shown in Fig. 7. O

4.2.2  Efficient Multi-level Index. Although multi-level CSR combines the excellent write perfor-
mance of LSM-trees and the efficient read performance of CSR, the multi-level structure of LSM-trees
makes reading complex. Since the edges of a vertex may be distributed across multiple levels, exist-
ing LSM-tree designs typically use binary search to find the blocks containing the data and then use
Bloom filters to determine whether to load those blocks. As analyzed in Section 2.2, this requires
numerous random lookups in memory, leading to poor read performance. Therefore, it is essential
to design an index to accelerate the location of a vertex’s edges in the multi-level structure.

To efficiently select the CSR segments that contain the edges of the queried vertex, we design a
multi-level index that directly locates the CSR segments without numerous random lookups. Since
the edges are stored continuously within each CSR segment, it is sufficient for our index to locate
the first edge of each vertex. In addition, at each level except Lo, the edges of each vertex are stored
in only one CSR segment. Therefore, for each level, we can store one position information for each
vertex in the index, i.e., the file ID of the CSR segment and the offset of the first edge of each vertex.
A simple method to store the position information of each vertex is to employ an array, which is
similar to the offset array in CSR (as shown in Fig. 2(b)). For multi-level CSR, we need to create
an array for each level. However, we found that not every vertex’s edges are present at each level,
resulting in the arrays always being sparse. To compress these sparse arrays and save space, we
use the structure shown in Fig. 8 to store the position information of vertices.

Multi-level Index. As shown in Fig. 8, there is an array to store the position information of each
vertex, where each entity in the array contains three data items. The first item stores a file ID,
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which points to the first CSR file at L, that contains the edges of the vertex. Because the edges of
one vertex at Ly may spread over multiple CSRs, recording the first CSR file that contains edges
can help filter some invalid random reads. The second and third data items in the array are used to
store the position information of the vertex’s edges at different levels, i.e., the file ID of the CSR
(segment) containing the edge and offset of the first edge in the file. We only record two location
information in the array based on the following observation. When each level is full, the last two
levels at the bottom of multi-level CSR will hold 99% of the edges because the capacity of each level
is tenfold the previous level. When the number of edge positions for a vertex exceeds 2, i.e., the
edges of the vertex appear on more than 2 levels, we only use the second data item to store one of
the positions, while storing the other position information in a page in the page set (i.e., Pages in
Fig. 8). The third data item records the page ID and offset of the position within the page. Each page
has a size of 4K and is evenly allocated to a continuous interval of size k vertices (default is 1024)
during system startup to maintain the locality of index data access. Each page records position
information, as well as the current storage size and remaining space (not shown in Fig. 8). If a page
cannot accommodate the indexes of the current interval, the vertex interval is split in half, and the
data on the page is written to two new pages, while modifying the recorded page ID and offset in
the array according to the vertex interval. When the data stored in a page becomes too small, it
will be considered to be merged with pages of adjacent vertices ranges. In addition, the multi-level
index is synchronously updated during compaction. Since the position information (i.e., file ID and
offset) of all vertices mirrors the edge offset portion of the CSR file (as shown in Fig. 6), obtaining
them is straightforward and does not require additional complex calculations.

Note that the multi-level index is updated in place based on the following three intuitions. First,
the multi-level index is frequently used in query operations and is usually cached in memory,
meaning that most update operations can be completed in memory. Second, the updated multi-level
index does not need to be periodically synchronized to disk as long as the memory is enough. Even
if it is lost due to a system crash, we can still reconstruct it by the edge offset information from the
CSR files on disk. Third, the index updates exhibit good spatial locality because each compaction
is limited to a range of vertices. Thus, even if the indexes are on disk, loading them can still take
advantage of the amortized I/O.

By utilizing the multi-level index, LSMGraph can quickly obtain the distribution information of
all edges of a vertex at each level by using the vertex ID, avoiding many random lookups.

Example 2: Fig. 8 presents a simple example of the multi-level index. The edges of vertex v, are
stored in three files (i.e., F;, F, and F;) at different levels. Therefore, in the multi-level index, only
the position information of vy in the first file is recorded in the array, while the remaining position
information is stored on a page with ID Py, and the page ID and offset are recorded in the array. For
v1, its edge is only stored in files F; and Fj, so its position information is recorded in the array. O

I/O Analysis. In terms of write performance, LSMGraph achieves similar write performance to
LSM-trees due to its multi-level structure and significantly outperforms CSR. Specifically, inserting
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an update into the MemGraph entails O(log(d)) memory I/Os, where d is the average degree of
vertices. Disk I/O from compaction is similar to LSM-trees, the amortized disk I/O cost for one
update is O(L'TT) I/O. In addition, during the compaction, one memory I/O is required to update
the index of the vertex in the multi-level index. Notably, if the multi-level index cannot be cached
in memory, it will incur at most one disk I/O because compaction usually targets vertices within a
contiguous range, providing good locality and allowing multiple vertices to amortize the I/O. In
terms of read performance, LSMGraph uses a multi-level index and CSR format, resulting in better
read performance than LSM-trees. However, due to the multi-level structure, its performance is
inferior to that of the original CSR. Specifically, locating edges of a vertex in MemGraph requires
only O(1) memory I/O. Subsequently, through the multi-level index, the position of a vertex’s edges
in the multi-level CSR can be obtained with 1 or 2 memory I/Os. Note that if the index is on disk,
the I/0 becomes disk I/O. In the worst-case workload, where edges are distributed across all levels,
loading the edges requires O(L) disk I/O. If properties of edges are also needed, an additional O(L)
I/0O is required. Notably, when executing graph analysis algorithms, LSMGraph not only reduces
lookups in memory but also benefits from the graph-aware CSR storage format. In comparison,
LSM-trees need to parse key-value pairs one by one. We also list the times of memory and disk I/O
of LSMGraph in terms of write and read in Table 1.

4.3 Vertex-grained Version Control

Consider a concurrent scenario, when reading the graph data in the LSM-tree, the data at L; is
compacting with the data on the L;;;, or the MemGraph is being flushed to Ly. After flushing or
compacting, the original data, i.e., MemGraph or CSR (segment) files at L; will be deleted. However,
if the original data is deleted before the data is read, it will cause a read error. Therefore, it is critical
to design a version management strategy for the system’s files to ensure that read and write tasks
run correctly.

Existing LSM-tree based systems [12, 24] maintain a version chain to manage different versions
of files. Whenever a new file is generated or deleted, a new version is created. Each version in the
version chain records a readable data set in the system. The version in the version chain is a static
view of all data, which requires that the recorded data cannot change. However, in LSMGraph, a
query task needs to read the multi-level index that needs to be updated during compaction. If an
immutable copy is generated for the multi-level index and added to the version each time, the cost
is intolerable due to frequent compaction. In LSMGraph, we propose the vertex-grained version
control to solve the above problem.

Vertex-grained Version Control. LSMGraph manages versions in two parts based on the location
of the data distribution. For the data on MemGraph and Lo, there is no index to record specific
location information (e.g., offsets) for each vertex, so the granularity of the version is the entire
MemGraph and CSR at Ly. For the data at L; and subsequent levels, we maintain the index in
the multi-level index for each vertex, which specifies the data range that each vertex can read,
providing version control at vertex granularity.

Version Control on MemGraph and L. LSMGraph maintains a version chain in memory, with a cur-

rent version pointer (i.e., curr_version) pointing to the most recent version. Each version records
MemGraph in memory (including the MemGraph being written and the MemGraph that has
reached its capacity, i.e., MemG and MemG. full) and the file IDs (i.e., fid) of the CSR files at Ly. As
shown in Fig. 9, at time ty, the most recent version is version 0 (i.e., vs) and it records a MemGraph
(i.e., MemG.), a full MemGraph (i.e., MemG. full), and a CSR file ID (i.e., fid 4) at L. When a new
MemGraph is generated, LSMGraph creates a new version by copying the contents of curr_version
and adding the new MemGraph. When a MemGraph reaches its capacity, as shown in MemG. full
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Fig. 9. An example of a version chain and multi-level index that are updated at different times in response to
changes in data storage.

in Fig. 9, it needs to be flushed to Ly. Once the flush of the MemGraph is completed, LSMGraph also
generates a new version by copying curr_version, removing the MemGraph from it, and adding
the file ID obtained from the flush. As shown in Fig. 9, at time ¢;, the MemG. full is flushed to
disk and written to the file (i.e, fid 5). At this point, a new version vs; is generated by copying
vsg, removing the MemG. full, and adding the corresponding file ID (i.e., fid 5). Each time a new
version is generated, it will be inserted into the version chain as a chain head and become a new
curr_version. The old version may still exist in the version chain, and once no read operation
accesses the version, it is automatically removed from the version chain.

Version Control at Ly and Subsequent Levels. Each compaction causes the data of the old file to be
merged and written into the new file. As shown in Fig. 9, at time #,, we assume that the vertex
ranges of files fid 4 and fid 5 overlap and are selected with file fid 3 at L; for compaction. They
are then written into a new file, fid 6. For simplicity in this example, segmentation of fid 6 is not
considered. Since data on disk is accessed through the multi-level index, we can ensure that the
multi-level index points to either the new or the old CSR files, thereby avoiding the reading of
duplicate or deleted data. Specifically, if the compaction occurs at Lj, LSMGraph needs to record
a minimum readable file ID for each vertex involved in the compaction in the multi-level index,
i.e, fid + 1, where fid is the maximum file ID at L; involved in the compaction. The minimum
readable file ID for v; indicates that query operations for vertex v; can only access files at Ly with
IDs greater than or equal to this file ID. According to the compaction rules, files at Ly with IDs less
than this file ID do not contain edges of v;; otherwise, they would have been compacted to the next
level. In addition, after each compaction is completed, the position information at L; or subsequent
levels recorded in the multi-level index is updated based on the new file ID and the edge offset of
each vertex in the new file. As shown in Fig. 9, we illustrate two time points (i.e., t; and t;) during
the multi-level index update process. At time t;, only the index of vy has been updated, while at
time #3, the index update of the remaining vertices is completed. Specifically, at time #,, the index
(i.e., minimum readable file ID) of vy at Ly is updated to fid 6 (i.e., fid 5 + 1). It means that v, can
only read files with file ID greater than or equal to fid 6 at L,. At the same time, the index of v at
L; is updated to fid 6 and the new offset (denoted as * in Fig. 9) in the file. The updates to the vertex
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indices are managed using vertex-grained read-write locks to handle read and write conflicts with
the reading threads.

Overall, for data on MemGraph and Ly, LSMGraph uses version chain and curr_version for version
management. The version chain only maintains the data on MemGraph and L, in LSMGraph, unlike
traditional version chains (e.g., in RocksDB [12] and LevelDB [24]), which avoids the overhead of
maintaining other levels. For data at L; and subsequent levels, LSMGraph uses the multi-level index
for version management. Note that there is some overlap between these two types of data, as data at
Ly is written to L; during compaction. Therefore, LSMGraph ensures global version consistency by
cleverly recording the minimum readable file ID in the multi-level index, preventing read operations
from accessing duplicate data.

Example 3: We use times t; and 5 in Fig. 9 to explain how to ensure that each vertex reads the
correct data during the multi-level index update process. At time ¢, the multi-level index is being
updated. For example, information for vy has already been modified, while v, although needing
an update, has not yet started. Using curr_version and the multi-level index, vy can only read
MemGraph and fid 6. Note that files fid 4 and fid 5 will not be read for vy, even though they are in
curr_version at Ly, because vy can only read files with IDs greater than or equal to its minimum ID
(i.e., fid 6) recorded in the multi-level index. For vy, the data retrieved includes MemGraph, fid 4,
fid 5, and fid 3. Although v, and v; read different files, the compaction process merely merges the
data, ensuring that the data they access is equivalent; specifically, the data in file fid 6 is identical
to that in files fid 4, fid 5, and fid 3. At t3, compaction is complete, information for v; has already
been updated in the multi-level index, and vs; is created by deleting fid 4 and fid 5 from vs;. O

Vertex-grained version control ensures each vertex can access a unique data view during flush and
compaction. However, concurrent read-write scenarios still require concurrency control strategies
to provide correct data access among multiple read and write threads.

Concurrent Read and Write. There are two kinds of conflicts in our LSMGraph to handle, write-
write and read-write conflicts.

Write-write Conflict. As shown in Fig. 4, a write-write conflict only occurs in MemGraph because
updates are always written to MemGraph first in LSMGraph. In MemGraph, each vertex’s edge is
written to its independent array position or skip list, so there are no conflicts between different
vertices. When multiple write threads attempt to insert edges for the same vertex simultaneously,
LSMGraph uses vertex-grained write locks to ensure safety. They must acquire the write lock for
the vertex before performing the write operation. This is a common approach that many existing
dynamic graph storage systems have adopted [38, 54, 63, 73, 89].

Read-write Conflict. It occurs when a read operation accesses a vertex’s index from the multi-level

index while a compaction thread needs to modify the index. LSMGraph ensures read-write safety
through vertex-grained read-write locks. A vertex’s read-write lock allows multiple read threads
to simultaneously acquire the read lock to access the vertex’s index, while only one write thread
can acquire the write lock to modify the index. This ensures both read-write safety and high
performance. Then, based on the obtained index and curr_version, we can further access the specific
data. When the data being read is in MemGraph, the read operation does not need to acquire any
locks. This is because the read operation acquires a timestamp 7 before reading, and it only reads
edge with timestamps less than or equal to 7. Thus, even if new data is inserted during the reading
process, it will not be read because its timestamp must be greater than . When the data being read
is in the CSR or CSR segment files, there are no read-write conflicts because these files are not

modified.
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Table 3. Graph datasets used in the experiments.

Dataset V| |E| Avg. Deg. Size Type

IT-2004 [1] 41,291,594 1,150,725,436 28 18GB
UK-2007 [22] 105,153,953 3,301,876,564 31 50GB
Twitter [67] 41,652,230 1,468,365,182 35 22GB
Friendster [2] 68,349,467 2,586,147,869 38 39GB

Web Graph

Social network

In concurrent read-write scenarios, it is critical to ensure that read tasks access consistent graphs
at different times. For example, to achieve correct results in graph analysis, it is necessary to
perform each iteration on a consistent graph, i.e., on the same snapshot. The following paragraph
introduces how LSMGraph implements this.

Read Graph with Vertex-grained Version Control. LSMGraph provides a consistent graph
for a long-running query (e.g., graph analysis) by using timestamps recorded on the edges as
snapshots. Specifically, as shown in Fig. 6, each edge records a timestamp (i.e., ts) when it is inserted,
representing a snapshot. When a graph analysis task is executed, it first acquires the current latest
snapshot number (i.e., timestamp), denoted as 7. Subsequently, each time LSMGraph reads the edges
of a vertex, it first uses vertex-grained version control to retrieve readable data range (including
MemGraph and CSRs on disk) from the multi-level index and the latest version. LSMGraph reads
data within the range and only reads edges with timestamps less than or equal to 7. Additionally,
any edge with a deletion marker is discarded. If new edges are continuously inserted during the
graph analysis process, these new edges will have timestamps greater than 7 and will not be read
by the current graph analysis task, ensuring that the analysis is always performed on the same
snapshot (7).

5 Evaluation

5.1 Evaluation Setup

Implementation. LSMGraph is implemented in approximately 13,000 lines of C++ code, including
the support for various analytical algorithms and the validation for the proposed functionalities.
It supports both plain graphs and property graphs with 4-byte or 8-byte vertex sizes (8 bytes in
our default setting). The capacity of MemGraph is limited to 64MB, and the capacity of each level
on the disk grows by a factor of 10, with a maximum of 5 levels. Additionally, two MemGraph are
allowed to alternately accept updates in memory. For various types of properties (e.g., weights),
we uniformly store them as string types on the edges. LSMGraph primarily focuses on the design
and optimization of edge storage, and we adopt a similar approach to LiveGraph [89] for storing
vertices by appending them to a vertex file. Additionally, we use a vertex ID recycling strategy
similar to that in LiveGraph [89] and RisGraph [36] to manage deleted vertices, i.e., the IDs of
deleted vertices are reused by recycling the IDs of the deleted vertices and assigning them to the
newly inserted vertices.

Evaluation Platform. Experiments are conducted on AliCloud ecs.i2.4xlarge instance, which
contains 16 hyperthread vCPU cores, 128GB memory (33MB L3 Cache), and 2 SSDs of 1.7TB, which
can achieve up to 500MBps read/write sequential performance. All experiments limit their memory
to 16GB using the Linux cgroup tool [89]. The instance runs Ubuntu 18.04 with Linux kernel version
4.15.0-173-generic. All codes are compiled using GCC v11.4.0.

Graph Algorithms. We consider four typical graph analysis algorithms in our experiments,
including Single Source Shortest Path (SSSP), Breadth-First Search (BFS), Connected Component
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(CC), and SCAN. SCAN refers to traversing all one-hop neighbors of each vertex, which is a
fundamental operation in many graph algorithms, such as PageRank, PHP, and GNN. We use the
same implementations of all graph algorithms to ensure a fair comparison among various storage
systems (except for MBFGraph, we use its own test code because it employs the edge-centric
computation model).

Graph Datasets. We adopt four real-world graphs in our experiments, as shown in Table 3,
including two web graphs, IT-2004 (IT) [1] and UK-2007 (UK) [22], and two social networks, Twitter
(TW) [67] and Friendster (FS) [2]. These datasets are provided as binary files with 8-byte vertex
IDs. We randomly inserted edges from the datasets into each system in all experiments. When
evaluating the insertion performance, we first insert 80% of the data to form a baseline and then
use the remaining data to evaluate the performance [26, 41]. For mixed updates, we default to a
ratio of 20:1 for insertions and deletions [17].

Competitors. We compare LSMGraph with four state-of-the-art dynamic (graph) storage systems
that support updates and analysis on disk, LiveGraph [89], LLAMA [54], MBFGraph [52] and
RocksDB [12]. LiveGraph [89] is an advanced dynamic storage system mainly designed for memory
scenarios. It also uses mmap to support scenarios where the data volume exceeds memory capacity.
It stores each vertex’s neighbors contiguously to improve the performance of reading the edges of
a vertex. LLAMA [54] stores graphs as a time series of snapshots, where each snapshot is similar to
a CSR. An excessive number of snapshots can lead to performance degradation. LLAMA creates
a new snapshot every 10 seconds as recommended by the author. However, under this setting,
LLAMA does not work on the dataset we used. Therefore, we adjusted the interval to 40 seconds.
MBFGraph [52] is a state-of-the-art SSD-based analytics system for evolving graphs. It achieves
ultimate update performance by directly appending updates to the end of the file. However, this
design makes MBFGraph only suitable for the edge-centric computation model. RocksDB [12] is
a well-known and widely used open-source key-value store based on LSM-tree. In RocksDB, the
adjacency list is represented as a single sorted collection of edges, whose unique key is a vertex
ID pair (i.e., (src, dest)) [89]. To be fair, we turn off WAL (Write-Ahead Log) in Rocksdb because
other systems do not support it. In addition, for other parameters, we adopt RocksDB’s default
configuration. All systems use 16 threads by default, with 8 threads allocated for reading and 8
threads for writing in mixed read-write workloads. For write tasks, RocksDB and LSMGraph use
half of the threads for background compaction.

5.2 Graph Update Performance

We first evaluate the performance of different systems for ingesting graph updates on four real-world
datasets, and the results are shown in Fig. 10. Fig. 10(a) shows the throughput (edges per second) of
all systems when performing only edge insertions. Fig. 10(b) shows the throughput of insertions
with random delete operations (4.76% of all the operators). As mentioned in the documentation
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of the LLAMA code repository !, LLAMA cannot handle deletion operations correctly. Therefore,
the results for LLAMA are not reported in Fig. 10(b). In addition, MBFGraph provides a reference
implementation that utilizes the Linux cat command and output redirection to append the update
file to the original edge file. Using this method, we test the throughput of MBFGraph with different
datasets, which obtains the average throughput 3x107, surpassing other systems 30-2400x. However,
we find that the significant improvement primarily arises from the direct file operations performed
by MBFGraph, rather than individual edge insertions. Since this paper focuses on the real-time
data ingestion capability of the systems, we mainly discuss graph update performance differences
between LSMGraph and other competitors.

As shown in Fig. 10(a), LSMGraph achieves significantly higher throughput than other systems
across all datasets. Specifically, LSMGraph achieves an average speedup of 50.56X (up to 58.71X) over
LiveGraph. The main benefit of LSMGraph comes from its adoption of an LSM-tree structure, where
updates are first cached in memory and then sequentially written to disk. In contrast, LiveGraph
performs in-place updates for inserted data and constantly adjusts the size of its edge vector to
ensure continuous storage of neighbors, resulting in the lowest throughput compared to all other
systems. Compared to LLAMA, LSMGraph achieves an average speedup of 2.85X (up to 3.40X) over
LLAMA. After MemGraph reaches its capacity limit, LSMGraph allows for asynchronous flushing
to disk and a new MemGraph can continuously accept new updates. In contrast, LLAMA can only
insert memory data and write it to disk sequentially to maintain and update links between different
versions. In addition, since LSMGraph employs an LSM-tree structure, the data cached in memory
at one time can be much smaller than in LLAMA, and the conversion to the CSR file format on disk
is faster each time it is flushed. Besides, LSMGraph achieves an average speedup of 11.60X (up to
14.15X) over RocksDB. These benefits primarily come from the efficient memory cache structure,
MemGraph, which is specifically designed for graph data in LSMGraph. In addition, RocksDB
employs a group commit approach before inserting data into the MemTable in memory, where only
the group leader can perform the insertion operation, impacting its insertion performance.

Fig. 10(b) demonstrate similar performance trends as Fig. 10(a), and LSMGraph continues to
exhibit outstanding performance advantages. It is worth noting that graph systems experience
some performance degradation in deletion scenarios. This is because deletion operations require
verifying the existence of the edges to be deleted, resulting in additional query operations compared
to pure insertion operations.

We also evaluate the p99 latency of different systems during the above ingestion update process.
Fig. 11(a) shows the p99 latency of each system with only insert operations; LSMGraph exhibits
significantly lower latency than other storage systems, thanks to LSMGraph’s multi-level write-
optimized structure and graph-aware cache structure in memory (i.e., MemGraph), which enable fast
updates. Fig. 11(b) shows the p99 latency with inserts accompanied by random delete operations;
LSMGraph still demonstrates lower latency than other systems in most cases. However, these
latencies are higher compared to scenarios with only insert operations. This is because, like other

Thttps://github.com/goatdb/llama
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graph systems [38, 54, 89], LSMGraph needs to look up an edge before deleting it, causing random
disk I/O. In contrast, RocksDB treats deletions the same as insertions without performing lookup
operations. Although LiveGraph also performs lookup operations during deletions, its in-place
updates cause disk I/O even for insertion operations. Therefore, its latency is consistently high
whether deletions are included or not, exhibiting little variation.

5.3 Graph Analysis Performance

We next evaluate the performance of all systems in executing graph analysis on different graph
datasets. We also measure the I/O amount during the execution of the algorithms (default rep-
resentation in the experiment indicates disk I/O). The results are shown in Fig. 12 and Fig. 13,
respectively. Overall, the results indicate that LSMGraph outperforms other systems in most cases.
Specifically, LSMGraph achieves an average speedup of 24.4x (up to 45.1x) over LiveGraph, 3.1X (up
to 12.1x) over LLAMA, 30.8% (up to 57.4X) over RocksDB, and 6.6 (up to 27.2x) over MBFGraph.

For SSSP, BFS, and CC, LSMGraph demonstrates significant performance advantages in graph
analytics. Compared to LiveGraph, LLAMA, and MBFGraph, LSMGraph exhibits a lower I/O amount
and shorter algorithm execution time. For LiveGraph, the edges of different vertices are scattered
and distributed across the disk, resulting in severe read amplification and ultimately leading to
degraded performance. LLAMA generates new snapshots continuously to handle updates, requiring
the reading of multiple snapshots when accessing all edges of a vertex. However, due to the use of
a CSR-like representation for each snapshot, LLAMA achieves better locality between different
vertices, resulting in superior algorithm performance compared to other competitors. RocksDB,
designed for key-value pairs, has the lowest storage size (analysis in Section 5.4), which makes it
have the lowest I/O amount. However, compared to all other graph systems, it has the worst graph
analysis performance due to its complex lookup process and inefficient traversal performance of
SSTables. By employing MemGraph, multi-level index, and CSR, LSMGraph achieves better lookup
and traversal performance than RocksDB. MBFGraph has almost the highest I/O amount because it
adopts an edge-centric computation model. For these algorithms, even if only a small number of
vertices need to be processed, it still needs to traverse the entire edge file, leading to poor algorithm
performance. It is noteworthy that the trend of changes in the amount of I/O and running time
are not always completely consistent. For example, in Fig. 12/13(a), the I/O amount for LLAMA
and MBFGraph is higher than that for LiveGraph, yet the running time is shorter. This is mainly
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due to LiveGraph’s scattered and disordered storage structure, which leads to more random I/Os
when retrieving edges for different vertices. In contrast, LLAMA and MBFGraph benefit from
more sequential I/O operations due to their compact CSR-like storage structure and edge-centric
computation model, respectively. Particularly, MBFGraph requires sequential scanning of the entire
edge file in almost every iteration. Although the volume of data read is large, the sequential I/O
access pattern better leverages the high data transfer rates of SSDs.

For SCAN, it traversals all one-hop neighbors of each vertex. In this sequential traversal mode,
LLAMA, MBFGraph, and LSMGraph demonstrate comparable performance and outperform the
other two systems. Among them, LLAMA and LSMGraph utilize their CSR structures to achieve the
greatest spatial locality in sequential traversal mode. Compared with LLAMA, LSMGraph achieves
comparable performance while storing more information in each edge to provide fine-grained
snapshot isolation support for real-time graph analysis, which is a feature that LLAMA’s coarse-
grained snapshots do not possess. In addition, for MBFGraph, regardless of how much data in the
graph is involved in the computation, almost the entire edge file needs to be loaded into memory.
Since SCAN requires the participation of all graph data, MBFGraph performs better in running
SCAN compared to the first three algorithms.

5.4 Space Cost

We also evaluate the disk space occupied by LSMGraph and other systems after inserting four real-
world datasets. The results are shown in Fig. 14. Compared to LiveGraph and LLAMA, LSMGraph
has minimal storage overhead. Specifically, the average storage overhead of LSMGraph is only
45% of LiveGraph and 24% of LLAMA. LiveGraph’s larger storage size primarily results from the
significant replication of edge blocks and its inefficient recycling mechanism. LLAMA’s larger
storage size stems from the substantial data redundancy between multiple snapshots. Compared
to MBFGraph, LSMGraph consumes 27% more space on average. This is because MBFGraph only
stores the topology and properties of the graph, while LSMGraph, as well as LiveGraph, stores
timestamps additionally to achieve snapshot isolation. It is worth noting that RocksDB has the
lowest space overhead compared to all native graph systems. That’s because RocksDB stores vertex
IDs as strings, which can save a significant amount of space when vertex IDs are small, and it uses
compression algorithms to further compress space, which is orthogonal to storage structure design
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and can also be used in other graph storage systems, including LSMGraph. However, these methods
lead to higher parsing and comparison costs during the lookup and traversal processes.

5.5 Effectiveness of Memory Cache Structure

To evaluate the design of MemGraph, we compare the throughput of graph updates and the scan
time when using only the adjacency array and only the adjacency skip list, as shown in Fig. 15.
The skip list implementation is sourced from RocksDB [12], which is a lock-free and efficient
implementation that supports concurrent read and write operations. The adjacency array is our
implementation, which ensures concurrent read and write operations using read-write locks.
LSMGraph outperforms the comparative structures in terms of throughput and scan time on both
datasets. For read performance, LSMGraph improves spatial locality by storing edges of low-degree
vertices in the single large edge array, thereby avoiding the need to scan multiple small arrays or
multiple skip lists, which enhances read performance. For write performance, the high flexibility of
skip lists is hard to show with low data volumes and can disrupt the spatial locality of the data.
Therefore, when inserting edges of low-degree vertices, LSMGraph uses a common array of edges
to avoid issues with frequent small memory allocations and expansions. For high-degree vertices,
LSMGraph employs skip lists to increase flexibility, avoiding data migration when inserting edges
into the array.

5.6 Effectiveness of Multi-level Index

To verify the effectiveness of the multi-level index on system performance, we compare the per-
formance of LSMGraph with the multi-level index (LSMGraph w/ index) and LSMGraph without the
multi-level index (LSMGraph w/o index) on different graph analysis algorithms. When LSMGraph
does not use the multi-level index and instead adopts a naive index approach, it utilizes range
indexing on the file level and offsets information within the CSR file for lookup. This method is
similar to the indexing approach used in LSM-tree implementations like RocksDB. We measure the
running time and I/O amount generated by the two methods on IT, and the results are shown in
Fig. 16. It can be observed that adopting the multi-level index effectively reduces the I/O amount
and the running time of various graph analysis algorithms. These benefits mainly stem from the
fact that the multi-level index almost only requires a single random I/O to obtain the distribution
information of a vertex’s edges on each level. It can also quickly determine whether edges exist on
a specific level, avoiding unnecessary read operations. Therefore, the reduction of the I/O amount
here is the key to performance gain.

We also compare the efficiency of Bloom filters in RocksDB and LSMGraph’s multi-level index on
graph analysis performance. Fig. 17 shows the running time of SSSP and SCAN on four datasets using
the two different indexing schemes. It can be seen that the multi-level index is more efficient than
Bloom filters in these two classical graph workloads. Specifically, the multi-level index outperforms
the Bloom filter by an average of about 1.05-1.32X. This gain comes from the fact that multi-level
indexes always reduce random memory accesses.
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5.7 Performance under Update-analysis Mixed Workload

We analyze the performance of LSMGraph in executing concurrent read-write tasks to evaluate its
vertex-grained version control strategy. We evaluate the insertion throughput and execution time of
SSSP on different systems in IT and TW. MBFGraph is not included in the evaluation as it does not
support the update-analysis mixed workload. Initially, we insert 80% of the edge data as a baseline,
followed by continuous edge data insertion while concurrently running the SSSP algorithm. The
results are shown in Fig. 18. LSMGraph outperforms all other systems in the concurrent read-write
scenario. This is mainly due to the vertex-grained version control of LSMGraph, which is different
from the version chain implementation in LSM-trees like RocksDB. It is more flexible, allowing
query requests to access the newly merged data earlier. Compared to read-only and write-only
scenarios, in the concurrent scenario, LSMGraph achieves a 3X increase in write throughput and a
1.6X improvement in SSSP performance compared to RocksDB.

6 Related Work

Dynamic Graph Storage Systems in Memory. There are numerous in-memory dynamic graph
storage systems [31, 36, 38, 42, 44, 47, 63, 64, 74, 81, 89]. Sortleton [38], GraphOne [44], and others
[44, 63, 64, 81, 89] achieve fast graph data insertion by employing structures with reserved space or
linked-list-like structures. Teseo [47], VCSR [42], and PCSR [81] adopt a structure similar to CSR
and utilize reserved slots to alleviate data migration overhead. However, they still suffer from data
migration and space expansion when data exceeds the reserved space. Spruce [74] is an advanced
dynamic in-memory graph structure that allocates a buffer block and a sorted edge block for each
vertex to support edge insertions and updates for that vertex. However, applying this vertex-grained
edge block allocation scheme to disk would suffer from poor locality and write amplification issues,
which is similar to LiveGraph [89].

Dynamic Graph Storage Systems on Disk. Several disk-based dynamic graph storage systems
have been developed to handle scenarios where the graph data exceeds available memory [45,
52, 54, 55, 68, 89]. LiveGraph [89] supports both in-memory and disk-based scenarios. However,
LiveGraph’s [89] disk performance is poor due to in-place updates and scattered distribution of
edge blocks. GraphSSD [55] and LLAMA [54] aim to improve disk-based read performance by
utilizing structures similar to CSR. However, they face challenges in updating their CSRs. For
instance, LLAMA generates multiple snapshots in CSR format to receive updates; however, read
performance degrades when there are too many snapshots. MBFGraph [52] and X-Stream [68]
leverage log append approaches to achieve fast write performance and efficient storage of streaming
data. However, this approach negatively impacts graph analysis performance, as it requires scanning
almost all edges of the graph. Although MBFGraph uses Bloom filters to reduce the number of
edges read, it still suffers from severe I/O amplification. Unlike these systems, LSMGraph designs a
new graph store to combine CSR and LSM-tree to leverage their complementary advantages and
simultaneously optimize read and write performance.

Graph Databases. Numerous graph databases have been developed [3-5, 7, 8, 10, 11, 48, 51, 85].
The main distinction between graph storage systems and graph databases lies in the emphasis
of graph databases on transactional support and more complex graph data management. Due to
the need for transaction support, even simple graph analysis queries like single-source shortest
path (SSSP) and PageRank can incur significant overhead in graph databases, resulting in poor
performance when running graph analysis algorithms within the database. Additionally, these
systems support exporting data into various graph data formats (e.g., CSR) and running graph
analysis algorithms externally. However, the cost of the export process alone can exceed the cost of
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running the algorithms and the freshness of the data is low. Similar to other graph storage systems,
the goal of LSMGraph is to facilitate the fast storage of large-scale graph data and enable graph
analysis on the stored data to provide more real-time graph analysis services.

Transforming from Static Structure to Dynamic Structure. The Bentley-Saxe transformation
[20, 71] is able to transform static data structures into dynamic structures. It has been used in various
works [16, 58, 69], such as the dynamic extension of static indexes [69]. Theoretically, this can be
applied to CSR for dynamic updates. However, simply transforming CSR into a dynamic structure
without considering the disk context, the nature of graph data (e.g., power-law distribution), and
the characteristics of graph workloads (e.g., retrieving all neighbors of a specific vertex) can lead to
poor performance in graph updates and analysis. LSMGraph is designed to provide high read and
write performance by leveraging the characteristics of graph data and the common access patterns
of graph workloads. Additionally, LSMGraph utilizes LSM-tree to optimize disk I/O overhead caused
by random writes.

Filter in LSM-tree. To support better read performance of LSM-tree, numerous LSM-trees imple-
mentations use filters to test whether a key is contained in a block, thereby reducing unnecessary
disk I/0O [21, 28, 33, 53, 77]. However, the filter of each block needs to be queried, which results in a
large number of random memory accesses. Some novel filters are designed to reduce the number
of memory accesses, such as SimDB [66], Chucky [30], and Mapped SplinterDB [25]. SlimDB [66]
uses a multi-level cuckoo filter [33] to map each key to its level number, and Chucky [30] maintains
a filter for the entire LSM-tree, mapping each key to a sub-level number. Mapped SplinterDB [25]
uses quotient maplets [19] to map keys to potential SSTables. However, these methods are not
suitable for graph workloads that require to access consecutive vertex IDs, e.g., PageRank [62]
algorithm. For these workloads, they need to test the filters frequently. GRF [77] is a recent global
filter that uses full shape encoding for MVCC but relies on a fixed compaction strategy, which is
not suitable for LSMGraph, as LSMGraph uses a partial merge leveling strategy to balance read and
write performance.

7 Conclusion

This paper presents LSMGraph, a novel dynamic graph storage system that combines the write-
friendly LSM-tree and the read-friendly CSR. We leverage three key designs to enhance system
performance and ensure the correctness of read and write tasks. Firstly, we design an efficient
in-memory structure, MemGraph, to enable cache graph updates in memory and persist them to
disk efficiently. Secondly, we design a multi-level CSR equipped with a multi-level index, where the
multi-level CSR utilizes the compact CSR structure embedded in the LSM-tree, which can mitigate
write amplification and reduce random reads. The multi-level index is used to locate the edges
of the vertex to reduce the random lookups. Lastly, we design a vertex-grained version control
mechanism to support concurrent read/write operations and mitigate the impact of compaction on
read/write performance. Our evaluations confirm the efficacy and efficiency of LSMGraph.
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