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Distributed computing is promising to enable large-scale graph neural network (GNN)model training. However,
care is needed to avoid excessive computational and communication overheads. Sampling is promising in
terms of enabling scalability, and sampling techniques have been proposed to reduce training costs. However,
online sampling introduces large overheads, and while offline sampling that is done only once can eliminate
such overheads, it instead introduces information loss and accuracy degradation. Thus, existing sampling
techniques are unable to improve simultaneously both efficiency and accuracy, particularly at low sampling
rates. We develop a distributed system, ADGNN, for full-batch based GNN training that adopts a hybrid
sampling architecture to enable a trade-off between efficiency and accuracy. Specifically, ADGNN employs
sampling result reuse techniques to reduce the cost associated with sampling and thus improve training
efficiency. To alleviate accuracy degradation, we introduce a new metric, Aggregation Difference (𝐴𝐷), that
quantifies the gap between sampled and full neighbor set aggregation. We present so-called AD-Sampling that
aims to minimize the Aggregation Difference with an adaptive sampling frequency tuner. Finally, ADGNN
employs an AD-importance-based sampling technique for remote neighbors to further reduce communication
costs. Experiments on five real datasets show that ADGNN is able to outperform the state-of-the-art by up to
nearly 9 times in terms of efficiency, while achieving comparable accuracy to the non-sampling methods.
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1 INTRODUCTION
Graph Neural Networks (GNNs) have gained increasingly widespread popularity in fields such as
recommendation [3, 11, 43], natural language processing [23, 51], image analysis [40, 41], knowledge
graphs [12, 17, 21, 39], due to its remarkable performance. To further enhance the accuracy of GNN
models and extend their applicability, numerous variants of GNNs have been proposed, including
GraphSAGE [14], GAT [33], and GIN [42]. However, as GNNs are being applied in increasingly
large-scale settings, model training on a single machine is becoming computationally infeasible.

As a result, different distributed systems for GNN training have been proposed. These systems aim
to reduce communication and computational costs during training; however, they focus primarily
on improved engineering techniques, such as partitioning [32, 50], system framework design [37],
caching [52], compression [29], and serverless parallelism [31]. While such techniques are useful,
they do not necessarily reduce the training complexity. Sampling, however, is a promising approach
to decrease complexity, and it is used commonly in existing GNN training systems [29, 46, 50, 52].

Sampling in GNN training is to sample the adjacent vertices (i.e., neighbors) of the target vertex,
which comes in two forms: online sampling and offline sampling. The former selects neighbors
in each iteration (DistDGL [50], AliGraph [52]), while the latter selects neighbors only once for
an entire training process (AGL [46], EC-Graph [29]). Online sampling can achieve higher testing
accuracy, but at the expense of a substantial sampling overhead. Offline sampling is used rarely due
to its tendency to yield low accuracy results. Neither sampling mode effectively balances accuracy
and efficiency. Additionally, existing sampling techniques [1, 4–6, 14, 16, 43–45, 53] are designed
primarily for single-machine settings and adopt an online sampling mode. These techniques also
do not take communication costs and overheads incurred by distributed sampling (e.g., distributed
subgraph construction and distributed embedding organization) into consideration, which can result
in suboptimal efficiency. While a few approaches [34, 35] exist that target distributed environments,
they focus on the reduction of communication costs and come with high computational and
distributed subgraph construction overheads. We summarize the challenges faced by existing
sampling techniques and sampling-based systems as follows:
Challenge 1: High Sampling Costs. Existing proposals for GNN training are often hampered by
high sampling costs [4, 6, 16, 50, 53], caused by the traversal of adjacency lists, masking operations,
and the building of distributed sampled graphs in each iteration. The high costs limit the scalability
of these solutions and their practical use in large-scale applications. There is a potential for more
efficient sampling techniques to improve the efficiency of GNN training.
Challenge 2: Low Accuracy. Existing sampling techniques suffer from low accuracy when using a
small fanout [4–6, 14, 16, 34, 53], where fanout refers to the number of neighbors that are retained
after sampling. The reason is that they only sample neighbors based on graph topologies and do not
take into account the unique features of GNN training. A sampling technique designed explicitly
for GNN training can avoid or reduce accuracy loss.
Challenge 3: Poor Scalability. Most existing sampling techniques [4, 6, 53] are designed with
single-machine GPU training in mind, limiting their applicability to large-scale GNN training.
While a few studies [34, 35] explore efficient distributed sampling, they focus mainly on reducing
communication costs and are constrained by computational, sampling costs. Thus, an efficient
distributed sampling technique that can alleviate bottlenecks related to limited memory, sampling
and training costs is desirable.
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To advance the state-of-the-art in large-scale GNN training, we develop ADGNN, a distributed
system for full-batch GNN training that utilizes a hybrid sampling architecture combining offline
and online strategies. This architecture enhances the model convergence process through online
sampling and reduces distributed sampling costs by leveraging the benefits of offline sampling (i.e.,
reusing sampling results). Next, we propose a new metric called Aggregation Difference (𝐴𝐷) to
quantify the difference between full-neighbor and sampled-neighbor aggregation. To mitigate the
errors caused by reusing sampling results, we introduce a sampling technique called AD-Sampling
to minimize 𝐴𝐷 . We provide theoretical support for the performance of AD-Sampling. Further,
we propose an adaptive sampling frequency tuner to dynamically choose the optimal sampling
frequency (i.e., rounds with sampling result reuse). We provide theoretical justification for the
effectiveness of the adaptive tuner. Finally, to alleviate the communication bottleneck in distributed
scenarios, we introduce a sampling technique based on𝐴𝐷-based importance, specifically targeting
remote neighbors. The goal is to reduce the proportion of remote neighbors. We provide a proof
that the node-wise 𝐴𝐷-minimum sampling technique is superior to layer-wise and subgraph-wise
techniques.

The main contributions can be summarized as follows.
• First, we develop a distributed system, ADGNN, for GNN training that utilizes novel hybrid
sampling techniques to reduce the computational and communication costs of full-batch train-
ing. We introduce a new metric, Aggregation Difference (𝐴𝐷), that quantifies the aggregation
gap between sampled and full neighbor sets.

• Second, we present so-called AD-Sampling that reduces difference and online sampling costs.
We offer a theoretical upper bound on the 𝐴𝐷 value for the current iteration according to the
sampling results from the previous iteration and factors that affect convergence. Based on
this, we proposed an adaptive tuner to adjust the sampling frequency.

• Third, we introduce optimizations that enable efficient computation of𝐴𝐷 by pruning degree
sizes and reducing the numbers of calculations required. We also propose an 𝐴𝐷-importance-
based sampling strategy to contend with remote neighbors that utilizes a layer-wise pruning
approach to reduce communication costs.

• Fourth, experiments on five real datasets show that ADGNN can improve on the state-of-the-
art by a factor of up to nearly 9 in terms of efficiency, while achieving accuracy comparable
to that of full-neighbor training.

The organization of this paper is as follows. In Section 2, we provide an overview of related work
on GNN training modes, sampling techniques, and optimizations for efficient GNN training. We
introduce the preliminaries of a general GNN model in Section 3 and the framework of ADGNN
in Section 4. Section 5 presents the AD-Sampling techniques and optimizations that reduce the
computational cost of 𝐴𝐷 , and Section 6 further enhances ADGNN by adaptively adjusting the
sampling frequency and communication reduction. We present our experimental study in Section 7,
followed by our conclusion in Section 8.

2 RELATEDWORK
2.1 Training Modes for GNN
Mini-Batch vs. Full-Batch. Full-batch GNN training [18, 24, 29] typically achieves better conver-
gence and accuracy, but is not feasible for large-scale graphs due to large intermediate results that
exceed GPU memory. In contrast, mini-batch training [50] is more adaptable to GPU training, but
can suffer from slower convergence and subgraph construction.
Sampled-Neighbor vs. Full-Neighbor. Sampled-Neighbor training [4, 6, 14] reduces computa-
tional, memory consumption, and communication costs. However, poorly designed sampling can
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Table 1. Representative Sampling Techniques and Sampling-Based Distributed Systems for GNN Training

Method Architecture Characteristics Distributed Training Cost Statistics Generalization
GraphSAGE [14] online

sampling each
iteration: high cost,
but high accuracy

×
computation, sampling, and
subgraph construction

random

poor due to
considering
only the graph
topology

FastGCN [4] online × topology
ClusterGCN [6] online × random

FOS [48] online × random
BNS-GCN [34] online ✓ computation, communication,

distributed sampling, and
distributed subgraph
construction, distributed
embedding organization

random
DistDGL [50] online ✓ random
AliGraph [52] online ✓ random
AGL [46] offline sample once: low cost,

but low accuracy
✓ random

EC-Graph [29] offline ✓ random
ADGNN (ours) hybrid periodic sampling ✓ feature powerful

degrade convergence and accuracy. Full-neighbor training [18, 24, 29] is accurate but computation-
ally and memory intensive.
GPU vs. CPU. GPU training [18, 22, 37, 50] enables parallelism, but offers limited memory and
cannot handle large-scale graphs. While mini-batch training can extend the applicability of GPUs,
convergence often suffers. Conversely, CPU training [29, 46, 52] is slower but has less stringent
memory and cost constraints.
ADGNN Training Modes. ADGNN adopts full-batch and sampling modes for two main reasons.
First, full-batch training typically yields better convergence and accuracy than mini-batch training.
Second, sampling techniques help alleviate GNN computation bottlenecks. ADGNN supports both
CPU and GPU training. The former benefits from ample memory resources, while the latter can
accelerate training when the available memory is sufficient.

2.2 Sampling-Based GNN Training
Node, Layer, and Subgraph-Wise Sampling. Sampling for GNNs can be classified into node-wise,
layer-wise, and subgraph-wise sampling. Node-wise sampling [5, 7, 8, 14, 27, 43] enables fine-grained
sampling without requiring additional masking operations but also incurs sampling costs. Layer-
wise sampling [4, 16, 53] samples vertices by layers, while subgraph-wise sampling [1, 6, 28, 44,
45] divides an initial graph into subgraphs and samples a subset of subgraphs in each iteration.
Layer-wise and subgraph-wise sampling incur lower sampling costs but require extra masking
operations that are time-consuming on CPU clusters. All the techniques referenced above are
designed primarily for a single machine and disregard communication. Additionally, they disregard
the impact of features, a unique characteristic of GNNs, as they focus on sampling according to the
graph topology.
Sampling Techniques for Distributed Environments. Two studies of sampling methods for
distributed GNN training exist: BNS-GCN [34] and DGS [35]. However, the proposed techniques
only sample remote neighbors and exhibit sub-optimal performance when the computational costs
(such as tensor operation on CPUs, distributed subgraph construction, and distributed embedding
organization) are substantial. In addition, DGS requires training an explanation model iteratively
on CPUs, which can be time-consuming, particularly for full-batch training modes. In contrast, our
method avoids iterative training and proposes leveraging a heuristic algorithm to reduce the cost
of sampling. DGS can also suffer from stale inference due to parallel processing between training
GNN models and explanation models.
Online Sampling and Offline Sampling. There are two main types of sampling architectures:
online and offline, as shown in Table 1. Online sampling involves performing sampling in each
iteration, which can be computationally expensive. Techniques such as FOS [48], GraphSAGE [14],
ClusterGCN [6], FastGCN [4], and BNS-GCN [34] fall into this category, along with systems like
DistDGL [50] and AliGraph [52]. Conversely, offline sampling is performed once, reusing results
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but potentially reducing accuracy. Representative systems in this category include AGL [46] and
EC-Graph [29]. Overall, the existing techniques all have shortcomings. Developing a sampling
technique that can achieve satisfactory accuracy at a low cost in our setting remains a challenge.
Difference from Variance-Reduction Methods. ADGNN differs fundamentally from traditional
sampling techniques that aim to minimize variance. Traditional techniques focus on identifying the
optimal transfer probability of Monte Carlo methods to achieve the smallest variance. In contrast,
our proposal employs a heuristic technique to select an optimal neighbor combination every𝑚
iterations. Furthermore, existing variance-reduction sampling techniques [2, 4–6, 53] only focus
on topology information of graphs, such as degrees. MVS-GCN [7] proposes a minimal variance
sampling technique by retaining historical embeddings, but still does not use feature information
for sampling.

2.3 Optimizations for Efficient GNN Training
Many optimizations have been proposed for distributed GNN training. DistDGL [50] improves the
METIS [19] partitioning method to adapt GNN training by reducing the communication between
machines and balancing the workload. EC-Graph [29] leverages aggressive, lossy compression to
reduce the communication of embeddings and embedding gradients and improves convergence
and accuracy using compensation methods. AliGraph [52] reduces the communication between
computing workers and graph servers by caching frequently accessed vertices. Various techniques
have been proposed to target different aspects of GNN training, including communication com-
pression [29], vertex caching [20, 37, 49, 52], disk-based GNN optimization [25, 46], embedding
optimizations for decentralized gnn training [26], and pipeline parallelism [36]. Notably, ADGNN
optimizes the efficiency and scalability issues of distributed GNN training through distributed data
sampling. These optimizations are orthogonal, and can work in tandem with, our proposals. The
paper’s experimental study includes an end-to-end comparison with two representative distributed
systems for GNN training, AliGraph [52] and DistDGL [50]. FOS [48] is a random sampling tech-
nique for feature matrices without statistical rules. Specifically, FOS randomly selects a starting
feature and performs consecutive sampling from the feature matrix to reduce random reads. It
is an online sampling technique, and it is designed for a single-machine environment. Thus, it
does not explicitly account for communication and additional costs associated with sampling, e.g.,
constructing distributed subgraphs. Furthermore, there are additional distributed optimization
endeavors pertaining to machine learning [30] and graph iterative tasks [13, 38] that have yet to be
integrated into distributed GNN training. These works are orthogonal to ours.

3 PRELIMINARIES
We provide the preliminaries of Graph Neural Networks (GNNs) in this section. Specifically, we
provide the definitions of attributed graphs and then outline the process of forward and backward
propagations for GNN training.

Definition 3.1. An attribute graph is denoted as G = (V, E, 𝑋V , 𝑋E), where V is a set of
vertices 𝑣 , E is a set of edges 𝑒 (𝑣,𝑢), and 𝑋V and 𝑋E are features of vertices and edges, respectively.
N(𝑣) denotes the neighbor set of 𝑣 , meaning that ∀𝑢 ∈ N (𝑣) ((𝑣,𝑢) ∈ E ∨ 𝑣 = 𝑢).

GNN algorithms typically employ both forward propagation (FP) and backward propagation
(BP) to train on an attribute graph G, each with 𝐿 layers. We present the process within a single
layer to illustrate a typical GNN algorithm. During FP, each vertex 𝑣 collects embeddings of N(𝑣)
and aggregates them using the function agg. The aggregation of neighbor embeddings and the
current vertex embedding 𝑯 ℓ−1

𝑣 are combined using function comb to generate an intermediate
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result 𝒁 ℓ
𝑣 , as shown in Formula 1.

𝒁 ℓ
𝑣 = comb (𝑯 ℓ−1

𝑣 , agg𝑢∈N(𝑣) (𝑯 ℓ−1
𝑢 )) (1)

𝑁𝑒𝑥𝑡,𝒁 ℓ
𝑣 is transformed using neural network operations with parameter𝑾 ℓ for the ℓ𝑡ℎ layer and

activation function 𝜎 to obtain a final representation of the current layer 𝑯 ℓ
𝑣 , as shown in Formula 2.

𝑯 ℓ
𝑣 = 𝜎 (𝒁 ℓ

𝑣 ⊙𝑾 ℓ ) (2)
After applying the GNN transformation with 𝐿 layers, the resulting final embedding vector 𝑯𝐿

𝑣

can be utilized for downstream tasks such as node classification [14] and link prediction [47]. The
final embedding is typically passed through a softmax function for classification or connected to
a regression layer for prediction. The output of the softmax or regression layer is compared to a
ground truth label using a suitable loss function L.

The main goal of BP is to minimize L, thereby improving the accuracy of the downstream tasks.
First, the derivative of L with respect to the final embedding 𝑯𝐿

𝑣 is calculated, denoted as 𝑮𝐿
𝑣 = 𝜕L

𝜕𝑯𝐿
𝑣
.

Next, the derivative of L with respect to ℓ𝑡ℎ embedding 𝑯 ℓ
𝑣 (1 ≤ ℓ ≤ 𝐿), denoted as 𝑮ℓ

𝑣 (1 ≤ ℓ ≤ 𝐿),
is calculated using the chain rule:

𝑮ℓ
𝑣 = 𝑨𝑇 ⊙ 𝑮ℓ+1 ⊙ (𝑾 ℓ+1)𝑇 , (3)

where 𝑨𝑇 is adjacency matrix 𝑨 transposed. The formula represents the flow of gradients from the
vertices in the (ℓ + 1)𝑡ℎ layer to the vertices in the ℓ𝑡ℎ layer based on the reverse direction of FP.
Based on Formula 3, we can obtain the gradients of the GNN models in each layer straightforwardly
as 𝜕𝑮ℓ

𝑣

𝜕𝑾 ℓ−1 . After the backward propagation process, we incorporate the obtained gradients into the
optimizer to update the GNN parameters.

4 SYSTEM FRAMEWORK
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Fig. 1. System Overview

The proposed systemADGNN involves two logical roles, servers andworkers, which are decoupled
from physical machines. Fig. 1 shows an example configuration with three servers and three
workers. It supports three main functionalities: (i) data and computation distribution, (ii) sampling
and subgraph construction, and (iii) forward propagation and backward propagation.
Data and Computation Distribution. We utilize vertex partitioning (edge-cut) to distribute
vertices from a large graph among workers, along with their associated features, adjacency tables,
and labels. Initially, each worker reads a subgraph from disks that comprises vertices, features,
adjacency lists, and labels. Next, the workers partition GNN models into 𝑁𝑤 submodels and send
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these to the corresponding server. The servers performmodel storage and updates, whereas workers
perform the main computations.
Sampling and Subgraph Construction.During training, each worker calls Sampler to recursively
sample target vertices and neighbors for each layer. Users need to implement two functions: Sample
and Sample4EachLayer. The former defines the entire sampling process for 𝐿 layers, while the latter
specifies the sampling rules for a single layer. After each sampling for a single layer, Subgraph
Constructor generates a trainable subgraph object for a single GNN layer, which includes obtaining
target vertices, encoding vertices, building the adjacency matrix, generating the initial feature
matrix and constructing a routing table. The routing table specifies which vertex embeddings the
current worker needs to send to other workers. We provide the following example to detail the
process.

Example 4.1. Fig. 2 depicts the distributed sampling process for a 2-layer GNN model conducted
by ADGNN with three workers𝑤𝑘1,𝑤𝑘2, and𝑤𝑘3. Target nodes (the top-level vertices in Fig. 2)
from the training set are assigned to workers using a partitioning method. We take the actions of
wk1 as an example. First, 𝑤𝑘1 randomly selects 𝑣1 and 𝑣2 as 𝑣0’s neighbors and 𝑣1 and 𝑣3 as 𝑣1’s
neighbors according to a local adjacency list. Next, 𝑤𝑘1 unions {𝑣1, 𝑣2} and {𝑣1, 𝑣3} to indicate
that it samples 𝑣1, 𝑣2, and 𝑣3. These three vertices will be used in the previous layer. Finally,𝑤𝑘1
notifies 𝑤𝑘2 to include 𝑣3 in the next sampling round. After sampling for the second layer, we
obtain the target vertices of the first layer, which are at the middle level. Note that the sampling
process is reversed compared to the aggregation process in FP. In the second layer,𝑤𝑘1 collects the
embeddings of vertex 𝑣3 from𝑤𝑘2 and concatenates it with the local embedding matrix composed
of 𝑣1 and 𝑣2.

 !" H
o

p
-1

sam
p

lin
g

0 1 3 4 # $

 !% !&

0 1 2 3 4 5 6 7 8

'() send request

for *+ to '(,

L
ay

er
-2

'

for 

'(, send request

for *, to '(-
and *# to '(,

'
'(- send request

for *) to '(,

0 1 2 3 4 5 6 7 8

L
ay

er
-1

ag
g

re
g

at
in

g

H
o

p
-2

Fig. 2. Distributed Sampling (solid lines represent local edges, while dashed lines represent remote edges.)

FP and BP. During FP, ADGNN fetches trainable subgraphs of each layer sequentially, gathers the
remote neighboring embeddings (i.e., embeddings residing on different machines from the target
vertices), and concatenates them with local embeddings for aggregation. A computation graph is
constructed during this process. During BP, ADGNN computes the embedding gradients for each
layer. The embedding gradients are sent to neighboring vertices along the in-edge directions for
the computation of embedding gradients of the previous layer. ADGNN calculates the gradients of
model parameters, denoted as ∇𝑾 , for each layer of BP. These gradients are then sent to servers
for updating the model.

5 AGGREGATION-DIFFERENCE AWARE SAMPLING
5.1 Aggregation Difference
Most existing sampling techniques used in GNN training either sample in each iteration, such as
GraphSAGE [14] implemented in AliGraph [52] and DistDGL [50], or sample once during data-
preparation, like the techniques used in AGL [46]. Neither of these techniques strikes a good balance
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between accuracy and average epoch time. Thus, we propose to sample once each𝑚 iterations to
amortize the sampling cost. The choice of𝑚 is covered later. However, simply applying it to random
sampling, such as in GraphSAGE [14], can result in poor performance. This is because random
sampling follows a discrete uniform distribution, i.e., 𝑯̂ ∼ DiscreteUniform({𝑯𝑢 |𝑢 ∈ N (𝑣)}), while
we cannot guarantee that the variance remains low. Since the neighbor set that is sampled is used
in the next𝑚 − 1 iterations, a large deviation from the expected value can result in a long-term
negative impact on the direction of the gradient descent. Therefore, although random sampling at
intervals of𝑚 iterations can reduce the sampling cost in each iteration, it may lead to uncontrollable
degradation of convergence due to significant deviations from expected values.
Therefore, it is crucial to measure and minimize the error induced by sampling. Existing tech-

niques [4, 5, 53] aim to minimize the variance to approximate full aggregation while maintaining
randomness in each sampling iteration only based on graph topologies. However, these techniques
lack design considerations that consider the unique characteristic of GNNs, i.e., features. Motivated
by this, we introduce a novel metric, Aggregation Difference (AD), that measures the sampling error
and minimizes the error from the perspective of system optimizations, where we select the optimal
neighbor combination to generate the aggregation.
Definition 5.1. Given a sampling technique S, a vertex 𝑣 , and a fanout 𝑘 , S(𝑣 ;𝑘) denotes the

sampled neighbor set using S with 𝑘 .
We define 𝐴𝐷 as the squared Euclidean distance between the average value of full-neighbor

aggregation and that of sampled aggregation. The average sampled aggregation approximates
average full-neighbor aggregation, and the squared Euclidean distance can quantify the difference
between two vectors. In the case of Example 5.3, the average aggregation of the full-neighbor set
{𝑣2, 𝑣3, 𝑣4, 𝑣5} of 𝑣1 is [-0.2, 0.4, 0.3], while the average aggregation of the sampled neighbor set {𝑣2,
𝑣3} is [-0.15, 0.45, 0.45]. The error of approximating the average aggregation result of {𝑣2, 𝑣3, 𝑣4,
𝑣5} with the average aggregation result of {𝑣2, 𝑣3} can be calculated using the squared Euclidean
distance, which is 0.0275.

Definition 5.2. Given a sampled neighbor set S(𝑣 ;𝑘), 𝐴𝐷𝑡,ℓ

S(𝑣;𝑘 ) represents the ℓ
𝑡ℎ layer’s Aggre-

gation Difference of vertex 𝑣 in the 𝑡𝑡ℎ iteration with S(𝑣 ;𝑘), calculated as follows:

𝐴𝐷
𝑡,ℓ

S(𝑣;𝑘 ) = | | 1
|N (𝑣) |

∑︁
𝑢∈N(𝑣)

𝑯 𝑡,ℓ
𝑢 − 1

𝑘

∑︁
𝑢∈S(𝑣;𝑘 )

𝑯 𝑡,ℓ
𝑢 | |2, (4)

whereN(𝑣) is the neighbor set of 𝑣 and 𝑯 𝑡,ℓ
𝑢 denotes the ℓ𝑡ℎ layer embedding of vertex 𝑢 in the 𝑡𝑡ℎ

iteration.
Example 5.3. As shown in Figure 3a, the average aggregation result of 𝑣1 is [-0.2, 0.4, 0.3], while

that of the sampled neighbor set {𝑣2, 𝑣3} is [-0.15, 0.45, 0.45]. Therefore, the aggregation difference
is calculated as (-0.2 + 0.15)2 + (0.4 − 0.45)2 + (0.3 − 0.45)2 = 0.0275.
We simplify 𝐴𝐷𝑡,ℓ

S(𝑣;𝑘 ) to 𝐴𝐷S(𝑣;𝑘 ) when the layer number and iteration count are unspecified.
Similarly, we simplify 𝐴𝐷𝑡,ℓ

S(𝑣;𝑘 ) to 𝐴𝐷
𝑡,ℓ when the sampled neighbor set is unspecified.

Definition 5.4. Given a fanout 𝑘 , the 𝒌-optimal neighbor set of a vertex 𝑣 , denoted asV𝑜𝑝𝑡 (𝑘 ; 𝑣),
is the neighbor combination that has theminimum𝐴𝐷 w.r.t full-neighbor aggregation, i.e.,V𝑜𝑝𝑡 (𝑘 ; 𝑣) =
arg min𝑠𝑣 𝐴𝐷𝑠𝑣 , where 𝑠𝑣 ⊂ N(𝑣) ∧ |𝑠𝑣 | ≤ 𝑘 . V𝑜𝑝𝑡 (𝑘 ; 𝑣) in the ℓ𝑡ℎ layer (1 ≤ ℓ ≤ 𝐿) of the 𝑡𝑡ℎ
iteration is denoted as V𝑡,ℓ

𝑜𝑝𝑡 (𝑘 ; 𝑣).

We aim to obtain the 𝑘-optimal neighbor set for each vertex in each layer. It is challenging to
ensure that each mini-batch has a distribution that is similar to that of the entire training set. We
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thus focus on the full-batch scenario, which typically represents a simpler and more direct way to
achieve better convergence and accuracy. However, this necessitates a reduction of the time and
memory costs of the sampling. We propose Aggregation-Difference Aware Sampling (AD-Sampling)
to address the issue. It selects a subset of neighbors for each vertex by minimizing 𝐴𝐷 , thereby
ensuring the selection of an optimal neighbor subset while adhering to a given sampling fanout.
We use Example 5.5 to detail the process of AD-Sampling.

 !{"#, "$} = 0.0275

&'

&(

&)&*

&+

[0.2, 0.4, 0.5] [-0.5, 0.5, 0.4]

[-0.3, 0.4, 0.1][-0.2, 0.3, 0.2]

(a) Sampling 𝑣2, 𝑣3

 !{"$, "%} = 0.0450

&'

&(

&)&*

&+

[0.2, 0.4, 0.5] [-0.5, 0.5, 0.4]

[-0.3, 0.4, 0.1][-0.2, 0.3, 0.2]

(b) Sampling 𝑣3, 𝑣4

Fig. 3. Example of AD-Sampling

Example 5.5. Fig. 3 shows an example of sampling for vertex 𝑣1, where 𝑘 = 2. The embeddings of
𝑣1’s neighbors 𝑣2, 𝑣3, 𝑣4, and 𝑣5 are [0.2, 0.4, 0.5], [−0.5, 0.5, 0.4], [−0.3, 0.4, 0.1], and [−0.2, 0.3, 0.2],
respectively. The full-neighbor aggregation value of 𝑣1, i.e., agg𝑢∈N(𝑣)𝑯𝑢 , is [−0.2, 0.4, 0.3]. The sam-
pling aggregation values of 𝑣2, 𝑣3 and 𝑣3, 𝑣4 are [−0.15, 0.45, 0.45] and [−0.4, 0.45, 0.25], respectively.
We obtain that the 𝐴𝐷s of these two neighbor combinations are 0.0275 and 0.0450, respectively,
by using Formula 4. Since a smaller 𝐴𝐷 indicates a better approximation, 𝑣2, 𝑣3 is the 𝑘-optimal
neighbor set.

5.2 Heuristic AD-Sampling
Given a fanout 𝑘 , our objective is to determine V𝑜𝑝𝑡 (𝑘 ; 𝑣), which requires us to find the minimum
of 𝐴𝐷 . However, the time complexity of minimizing 𝐴𝐷 for a vertex with N(𝑣) neighbors is∑𝑘

𝑖=1𝐶
𝑖
N(𝑣) , which usually is unacceptable. This motivates us to develop a heuristic method that

can compute 𝐴𝐷 efficiently.
We propose a heuristic AD-Sampling. Instead of selecting a neighbor combination with the

smallest 𝐴𝐷 directly, we choose a neighbor with the maximum reduction in 𝐴𝐷 at each step and
add it to the candidate 𝑘-optimal neighbor set. Algorithm 1 details the process. All embeddings
𝑯 generated in the previous iteration are retrieved from the computation graph and utilized as
input when computing AD in the current iteration. We perform 𝑘 iterations for each target vertex
(lines 4–10). This ensures that the size of the 𝑘-optimal neighbor set does not exceed the fanout
𝑘 . We continue inserting neighboring vertices until the size of the candidate 𝑘-optimal neighbor
set reaches 𝑘 (line 4). In each iteration, we compute 𝐴𝐷 between V𝑜𝑝𝑡 ∪ {𝑢} and the full-neighbor
aggregation for each target vertex 𝑣 (line 6) and then we insert it into the map of 𝐴𝐷 , denoted
as M (line 7). We compare this new aggregation with the full-neighbor aggregation ADlast. If
𝑴 [𝑣𝑠 ] ≤ ADlast, we add the vertex that results in the minimum 𝐴𝐷 to the candidate set; otherwise,
we stop searching as no further 𝐴𝐷 reduction can be achieved (lines 9–11).

We propose an amortization strategy that samples once every 𝑚 iterations to avoid a high
computational cost of AD-Sampling. However, it is impossible to select an optimal Vℓ

𝑜𝑝𝑡 for the
next𝑚 − 1 iterations at the beginning, as 𝐴𝐷 values change in each iteration with the updates of
GNN models. Thus, we need to analyze how this strategy impacts the selection of the 𝑘-optimal
neighbor set as follows. We exclude the effect of activation functions to simplify the investigation.
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Algorithm 1: Heuristic AD-Sampling
Input: Adjacency List 𝑨, Embeddings 𝑯 , fanout 𝑘
Output: New Adjacency List 𝑨̂

1 for each 𝑣 ∈ V do
2 V𝑜𝑝𝑡 = ∅, 𝑴 = HashMap()
3 𝐴𝐷last = ∞, 𝑨𝑣 = copy(N (𝑣))

// Select 𝑘 neighbors based on 𝐴𝐷

4 while |V𝑜𝑝𝑡 | < 𝑘 do
5 for 𝑢 ∈ 𝑨𝑣 do
6 𝐴𝐷tmp = || 1

|N (𝑣) |
∑
𝑖∈N(𝑣) 𝑯𝑖 − 1

|V𝑜𝑝𝑡 |+1
∑
𝑖∈V𝑜𝑝𝑡∪{𝑢} 𝑯𝑖 | |2

7 𝑴 .insert(𝑢,𝐴𝐷tmp)
// Select 𝑣 with the minimum 𝐴𝐷

8 𝑣𝑜𝑝𝑡 = arg min𝑣 (𝑴)
9 if 𝑴 [𝑣𝑜𝑝𝑡 ] > 𝐴𝐷last then break

10 V𝑜𝑝𝑡 .add(𝑣𝑜𝑝𝑡 ), 𝑨𝑣 .remove(𝑣𝑜𝑝𝑡 ), 𝐴𝐷last = 𝑴 [𝑣𝑜𝑝𝑡 ]
11 𝑨̂.append(V𝑜𝑝𝑡 )
12 return 𝑨̂

Lemma 5.6. Assuming that the change of weight 𝑾 of successive iterations satisfies | |𝑾 𝑡+1,ℓ −
𝑾 𝑡,ℓ | |2 ≤ 𝛼 · | |𝑾 𝑡,ℓ | |2, the difference of𝐴𝐷 between the (𝑡 + 1)𝑠𝑡 iteration and the 𝑡𝑡ℎ iteration satisfies
E| |Δ𝐴𝐷𝑡+1,ℓ

𝑣 | |2 ≤ 𝛼2ℓ ·E| |𝐴𝐷𝑡,ℓ
𝑣 | |2 (where E𝑋 represents the expectation of𝑋 ), when using the sampling

results of the (𝑡 + 1)𝑠𝑡 iteration.
Proof. We derive:

E | |Δ𝐴𝐷𝑡+1,ℓ
𝑣 | |2 = E | |𝐴𝐷𝑡+1,ℓ

𝑣 − 𝐴𝐷
𝑡,ℓ
𝑣 | |2

= E | |Δ𝑨ℓ
ℓ−1∏
𝑖=1

𝑨𝑡,𝑖𝑯 0
ℓ∏
𝑗=1

𝑾𝑡,𝑗 − Δ𝑨ℓ
ℓ−1∏
𝑖=1

𝑨𝑡,𝑖𝑯 0
ℓ∏
𝑗=1

(𝑾𝑡,𝑗 + Δ𝑾 𝑗 ) | |2

= E | |Δ𝐴ℓ
ℓ−1∏
𝑖=1

𝑨𝑡,𝑖𝑯 0
ℓ∏
𝑗=1

(Δ𝑾 𝑗 ) | |2 ≤ 𝛼2ℓ · E | |𝐴𝐷𝑡,ℓ
𝑣 | |2

We conduct experiments on two real-world datasets, i.e., Pubmed and OGBN-Arxiv (see Section 7),
to examine the dynamics of the 𝑘-optimal neighbor set over𝑚 successive iterations. In Fig. 4, the
y-axis indicates the overlap rate between the current iteration and the first iteration. We compare
AD-Sampling with GraphSAGE. Note that GraphSAGE employs random sampling. On the datasets,
GraphSAGE only retains 20% and 8% of the vertices of the first sampling set, while the heuristic
𝐴𝐷-Sampling can retain 45% and 51% of the vertices. Therefore, AD-Sampling using reuse technique
performs significantly better than random sampling using reuse technique.
Next, we show that applying node-wise sampling to AD-Sampling always results in a smaller

𝐴𝐷 compared to applying layer-wise or subgraph-wise sampling.

Lemma 5.7. Given an attributed graph G = (V, E, 𝑋V , 𝑋E), and node, layer, subgraph-wise
sampling techniques, denoted by S𝑛𝑤 , S𝑙𝑤 , and S𝑠𝑤 , respectively, we then have:∑︁

𝑣∈V
𝐴𝐷S𝑛𝑤 (𝑣;𝑘 ) ≤ 𝑚𝑖𝑛{

∑︁
𝑣∈V

𝐴𝐷S𝑙𝑤 (𝑣;𝑘 ) ,
∑︁
𝑣∈V

𝐴𝐷S𝑠𝑤 (𝑣;𝑘 ) } (5)

Proof. Assume that both layer-wise and subgraph-wise sampling select a vertex 𝑢 for a par-
ticular layer and subgraph, respectively. Then, 𝑣 that samples 𝑢 must satisfy 𝑢 ∈ N (𝑣). If 𝑢 has
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Fig. 4. Changes of the k-Optimal Neighbor Set

the minimal 𝐴𝐷 required to construct 𝑣 then the node-wise sampling technique must also sam-
ple 𝑢 for 𝑣 , i.e., 𝐴𝐷S𝑛𝑤 (𝑣;𝑘 ) = 𝑚𝑖𝑛{𝐴𝐷S𝑙𝑤 (𝑣;𝑘 ) , 𝐴𝐷S𝑠𝑤 (𝑣;𝑘 ) }. Otherwise, the node-wise sampling
technique selects a 𝑢 with the minimal 𝐴𝐷 , i.e., 𝐴𝐷S𝑛𝑤 (𝑣;𝑘 ) < 𝑚𝑖𝑛{𝐴𝐷S𝑙𝑤 (𝑣;𝑘 ) , 𝐴𝐷S𝑠𝑤 (𝑣;𝑘 }. As a
result, we obtain 𝐴𝐷S𝑛𝑤 (𝑣;𝑘 ) ≤ 𝑚𝑖𝑛{𝐴𝐷S𝑙𝑤 (𝑣;𝑘 ) , 𝐴𝐷S𝑠𝑤 (𝑣;𝑘 ) }, which implies

∑
𝑣∈V 𝐴𝐷S𝑛𝑤 (𝑣;𝑘 ) ≤

𝑚𝑖𝑛{∑𝑣∈V 𝐴𝐷S𝑙𝑤 (𝑣;𝑘 ) ,
∑

𝑣∈V 𝐴𝐷S𝑠𝑤 (𝑣;𝑘 ) } straightforwardly.

5.3 Optimizations for the Computation of AD
We propose several optimizations that improve the performance of computing 𝐴𝐷 . According to
Algorithm 1, the time complexity of 𝐴𝐷 is O(𝑁 · 𝑘 ·𝑔 ·𝑑), where 𝑁 is the number of target vertices,
𝑘 is the fanout, 𝑔 is the average degree, and 𝑑 is the dimension size of features. Although all four
parameters can be optimized, we focus on reducing 𝑘 and 𝑔. Reducing 𝑘 can decrease the number of
neighbors that need to be considered, while decreasing 𝑔 can limit the number of edges to traverse.
We exclude optimization for 𝑁 since it pertains to the mini-batch training mode, and we exclude
optimization for 𝑑 since it may introduce a significant amount of error due to one-hot encoding
and activation functions.
Reducing 𝑘 .We reduce the number of 𝐴𝐷 computations, which is equivalent to reducing 𝑘 . To
achieve this, we propose two strategies: Similarity-Priority and Reduction-Priority. The Similarity-
Priority method selects the first 𝑘𝑠𝑝 vertices with the minimum 𝐴𝐷s to form a set 𝑠𝑣 that satisfies
𝑠𝑣 = {𝑢 ∈ N (𝑣) | rank(𝑴 [𝑢]) ≤ 𝑘𝑠𝑝 }, where rank(𝑴 [𝑢]) denotes the rank of element 𝑴 [𝑢] in
map 𝑴 .
The Reduction-Priority method selects the vertex 𝑣 with the minimum 𝐴𝐷 value in each step,

i.e., 𝑠𝑣 = {𝑢 ∈ N (𝑣) | 𝑢 = arg min𝑴𝑖 [𝑢], 1 ≤ 𝑖 ≤ 𝑘𝑟𝑝 }, which is repeated 𝑘𝑟𝑝 (a predefined
hyperparameter for the Reduction-Priority method) times.

Similarity-Priority computes 𝐴𝐷 only once and tends to provide more stable results. However, it
may not necessarily compute an 𝐴𝐷 that is closer to the optimal result. Next, Reduction-Priority is
more likely to generate an𝐴𝐷 that is closer to the optimal result, but it requires 𝑘 𝐴𝐷 computations.
To balance efficiency and accuracy, we apply both strategies jointly. Specifically, we set a constant
value 𝑘𝑐 as the total number of 𝐴𝐷 computations, and select 𝑘

𝑘𝑐
neighbors in each step. This allows

us to effectively reduce the computational cost to a constant value that we control.
Reducing 𝑔. In high-degree datasets, it is often the case that not all neighbors contribute equally
to the aggregation of target vertices. To reduce the computational cost of 𝐴𝐷 in such cases, we
propose to sample a subset of neighbors of size 𝑘𝑔 · 𝑘 (1 ≤ 𝑘𝑔 ≤ 𝑔𝑣 , where 𝑔𝑣 is the degree of
vertex 𝑣) from the adjacency list and calculate 𝐴𝐷 only using this subset. This reduces the cost of
computing 𝐴𝐷 to 1/𝑘𝑔 of the original cost. We propose an additional optimization for 𝑔 to reduce
the computational cost of AD-Sampling. Specifically, when the fanout 𝑘 of a vertex exceeds 𝛼 · 𝑔𝑣
(0 ≤ 𝛼 ≤ 1), we retain the full-neighbor of 𝑣 . This reduces the amount of 𝐴𝐷 sampling without
significantly increasing the computational cost.
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5.4 Analysis on AD Expectation and Time Complexity
We analyze the expectation of 𝐴𝐷 and the time complexity of AD-Sampling and state-of-the-art
sampling techniques [4, 6, 14, 34, 46].
AD Expectation. Given a vertex 𝑣 , a fanout 𝑘 , and a sampling technique S, ADS(𝑣,𝑘 ) measures the
accuracy of sampling over a specific neighbor setN(𝑣) (see Definiton 5.2). Thus, the expectation of
AD over all possible sampled neighbor sets of all vertices provides insight into the effectiveness of
the employed sampling technique. However, the expectation of AD is hard to identify, as it depends
on the embeddings of each vertex 𝑣 ∈ V . Hence, we propose to determine the overlap between the
neighbor set sampled by AD-Sampling and those obtained through a particular sampling technique,
which can be used to approximately estimate the expectation of AD.

Definition 5.8. We randomly sample 𝑛 vertices from the finite set of |N (𝑣) | neighbors, where 𝑘
vertices are in bothV𝑜𝑝𝑡 andN(𝑣). The number of vertices successfully sampled fromV𝑜𝑝𝑡 without
replacement is defined as AD Expectation, denoted as variable 𝑋 .

AD Expectation 𝑋 follows the hypergeometric distribution, i.e., 𝑋 ∼ 𝐻 ( |N (𝑣) |, 𝑛, 𝑘). We express
the expectation as a function of 𝑛 to allow for the analysis of the expected values of different
sampling techniques in Formula 6.

𝑓𝑣 (𝑛) =
𝑘∑︁
𝑖=1

𝐶𝑖
𝑘
·𝐶𝑛−𝑖

|N (𝑣) |−𝑘
𝐶𝑛
|N (𝑣) |

· 𝑖 = 𝑛 · 𝑘
|N (𝑣) | (6)

Given a sampling fanout 𝑘 , sampling techniques sample up to 𝑘 neighbors for each vertex. For
simplicity, we assume all vertices sample 𝑘 neighbors. Different sampling techniques differ in
their selection of neighbors. Node-wise sampling samples 𝑘 neighbors for each vertex, so the
expectation over all vertices is 1

|V |
∑

𝑣∈V 𝑓𝑣 (𝑘) = E𝑣∈V 𝑘2

|N (𝑣) | . FastGCN [4] performs layer-wise
sampling, and the number of neighbors for each vertex is 1

|V |
∑

𝑣∈V 𝑓𝑣 ( 𝑘𝑙 ·𝑑𝑙| E | · |N (𝑣) |) =
𝑘𝑙 ·𝑑𝑙 ·𝑘
| E | ,

where 𝑘𝑙 is the sampling fanout for a layer and 𝑑𝑙 is the average degree of the vertices sampled by
FastGCN [4]. ClusterGCN [6] performs subgraph-wise sampling and samples 𝑘𝑠 subgraphs from
𝑆 subgraphs. Each worker can get 𝑘𝑠

𝑁𝑤𝑘
subgraphs, meaning that each vertex gets 𝑘𝑠

𝑆 ·𝑁𝑤𝑘
· |N (𝑣) |

neighbors. BNS-GCN [34] keeps all local neighbors, and the ratio of sampled vertices is 𝑁𝑙+𝑘𝑟
|V | ,

where 𝑁𝑙 denotes the number of local neighbors and 𝑘𝑟 denotes the sampling fanout (only sampling
remote nodes). AGL-sampling [46] has the same expectation as random sampling, while it never
changes at training epochs.
Time complexity. Node-wise sampling mainly contains two time-consuming stages: sampling and
subgraph construction. Given the total number of epochs𝑇 , GraphSAGE [14] needs𝑇 sampling and
subgraph-constructing stages, and each epoch involves sampling at each of ℓ layers. GraphSAGE [14]
selects 𝑘 neighbors for 𝑁 vertices in each layer. Thus, constructing subgraphs for 𝑇 epochs costs
O(𝑇 · B), and the sampling costs O(𝑇 · 𝑁 · 𝑘 · 𝐿).
Next, layer-wise and subgraph-wise sampling techniques require another stage to mask adjacency

lists. FastGCN [4] needs to traverse edges to get the sampling probability and mask with a layer-wise
sampling neighbor set, which are both proportional to the number of edges E. The sampling cost of
ClusterGCN [6] is low since it is linear in the number of clusters. The main cost of ClusterGCN [6]
consists of masking and graph construction. BNS-GCN [34] only needs to mask the remote edges,
and the masking time is O(𝑇 · |E𝑏 | · 𝑙), where |E𝑏 | represents the number of boundary edges.
AGL-sampling [46] only needs to sample once without the item𝑇 compared with random sampling.
AD-Sampling amortizes the sampling and constructing costs into𝑚 epochs. The initial sampling
complexity of 𝐴𝐷-Sampling is O(𝑇 · 𝑁 · 𝐿 · 𝑑 · 𝑔 · 𝑘). Through optimizations, we make 𝑘 a constant,
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Table 2. AD Expectation and Time Complexity

Methods 𝐴𝐷 Expectation Time Complexity

GraphSAGE [14] E𝑣∈V
𝑘2

|N (𝑣) | O (𝑇 · 𝑁 · 𝐿 · 𝑘 +𝑇 · B)
FastGCN [4] 𝑘𝑙 ·𝑑𝑙 ·𝑘

| E | O (𝑇 · 𝐿 · |E | +𝑇 · B)
ClusterGCN [6] 𝑘𝑠 ·𝑘

𝑆 ·𝑁𝑤𝑘
O (𝑇 · |E | +𝑇 · B)

BNS-GCN [34] (𝑁𝑙+𝑘𝑟 ) ·𝑘
|V | O (𝑇 · 𝐿 · |E𝑏 | +𝑇 · B)

AGL-Sampling [46] E𝑣∈V
𝑘2

|N (𝑣) | O (𝑁 · 𝐿 · 𝑘 + B)
AD-Sampling 𝑘 O (𝑇 ·𝑁 ·𝐿 ·𝑑 ·𝑘+𝑇 ·B

𝑚 )

reducing the cost to O(𝑇 · 𝑁 · 𝐿 ·𝑑 ·𝑔). We also relate candidate set size 𝑔 to 𝑘 , resulting in a cost of
O(𝑇 · 𝑁 · 𝐿 · 𝑑 · 𝑘). As a result, the time complexity of sampling is reduced to O(𝑇 ·𝑁 ·𝐿 ·𝑑 ·𝑘

𝑚
).

In the rest of the paper, AD-Sampling denotes Heuristic AD-Sampling (see Algorithm 1) with
the optimizations presented in Section 5.3, unless stated otherwise.

6 OPTIMIZED AD-SAMPLING
6.1 Adaptive Sampling Frequency Tuner
AD-Sampling samples every𝑚 iterations (see Section 5). We propose to adaptively tune𝑚 based
on the current convergence rate. This eliminates the need for manual hyperparameter tuning and
increases the applicability of AD-Sampling across datasets and models. Since our primary goal is to
perform sampling while minimizing AD, we investigate the factors that affect AD. We exclude the
effect of activation functions to simplify the investigation.

Lemma 6.1. Given a full-neighbor aggregation 𝑯 𝑡,ℓ
𝑣 = agg𝑢∈N(𝑣) 𝑯 𝑡,ℓ−1

𝑢 and an approximate
aggregation of sampled neighbor set 𝑯̂ 𝑡,ℓ

𝑣 = agg𝑢∈S(𝑣;𝑘 )𝑯
𝑡,ℓ−1
𝑣 , we obtain the aggregation difference

𝐴𝐷𝑡,ℓ ≤ ||Δ𝑨ℓ (∏ℓ−1
𝑖=1 𝑨̂𝑖 )𝑯 0 | |2 · | |∏ℓ

𝑖=1 𝑾
𝑡,𝑖 | |2, where 𝐴𝐷𝑡,ℓ is the aggregation difference of the ℓ𝑡ℎ

layer in the 𝑡𝑡ℎ iteration, Δ𝑨ℓ denotes the adjacency list composed of vertices that have not bSeen
sampled in the ℓ𝑡ℎ layer, and 𝑨̂ represents the sampled adjacency list.

Proof. We have:
𝐴𝐷𝑡,ℓ = | |𝑯 𝑡,ℓ − 𝑯̂ 𝑡,ℓ | |2

= | |𝑨ℓ𝑯 𝑡,ℓ−1𝑾𝑡,ℓ − 𝑨̂𝑯 𝑡,ℓ−1𝑾𝑡,ℓ | |2

= | |Δ𝑨ℓ𝑯 𝑡,ℓ−1𝑾𝑡,ℓ | |2

= | |Δ𝑨ℓ 𝑨̂ℓ−1 . . . 𝑨̂1𝑯 0𝑾𝑡,1 . . .𝑾𝑡,ℓ−1𝑾𝑡,ℓ | |2

≤ ||Δ𝑨ℓ (
ℓ−1∏
𝑖=1

𝑨̂𝑖 )𝑯 0 | |2 · | |
ℓ∏

𝑖=1
𝑾𝑡,𝑖 | |2 .

The factor | |Δ𝑨ℓ (∏ℓ−1
𝑖=1 𝑨̂𝑖 )𝑯 0 | |2 is fixed once the features and adjacency lists are determined.

Next, 𝐴𝐷𝑡,ℓ is proportional to the latter factor | |∏ℓ
𝑖=1 𝑾

𝑡,𝑖 | |2, denoted as 𝑃𝑊 . A higher 𝐴𝐷𝑡,ℓ

indicates worse convergence. Thus, we reduce the error between 𝑨ℓ and 𝑨̂ℓ to decrease Δ𝑨ℓ

to improve the convergence when 𝑃𝑊 is high. To decrease Δ𝑨ℓ , we compute a more accurate
𝑘-optimal neighbor set by reducing the re-computation interval𝑚.

In each iteration, we calculate the value of 𝑃𝑊 and compare it with the previous iteration’s
value to determine whether we need to increase or decrease𝑚. Algorithm 2 describes the process
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Algorithm 2: Adaptive Sample Tuner
Input: weights𝑾 , current iteration 𝑡

Output: sampling frequency𝑚
1 if 𝑡 == 0 then

// initialize parameters of adaptive tuner

2 𝑚 = ⌊2 · (𝑇𝑓 +𝑇𝑠 +𝑇𝑡𝑠 )/𝑇𝑡𝑠 ⌋
3 𝑚lb = ⌊1 +𝑇𝑠/(𝑇𝑓 −𝑇𝑡𝑠 )⌋
4 𝑃𝑊 = | |∏𝐿

𝑖=1 𝑾
𝑡,𝑖 | |

5 𝑡last = 0, 𝑃𝑊last = 𝑃𝑊

6 if 𝑡 == 𝑡last +𝑚 then
7 𝑃𝑊 = | |∏𝐿

𝑖=1 𝑾
𝑡,𝑖 | |2

8 if 𝑃𝑊 < 𝑃𝑊last then
9 𝑚 = ⌊𝑚 + 0.2𝑚⌋

10 else
11 if (𝑚 − 0.2𝑚 ) >𝑚lb then𝑚 = ⌊𝑚 − 0.2𝑚⌋ else𝑚 = 1
12 𝑡last = 𝑡 , 𝑃𝑊last = 𝑃𝑊

of tuning parameter 𝑚. A counter 𝑡 keeps track of the number of iterations performed. When
𝑡 = 0, we initialize𝑚 based on empirical observations (line 2), where ⌊·⌋ denotes the floor function.
Here, 𝑇f denotes the training time with all neighbors, 𝑇s denotes the sampling time, and 𝑇ts denotes
the training time with sampled neighbors. We denote the lower bound of𝑚 by𝑚lb (line 3). Only
when𝑚 > 𝑚lb, does AD-Sampling outperform the training methods that use the full neighbors
in terms of efficiency. The𝑚𝑙𝑏 is calculated by 𝑇𝑓 =

𝑇𝑓 +(𝑇𝑠+𝑇𝑡𝑠 )+(𝑚𝑙𝑏−2) ·𝑇𝑡𝑠
𝑚𝑙𝑏

, i.e.,𝑚𝑙𝑏 = 1 + 𝑇𝑠
𝑇𝑓 −𝑇𝑡𝑠 .

After𝑚 iterations, we update 𝑃𝑊 and compare it with 𝑃𝑊last (lines 7–11). We increase𝑚 by 0.2𝑚
if 𝑃𝑊 < 𝑃𝑊last (line 9). Otherwise,𝑚 is either decreased by 0.2𝑚 if𝑚 − 0.2𝑚 > 𝑚lb or set to 1 if
𝑚 − 0.2𝑚 ≤ 𝑚lb (line 11). The latter case implies that we do not perform sampling, as it does not
enhance efficiency.

6.2 Communication Reduction
AD-Sampling samples the neighbors of vertices to construct a 𝑘-optimal neighbor set without
distinguishing between local and remote neighbors (see Section 5). If a vertex samples a large
number of remote neighbors, AD-Sampling alone may not be sufficient to improve performance
in a distributed environment. To address this issue, we propose to selectively prune unimportant
remote neighbors based on their layer-wise 𝐴𝐷-importance.
Definition 6.2. Given a neighbor 𝑢 of any target vertex 𝑣 , the ℓ𝑡ℎ layer’s layer-wise 𝑨𝑫-

importance of 𝑢 in the 𝑡𝑡ℎ iteration, denoted as I𝑡,ℓ (𝑢), is the sum of 𝐴𝐷s between 𝑢 and its
relevant aggregation:

I𝑡,ℓ (𝑢) =
∑︁

𝑣∈V∧𝑢∈S(𝑣;𝑘 )
(𝐴𝐷𝑡,ℓ

S(𝑣;𝑘 )−{𝑢} −𝐴𝐷
𝑡,ℓ

S(𝑣;𝑘 ) ) (7)

We observe that I𝑡,ℓ (𝑢) represents the negative effect on the entire convergence when 𝑢 is
missed. We aim to reduce the communication while minimizing the degradation of convergence
and accuracy by employing layer-wise sampling based on the 𝐴𝐷-importance metric.
According to Formula 7, no additional computation is required to obtain the 𝐴𝐷-importance.

After the remote neighbor sampling, each worker only requests 𝑁𝑐 embeddings from the remote
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neighbors that have the highest importance scores, rather than all remote neighbor embeddings,
where 𝑁𝑐 is the fanout of remote neighbors. This approach can effectively reduce communication
costs.

Example 6.3. Fig. 5 provides an example of 𝐴𝐷-importance based communication reduction,
where {𝑣2, 𝑣3, 𝑣5} is local node set and {𝑣1, 𝑣4, 𝑣6, 𝑣7, 𝑣8, 𝑣9} is remote node set. Consider remote
neighbor 𝑣4. We find that 𝑣4 is involved in computing two local target vertices as a remote neighbor.
We find that 𝑣4 as a remote neighbor participates in the computing of two local target vertices 𝑣2
and 𝑣5. We can thus calculate I𝑡,ℓ (𝑣4) using Formula 6.2. We keep neighbors with the top-𝑁𝑐 I𝑡,ℓs,
and thus the communication cost is reduced to 𝑁𝑐 . The newly generated remote neighbor set will
be used in training. The effect of neighbor 𝑢 on vertex 𝑣 is represented by 𝐸𝑡,ℓ𝑢,𝑣 , which is defined as
𝐸
𝑡,ℓ
𝑢,𝑣 = 𝐴𝐷

𝑡,ℓ

S(𝑣;𝑘 )−{𝑢} −𝐴𝐷
𝑡,ℓ

S(𝑣;𝑘 ) .

local nodes

remote nodes
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Fig. 5. AD-Importance-Based Communication Reduction

7 EXPERIMENTS
7.1 Experimental Setup
GNN Models and Datasets. We employ Graph Convolutional Networks (GCN) [9] and Graph
Attention Networks (GAT) [33] in our experiments. However, it is worth noting that ADGNN is
also applicable to other GNN models, as it can effectively reduce sampling costs and 𝐴𝐷s. The
default number of layers is set to 2. For GCN, the hidden layer size for Pubmed is set to 16, while
it is set to 128 for the other four datasets. For GAT, we employ 8 attention heads with a hidden
layer size of 8 for Pubmed and OGBN-Arxiv, and 1 attention head with a hidden layer size of
16 for Reddit-Small and OGBN-Papers100M. We set the dropout to 0.6. We use five real-world
datasets from PyTorch Geometric [10] and Open Graph Benchmark [15]: Pubmed, OGBN-Arxiv,
Reddit-Small, OGBN-Products, and OGBN-Papers. Pubmed, OGBN-Arxiv, and OGBN-Papers are
citation networks that contain information about research papers and their citations. Reddit-Small
is a dataset constructed from an online forum, and OGBN-Products is an Amazon product co-
purchasing network. For brevity, we refer to OGBN-Arxiv, OGBN-Products, and OGBN-Papers
without using the prefix OGBN, while we refer to Reddit-Small as Reddit. Table 3 provides statistics
on the datasets, including the feature dimensionality (#Feat), the number of categories (#Class),
and the ratio of the splits of the datasets into training/validation/testing sets (Train/Val/Test).
Environments. We conduct experiments on two clusters: cluster-1: a cluster consisting of 13
machines, each equipped with 32 GB DRAM and an Intel(R) Xeon(R) 4-core CPU E3-1226 v3 @
3.30 GHz; cluster-2: a cluster consisting of 4 machines, each equipped with 250 GB DRAM, an
Intel(R) Xeon(R) Silver 4110 CPU @ 2.10GHz with 32 cores, and an NVIDIA RTX 2080Ti with 11GB
memory. We employ six machines from cluster-1 for experiments, except for the layer-scalability
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Table 3. Datasets (M=million and B=billion)

Datasets |V | |E| #Feat #Class Train/Val/Test

Pubmed 0.02M 0.04M 500 3 0.65/0.10/0.25
Arxiv 0.16M 1.17M 128 40 0.54/0.18/0.28
Reddit 0.23M 57.3M 602 41 0.66/0.10/0.24
Products 2.44M 61.9M 100 47 0.08/0.02/0.90
Papers 0.11B 1.62B 200 172 0.78/0.08/0.14

0.75

0.78

0.81

0.84

0.87

 0  50  100  150  200

V
a
l 
A

c
c
u
ra

c
y

epoch

(a) Pubmed

0.50

0.55

0.60

0.65

0.70

 0  50  100  150  200

V
a
l 
A

c
c
u
ra

c
y

epoch

0.20

0.40

0.60

0.80

1.00

 0  50  100  150  200

V
a
l 
A

c
c
u
ra

c
y

epoch

0.70

0.76

0.82

0.88

0.94

 0  50  100  150  200

V
a
l 
A

c
c
u
ra

c
y

epoch

(b) Arxiv (c) Reddit (d)      Products

0.20

0.31

0.42

0.53

0.64

 0  50  100  150  200

V
a
l 
A

c
c
u
ra

c
y

epoch

(e) Papers

Full-Neighbor GraphSAGE AGL-Sampling FastGCN ClusterGCN AliGraph DistDGL ADGNN

Fig. 6. Convergence Evaluation on Fanout = [1, 1]

experiments on Reddit and Products, which use 12 machines. We evaluate the results on Papers
using cluster-2 and conduct tests on GPUs using the same cluster. The clusters employ 1Gbps
and 10Gbps Ethernet connections, respectively. We deploy one worker and one server on a single
machine.
Parameter Settings. We employ the Adam optimizer with a learning rate of 0.01 on Pubmed,
Reddit, and Products and 0.05 on Arxiv and Papers. The sampling fanouts are set to [2, 2] on Pubmed
and Arxiv and to [5, 5] on Reddit, Products, and Papers for the node-wise sampling techniques.
We adjust fanouts of the layer-wise and subgraph-wise sampling techniques to ensure that they
have numbers of edges that are similar to those of the node-wise sampling techniques. However,
it is infeasible to set a similar edge number for BNS-GCN, as it samples only remote neighbors.
Here, we set the fanout to 0. We set the number of 𝐴𝐷 computations to 2 and allow up to 3 · 𝑘
candidate-neighbors for all datasets. The communication pruning is set to 70%. We set𝑚=10, 20,
65, 30, 25 for datasets repectively.
Baselines.We compare ADGNN with five state-of-the-art sampling techniques [4, 6, 14, 34, 46, 48]
and two representative end-to-end systems [50, 52].
• GraphSAGE [14] is a fundamental GNN model that employs a random sampling approach.
• AGL-Sampling [46] samples neighbors only once in the beginning and reuses the sampled
results in all subsequent iterations.

• FastGCN [4] interprets graph convolution as integral transforms of embedding functions and
implements importance sampling using a Monte Carlo approach.

• BNS-GCN [34] uses a random sampling technique to select only remote vertices to decrease
communication costs.

• ClusterGCN [6] partitions graphs into many subgraphs using METIS [19] and trains on only a
subset of the subgraphs. Edges that cross between machines are omitted.

• AliGraph [52] reduces the communication between workers and graph servers by caching
frequently accessed vertices.

• DistDGL [50] adapts GNN training by reducing the communication between machines and
balancing the workload.

GraphSAGE [14] and AGL-Sampling [46] employ node-wise sampling. FastGCN [4] and BNS-
GCN [34] employ layer-wise sampling, while ClusterGCN [6] employs subgraph-wise sampling.
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Table 4. Evaluation of Epoch Time (sec) and Test Accuracy (%) on Low Sampling Fanouts

Method Arxiv Reddit Products Papers

AGL-Sampling 57.71, 0.176 85.33, 0.419 69.18, 0.474 48.85, 3.835
ADGNN+both 64.76, 0.236 90.89, 0.596 74.57, 0.675 56.43, 5.743

Since GraphSAGE [14], FastGCN [4], and ClusterGCN [6] are standalone techniques, we have
adapted them to distributed environments. We disregard DGS [35], as it is not open-sourced and
lacks details on the explainer implementation, making it difficult to re-engineer.
Training Mode. We perform experiments in full-batch and sampling modes for two main reasons.
First, full-batch training typically leads to better convergence and accuracy compared to mini-batch
training. Second, sampling helps alleviate computation bottlenecks. We provide evaluation results
on CPU clusters and GPU clusters to demonstrate the applicability and superiority. The codes are
available online1.

7.2 Evaluation on Convergence of Sampling Techniques with Low Fanouts
We note that ADGNN can achieve high accuracy even with extremely low sampling rates. For
the node-wise sampling techniques, we set the fanout of all layers to 1. For the layer-wise and
subgraph-wise techniques, we ensure numbers of edges in the sampled graphs that are similar to
those of the node-wise techniques. We exclude BSN-GCN because it cannot maintain numbers of
edges in the sampled graphs similar to those of the node-wise techniques.
Fig. 6 reports the accuracy variation over iterations, showing that ADGNN outperforms all

baselines and achieves accuracies close to those of full-neighbor training even at a fanout of [1,
1], while the other techniques suffer from significant degradation. This is because we select the
optimal neighbor set for each vertex. We observe the following: (i) GraphSAGE and DistDGL have
similar convergence since both use random sampling; (ii) AGL-Sampling is more volatile and results
in lower accuracy, as it only samples once and may have a larger distribution error; (iii) layer-
wise and subgraph-wise sampling (FastGCN and ClusterGCN) may sample fewer neighbors than
node-wise sampling while having the same number of edges, resulting in unstable convergence;
(iiii) AliGraph uses asynchronous training and usually produces poor results. We do not include
AliGraph in efficiency comparisons as it consistently generates extremely low accuracies. Moreover,
AGL-Sampling has the potential to lead to permanent information loss and the introduction of
irreparable errors. This is why GNN training tends to avoid this mode. Additionally, at lower
sampling fanouts, ADGNN clearly outperforms AGL-Sampling in terms of accuracy. At higher
sampling fanouts, ADGNN can achieve greater efficiency than AGL-Sampling since it does not take
into account communication cost.

7.3 Evaluation on Test Accuracy and Efficiency
To assess the adaptive capability of ADGNN, we determine the test accuracy and epoch time
when varying the number of layers. We exclude the results of Full-Neighbor and AGL-Sampling
training for two reasons: (i) Full-Neighbor training always achieves the best accuracy but incurs
high training costs; (ii) AGL-Sampling may achieve fast training, but it suffers from low accuracy
due to permanent information loss. In Tables 5 and 6, bold represents best results, while underline
indicates second-best results.

We see that ADGNN achieves the best accuracy and epoch time across most datasets and numbers
of GNN layers. Although it also achieves second-best accuracy, e.g., on Reddit (93.47% for ADGNN
1https://github.com/songzhen-neu/ADGNN
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Table 5. Test Accuracy (%) and Epoch Time (sec) (bold denotes the best, and underline represents the second-
best)

Method Pubmed Arxiv

2-layer 3-layer 4-layer 2-layer 3-layer 4-layer

GraphSAGE 83.89, 0.0935 83.02, 0.1432 83.08, 0.1930 66.91, 0.6995 62.02, 1.4350 50.95, 2.1969
FastGCN 80.75, 0.0913 73.41, 0.1362 78.19, 0.1787 51.38, 0.5450 45.57, 0.8738 39.49, 1.1834

ClusterGCN 84.16, 0.0904 82.41, 0.1327 83.83, 0.1757 66.12, 0.5351 58.66, 0.8003 58.65, 1.1137
BNS-GCN 83.37, 0.0746 81.20, 0.1378 83.27, 0.1823 67.46, 0.4364 58.65, 0.9805 49.76, 1.3985
DistDGL 83.89, 0.1258 63.89, 0.3289 43.73, 0.3897 66.20, 0.4294 61.00, 0.7622 37.37, 1.1408

ADGNN (ours) 84.24, 0.0620 84.37, 0.0896 83.31, 0.1271 68.24, 0.3224 62.52, 0.7586 51.55, 1.5771

Full-Neighbor 84.42, 0.0764 82.58, 0.0899 83.91, 0.1310 69.00, 0.5666 62.79, 1.8593 60.48, 3.1694
AGL-Sampling 83.49, 0.0450 81.58, 0.0704 82.35, 0.0957 66.96, 0.2443 61.47, 0.7096 16.13, 1.1845

Table 6. Test Accuracy (%) and Epoch Time (sec) for Reddit, Products and Papers

Method Reddit Products Papers

2-layer 3-layer 4-layer 2-layer 3-layer 2-layer 3-layer

GraphSAGE 93.01, 6.2398 92.87, 8.6044 92.48, 11.622 75.87, 7.6784 76.96, 11.528 56.23, 46.498 52.17, 108.50
FastGCN 73.50, 7.7835 50.30, 5.8656 50.30, 5.8656 65.36, 8.0162 76.45, 12.123 56.21, 37.536 51.16, 75.867

ClusterGCN 87.23, 3.3815 77.69, 3.4550 79.06, 2.6575 67.39, 2.9256 67.52, 2.8473 51.16, 62.426 39.66, 114.59
BNS-GCN 93.74, 7.0609 93.35, 5.2432 92.90, 7.1006 75.97, 12.511 75.78, 25.541 58.04, 32.148 53.17, 84.174
DistDGL 92.86, 4.0117 92.94, 5.3797 92.74, 6.6590 76.06, 2.8444 77.85, 5.4586 44.25, 18.541 28.61, 34.254

ADGNN (ours) 93.47, 0.9630 93.19, 2.5673 92.84, 3.7239 77.12, 1.8634 76.43, 4.9543 58.59, 14.578 53.26, 26.747

Full-Neighbor 93.80, 5.5731 93.48, 7.4064 93.34, 11.079 74.69, 11.380 75.87, 33.270 58.14, 23.715 53.30, 106.71
AGL-Sampling 93.02, 0.8131 92.16, 2.1150 92.62, 3.2031 75.45, 1.2704 75.59, 4.3470 58.03, 10.684 52.92, 23.238

vs. 93.74% for BNS-GCN), ADGNN achieves a 7.4× speedup over BNS-GCN. Next, we offer a detailed
analysis. FastGCN typically yields lower accuracy than the other sampling techniques when using
the same number of edges. This is likely due to FastGCN’s reliance on degree importance as the basis
for sampling. High-degree vertices are more likely to be selected, resulting in less diverse sampling.
We find that other layer-wise and subgraph-wise techniques also tend to suffer from this limitation
because they need to retain all incident edges in the sampled graphs. Despite setting the sampling
fanout to 0, BNS-GCN still has a large number of edges on Reddit, which is likely a contributing
factor to its higher accuracy on this dataset. GraphSAGE maintains an unbiased distribution of the
initial graphs, but at the expense of requiring sampling for each iteration. ClusterGCN can achieve
good performance with a four-layer GNN on graphs with a small diameter, as it constrains the
neighbor set sampled from a local domain.
We provide the speedup findings in Fig. 7. The speedup metric 𝑆𝑃 is calculated as 𝑆𝑃 = 𝑇𝑜/𝑇𝑛 ,

where 𝑇𝑜 denotes the execution time of old techniques and 𝑇𝑛 depicts the execution time of the
new improved techniques. ADGNN achieves 1.20–1.51×, 1.35–2.17×, 3.51–8.08×, 1.57–6.71×, and
2.21–4.28× speedups over the existing sampling techniques on Pubmed, Arxiv, Reddit, Products, and
Papers, respectively. DistDGL employs a different system framework and different engineering im-
plementations than we do. We conduct an end-to-end comparison with DistDGL. ADGNN achieves
2.03×, 1.33×, 4.17×, 1.53× and 1.27× speedups over DistDGL. BNS-GCN exhibits poor efficiency on
Reddit and Products due to their high edge densities. ClusterGCN achieves great performance by
retaining only some subgraphs and dropping all remote edges. However, ClusterGCN achieves a
sub-optimal accuracy of 87.23% vs. 93.47% on Reddit and 67.39% vs. 77.12% on Products compared
to ADGNN.
For clarity, we present the number of edges and vertices for each of the sampling techniques

in Fig. 8, where Edges-𝑖 denotes the number of edges in the 𝑖𝑡ℎ layer, RmtNodes-𝑖 denotes remote
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neighbors, and Nodes-𝑖 denotes the total number of neighbors. We see that ADGNN has slightly
more edges than GraphSAGE. This is due to the proposed optimization strategy (see Section 5.3),
where all neighbors are retained if fanout 𝑘 ≥ 0.8 × |N (𝑣) |, thereby reducing the computational
load of 𝐴𝐷 . Although BNS-GCN achieves the highest accuracy on Reddit, the number of edges in
BNS-GCN is nearly one order of magnitude higher than in ADGNN.

0e+00

1e+05

2e+05

3e+05

4e+05

5e+05

Edges-1

Edges-2

RmtNodes-1

RmtNodes-2

Nodes-1

Nodes-2

#
e

d
g

e
s
(n

o
d

e
s
)

GraphSAGE
AGL-Sampling
FastGCN
ClusterGCN
BNS-GCN
ADGNN
ADGNN+Comm

3.19e+06 2.15e+06

Fig. 8. Edges and Nodes on Reddit

7.4 Components of Epoch Time and Total Time
We report the training and sampling time durations per epoch in Fig. 9. The sampling time of
each technique is several times more than the training time. ADGNN reduces the sampling time
substantially since we amortize this across multiple epochs. The layer-wise FastGCN and the
subgraph-wise ClusterGCN incur less training time than the node-wise techniques. This is because
fewer vertices are involved in these methods when they perform neural network operations.
Additionally, FastGCN incurs higher sampling time due to the masking operation after sampling
vertices for layers. On CPU clusters, the masking operation is more significant due to the small
number of cores. DistDGL incurs less training time since different frameworks are used and some
system optimizations are tailored to DistDGL. However, we achieve better efficiency and accuracy
than DistDGL in an end-to-end comparison.

We measure the total execution time for each operation across 200 iterations and we use cluster-2
for experiments on both CPUs and GPUs. The columns in Table 7 represent the following: tensor
operation, communication, embedding organization, CPU-GPU transfer, parameter update, and
subgraph construction time.
Distributed GNN training necessitates distributed subgraph construction for sampling, which

involves tasks such as generating target vertices, establishing routing tables, and constructing initial
feature matrices. These operations cannot be easily executed with tensor operations, making GPU
execution unsuitable. As observed in Table 6, subgraph construction is the most time-consuming
operation, regardless of whether training is performed on CPUs or GPUs. Specifically, compared to
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Fig. 9. Components of Epoch Time

Table 7. Detailed Total Times (sec) for Components on Arxiv

Method tens_op comm emb_org trans upda subg_cons

Full-Neighbor-CPU 62.10 30.28 62.68 - 8.111 -
BNS-GCN-CPU 34.96 3.750 21.78 - 6.960 349.9
ADGNN-CPU 33.35 15.47 21.08 - 8.315 39.05

ADGNN+both-CPU 26.14 11.21 17.22 - 8.915 21.91

Full-Neighbor-GPU 2.512 31.45 61.78 7.902 9.740 -
BNS-GCN-GPU 1.603 4.942 22.10 2.786 8.326 348.5
ADGNN-GPU 1.601 16.52 21.74 3.841 8.967 39.13

ADGNN+both-GPU 1.436 12.43 16.54 2.987 9.181 19.99

BNS-GCN, ADGNN significantly reduces the time required for distributed subgraph construction
from 348.5 seconds to 39.13 seconds. Besides, sampling local neighbors can effectively reduce the
number of vertices, resulting in lower costs of distributed embedding organization and distributed
subgraph construction.

7.5 Evaluation for GAT
We present the results for GAT in Table 8 to assess the applicability of ADGNN. We set the fanouts
of each layer to 2, 8, 80, and 20 for the datasets. ADGNN outperforms all the comparative methods
in terms of accuracy and efficiency. Specifically, (i) compared to ClusterGCN, which achieves the
second-best training time on Reddit, ADGNN demonstrates a 2.45× speedup and a 4.73% accuracy
improvement; and (ii) compared to GraphSAGE, which attains the highest accuracy among all
baselines on Reddit, ADGNN achieves a 3.10× speedup and a 0.32% accuracy improvement. AGL-
Sampling shows lower accuracy compared to other node-wise sampling techniques (i.e., GraphSAGE,
ADGNN) due to the loss of information caused by sampling only once. Next, layer-wise and
subgraph-wise sampling methods (i.e., FastGCN and ClusterGCN) exhibit more significant accuracy
reduction, because they typically involve fewer vertices when they have the same number of edges
as node-wise sampling methods. Finally, ADGNN with both optimizations achieves comparable
accuracy to ADGNN while significantly enhancing efficiency.

7.6 Ablation Experiments and Evaluation on Training with GPUs
We conduct ablation experiments to investigate the impact of two optimizations: the adaptive
sampling frequency tuner and the 𝐴𝐷-importance based communication reduction. We compare
four methods for each dataset in Table 9, where 𝑎𝑑 denotes the AD-Sampling approach defined
in Section 5, 𝑎𝑑 + 𝑎𝑑𝑎𝑝𝑡 denotes 𝑎𝑑 with the adaptive sampling frequency tuner, 𝑎𝑑 + 𝑐𝑜𝑚𝑚

Proc. ACM Manag. Data, Vol. 1, No. 4 (SIGMOD), Article 229. Publication date: December 2023.



ADGNN: Towards Scalable GNN Training with Aggregation-Difference Aware Sampling 229:21

Table 8. Evaluation of Epoch Time (sec) and Accuracy (%) when Extending the Existing Sampling Techniques
to GAT

Method Pubmed Arxiv Reddit Papers

GraphSAGE 0.256, 82.33 2.057, 61.90 17.30, 89.90 117.7, 39.75
FastGCN 0.248, 82.62 1.887, 24.39 19.45, 77.30 83.64, 33.93

ClusterGCN 0.222, 83.65 1.866, 20.77 13.71, 85.49 132.7, 34.91
BNS-GCN 0.237, 83.43 2.274, 59.54 13.75, 88.42 106.4, 40.17
ADGNN 0.215, 84.04 1.512, 63.00 5.586, 90.22 48.68, 41.39

ADGNN+both 0.195, 83.86 1.127, 62.78 3.862, 90.16 34.74,40.68

Full-Neighbor 0.300, 84.48 2.496, 63.74 23.37, 90.66 63.82, 42.06
AGL-Sampling 0.200, 82.25 1.194, 61.69 3.930, 89.71 32.98, 39.48

Table 9. Ablation Study Evaluating Epoch Time (sec) and Accuracy (%)

Method 𝑎𝑑 𝑎𝑑+𝑎𝑑𝑝𝑡 𝑎𝑑+𝑐𝑜𝑚𝑚 𝑎𝑑+𝑏𝑜𝑡ℎ

Pubmed 0.062, 84.24 0.066, 84.40 0.057, 84.14 0.062, 84.24

Arxiv 0.322, 68.24 0.428, 68.27 0.286, 66.34 0.286, 66.73

Reddit 0.963, 93.47 0.953, 93.60 0.796, 92.85 0.794, 92.97

Products 1.863, 77.12 1.720, 77.00 1.421, 75.53 1.415, 75.60

Papers 14.58, 58.59 14.21, 58.76 11.30, 58.37 10.58, 58.61

means 𝑎𝑑 with 𝐴𝐷-importance based communication reduction, and 𝑎𝑑 + 𝑏𝑜𝑡ℎ includes both
optimizations. The results show that the adaptive sampling frequency tuner can improve the
accuracy of both 𝑎𝑑 and 𝑎𝑑 + 𝑐𝑜𝑚𝑚, and it can even improve the accuracy and reduce the training
time on Reddit by controlling convergence fluctuations. Communication reduction can cut the
training cost without significantly degrading accuracy. Even under low-sampling fanouts, the
proportion of the communication cost remains high, particularly for large datasets. For example,
when applied to Papers, communication reduction alone results in a performance improvement of
29% (from 14.58s to 11.30s), with only a slight accuracy degradation from 58.59% to 58.37%. Finally,
𝑎𝑑 + 𝑏𝑜𝑡ℎ achieves similar accuracy to GraphSAGE while providing higher speedups. Overall,
ADGNN outperforms the state-of-the-art distributed sampling technique BNS-GCN by a speedup of
1.20–8.89× and the sampling-based distributed GNN system DistDGL by a speedup of 1.50–5.05×.

We conduct experiments to assess performance on GPU clusters. As previously mentioned, we
use full-batch training for comparison, and we present results only for Pubmed and Arxiv, which
can be accommodated in GPU memory. As shown in Fig. 10, training GCN models on GPUs can
significantly reduce training time and achieve higher speedups, improving from 1.16–1.65× to
1.65–2.79× on Pubmed, and from 1.19–1.81× to 1.71–3.05× on Arxiv. We provide results of training
GAT on GPUs. ADGNN achieves speedups of 1.50-1.89× and 2.89-3.93× over the other methods
on Pubmed and Arxiv, respectively. Regardless of the underlying hardware architecture (GPU or
CPU clusters), ADGNN effectively mitigates the high-cost bottleneck of sampling and achieves
high accuracy.

7.7 Test on Various Fanouts and Adaptive Sampling Frequency Tuner
We evaluate ADGNN, GraphSAGE, BNS-GCN, and ADGNNR on Arxiv and Products, where
ADGNNR is a variant of ADGNN that retains all local neighbors. The sampling rates range from
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Fig. 10. Evaluation on GPUs

Table 10. Accuracy (%) Evaluation with Varying Fanouts

Sampling Rate 1
𝑔
×100% 10% 20% 30% 40%

GraphSAGE-Arxiv 59.23 66.91 67.93 68.27 69.01
BNS-GCN-Arxiv N/A N/A N/A 67.71 68.41
ADGNNR-Arxiv N/A N/A N/A 66.63 68.47
ADGNN-Arxiv 67.81 68.21 68.59 68.52 68.99

GraphSAGE-Products 70.12 75.87 75.91 75.35 75.67
BNS-GCN-Products N/A N/A N/A N/A 75.20
ADGNNR-Products N/A N/A N/A N/A 75.34
ADGNN-Products 75.85 77.12 75.82 75.60 75.70

( 1
𝑔
× 100)% to 40%, where ( 1

𝑔
× 100)% represents the case of fanout=1. Here, N/A indicates that

BNS-GCN and ADGNNR cannot achieve such low sampling rates because they retain all local
neighbors. By comparing with BNS-GCN and ADGNNR, we can observe the effect of sampling local
vertices on accuracy. As shown in Table 10, ADGNN consistently achieves the highest accuracy
across nearly all sampling rates. We observe that retaining all local vertices in ADGNNR leads
to a decline in accuracy. This is attributed to the inability to guarantee the minimal aggregation
difference without sampling local vertices. Notably, on Arxiv, ADGNN with a 20% sampling rate
achieves higher accuracy than both ADGNNR and BNS-GCN (preserving all local neighbors) at
40%. On Products, the highest accuracy is achieved at a 10% sampling rate. This is because retaining
more neighbors can lead to overfitting on the training set. Even in such circumstances, ADGNN
still achieves the highest accuracy. ADGNN also effectively mitigates overfitting at low sampling
rates.
In practice, we cannot select the optimal value for 𝑚 manually, and nor can we predefine

an effective default value because the best value depends on the data and runtime AD. Hence,
automatic adjustment of𝑚 without any prior knowledge becomes necessary. Moreover, we perform
experiments to investigate the effects of adaptively adjusting parameter𝑚. Table 11 shows the
results. A small value of𝑚 ensures higher accuracy but increases execution time. Although a large
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Table 11. Evaluation of the Adaptive Tuner on Reddit

Method 𝑚=5 𝑚=45 𝑚=85 𝑚=125 𝑚=165 adapt

Time (sec) 3.652 1.173 0.928 0.902 0.904 0.953
Accuracy (%) 93.45 93.38 93.38 93.36 93.31 93.60

value of𝑚 allows for improved accuracy by selecting the right recomputation timing, determining
the optimal value of𝑚 before training is not feasible. By dynamically adjusting𝑚, the re-sampling
timing can be optimized for simultaneous improvements in accuracy and efficiency.

7.8 Evaluation on AD and Hyperparameter
We present the results of our experiments with various hyperparameter settings to evaluate their
influence on Pubmed and Arxiv in Fig 11a. Specifically, we investigate the effect of different
hyperparameters on the 𝐴𝐷 values, where nei-prune-i refers to computing 𝐴𝐷 on a subset of
neighbors with a size of 𝑖 × 𝑘 , and comp-count-i denotes the number of 𝐴𝐷 calculations executed
on each layer. As shown in Fig 11, nei-prune-2 achieves similar 𝐴𝐷 values to the approach without
approximation, and comp-count-2 slightly degrades the performance. Based on these results, we
conclude that setting the value of 𝑖 to 2 achieves both high accuracy and efficiency. Note that a
worse 𝐴𝐷 can be obtained when using a low value of 𝑖 , i.e., nei-prune-1 and comp-count-1 generate
the worst results. Since satisfactory results are already achieved when 𝑖 = 2, we only demonstrate
the results up to 𝑖 = 2 to avoid overlapping lines in the experiment.
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Fig. 11. Hyperparameter and AD Comparisons on Arxiv

We report the average value of AD for all training vertices in Fig. 11b. As can be seen, ADGNN
produces the smallest 𝐴𝐷 among all the sampling techniques due to the proposed aggregation-
difference aware sampling technique. AGL-Sampling and GraphSAGE always generate the same
𝐴𝐷 , since both use a random sampling approach. However, GraphSAGE usually achieves better
convergence, as it involves more vertices, which leads to better distribution fitting. In contrast,
AGL-Sampling, due to its offline sampling strategy, results in information loss in the graph, which
leads to a degradation in accuracy. Additionally, BNS-GCN produces a poor 𝐴𝐷 on Pubmed and a
good 𝐴𝐷 on Arxiv, which is consistent with the accuracy results presented in Table 5. FastGCN
involves fewer vertices due to its degree-importance sampling strategies and, as a result, suffers
from worse convergence.

8 CONCLUSION
Distributed training of GNNs is hampered by substantial computation and communication bot-
tlenecks. Neighbor-Sampling has been proposed as an efficient way to decrease training costs.
However, the existing sampling techniques and sampling-based distributed systems face challenges
of high costs incurred by distributed sampling (e.g., distributed subgraph construction), accuracy
degradation with a small fanout, and poor scalability when using GPU training. We propose
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a sampling-based system for GNN training called ADGNN that utilizes a hybrid online-offline
sampling architecture and employs a novel distributed sampling technique named Aggregation-
Difference Aware Sampling (AD-Sampling). This technique achieves high accuracy even with a
small sampling fanout. To reduce network communication costs, we present a layer-wise 𝐴𝐷-
importance based communication reduction technique for remote vertices. Our experiments offer
evidence that ADGNN can outperform existing sampling techniques and systems by up to nearly a
factor of 9 for distributed GNN training on both CPU and GPU clusters.
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