
Fast Iterative Graph Computing with Updated
Neighbor States

Yijie Zhou†, Shufeng Gong†, Feng Yao†, Hanzhang Chen†, Song Yu†, Pengxi Liu†,
Yanfeng Zhang�†, Ge Yu†, Jeffrey Xu Yu‡

†Northeastern University, ‡The Chinese University of Hong Kong
{zhouyijie, yaofeng, chenhanzhang, yusong, liupengxi}@stumail.neu.edu.cn,

{gongsf, zhangyf, yuge}@mail.neu.edu.cn, yu@se.cuhk.edu.hk

Abstract—Enhancing the efficiency of iterative computation
on graphs has garnered considerable attention in both industry
and academia. Nonetheless, the majority of efforts focus on
expediting iterative computation by minimizing the running time
per iteration step, ignoring the optimization of the number of
iteration rounds, which is a crucial aspect of iterative compu-
tation. We experimentally verified the correlation between the
vertex processing order and the number of iterative rounds,
thus making it possible to reduce the number of execution
rounds for iterative computation. In this paper, we propose a
graph reordering method, GoGraph, which can construct a well-
formed vertex processing order effectively reducing the number
of iteration rounds and, consequently, accelerating iterative
computation. Before delving into GoGraph, a metric function is
introduced to quantify the efficiency of vertex processing order in
accelerating iterative computation. This metric reflects the quality
of the processing order by counting the number of edges whose
source precedes the destination. GoGraph employs a divide-and-
conquer mindset to establish the vertex processing order by
maximizing the value of the metric function. Our experimental
results show that GoGraph outperforms current state-of-the-art
reordering algorithms by 1.83× on average (up to 3.34×) in
runtime. Compared with traditional synchronous computation,
our method improves the iterative computations up to 6.30× in
runtime.

Index Terms—Graph reorder, Iterative computation, Asyn-
chronous model, CPU Cache

I. INTRODUCTION

Iterative computation is an important method for graph

mining, such as PageRank [1], single source shortest path

(SSSP), breadth first search (BFS), and so on. Since iterative

computation involves traversing the entire graph multiple

times to update vertex states until convergence, which is

time-consuming. There have been many works that improve

iterative computation from practice to theory [2]–[8].

Most of them [4], [6], [9], [10] accelerates iterative com-

putations by reducing the runtime of each iteration round

under the assumption that, for a given graph and iterative

algorithm, the number of iteration rounds required to attain a

specific convergence state is fixed. For example, in PageRank

[11], it may take 20-30 iterations to converge; in SSSP, the

number of iteration rounds is roughly the graph diameter [12].

However, in practice, the number of iteration rounds for a

The first two authors contributed equally to this paper.

Yanfeng Zhang� is the corresponding author.

�������	
�������� ��������	
�������� ������������������
���

�

�

��

��

��

��

���� ��������

�
��
	
�

��
��

�

(a) Runtime

�

�

���

���

���

���� ��	
���

�
��
�

 �!
���

"

 �

"�!
��

(b) Iteration rounds

Fig. 1: Runtime & Number of iterations of SSSP and PageRank

with different vertex updating modes (Sync. vs. Async.) and

different vertex processing orders (default order vs. reordered

with GoGraph) on wiki-2009 dataset

given graph and iterative algorithm may exhibit substantial

variation depending on the vertex update method. We elaborate

on this point in the following observation.

Observation. In general, traditional iterative algorithms are

typically designed with a synchronous mode [6], [13], pro-

cessing each vertex in a round-robin fashion. Specifically, to

simplify the parallel semantics, in each round, every vertex

is updated based on the state of its neighbors from the

previous iteration. However, in some algorithms employing an

asynchronous mode [14], [15], vertices can update their state

using the neighbors’ state from the current iteration rather than

the previous one. This adjustment is beneficial because the up-

dated neighbors’ state is closer to convergence. Consequently,

computations based on these updated state values yield results

closer to convergence, thereby reducing the number of iteration

rounds. Furthermore, we found that the vertex processing order

further affects whether the latest state values can be utilized

by its neighbors in the current iteration. It means that the

vertex processing order is significant for iterative computation

to reduce the number of iteration rounds.

Fig. 1 shows the runtime and number of iterations of

SSSP and PageRank with different vertex updating modes

and different vertex processing orders on wiki-2009 [16]. Both

SSSP and PageRank have less runtime and fewer iterations in

the asynchronous case. Furthermore, we reordered the vertices

with GoGraph (our vertex reordering method), ensuring that as

many vertices as possible can leverage the latest state values

2449

2024 IEEE 40th International Conference on Data Engineering (ICDE)

2375-026X/24/$31.00 ©2024 IEEE
DOI 10.1109/ICDE60146.2024.00193

20
24

 IE
EE

 4
0t

h
In

te
rn

at
io

na
l C

on
fe

re
nc

e
on

 D
at

a
En

gi
ne

er
in

g
(IC

DE
) |

 9
79

-8
-3

50
3-

17
15

-2
/2

4/
$3

1.
00

 ©
20

24
 IE

EE
 |

 D
O

I:
10

.1
10

9/
IC

DE
60

14
6.

20
24

.0
01

93

Authorized licensed use limited to: Northeastern University. Downloaded on April 06,2025 at 07:05:49 UTC from IEEE Xplore. Restrictions apply.

e

a

b

cd

(a) Origin graph

4

∞0 ∞∞∞0

62 0 7 21

1 1 ∞0 ∞

10 2463

[a , b , c , d , e]

1 4

21

4 2

Default processing order

Ite
ra

tio
n

ro
un

d

6 4

6

10 2454

1

(b) Sync. w/ default order

∞0 ∞∞∞0

[a , b , c , d , e]

2

42 0 6 21

1 1 70 ∞

1

2

6 1

4

Default processing order

4

1

10 2453

1

(c) Async. w/ default order

[a , b , e , c , d]

∞0 ∞∞∞0

41 1 20 6

1 1 4
2

Reordered processing order

4

6

10 4522

1

(d) Async. w/ reordered order

Fig. 2: Iterative process and the number of iteration rounds generated by employing different iterative computation modes

and vertex processing orders when running the SSSP algorithm, where the source vertex is a, the default processing order is

alphabetical order based on vertex labels [a, b, c, d, e], the reordered order is obtained by our method [a, b, e, c, d]

of their neighbors from the current round. It can be observed

that, after reordering vertices, the advantage of asynchronous

mode is significantly improved, and the number of iteration

rounds and runtime are significantly reduced.

We use Fig. 2 as an example to illustrate the results in Fig.

1, where the iterative algorithm is SSSP and the source vertex

is a. Fig. 2a gives the topology of the graph. In Fig. 2b, we

employ synchronous iteration, where each vertex is updated

using the values of its neighbors from the previous iteration.

For example, in the first iteration, e’s state is updated to 4

based on the initial state of a, while in the second iteration,

e is updated to 2 based on the previous iteration state of b.
It takes four iterations to achieve converged results. Fig. 2c

employs an iterative asynchronous technique in which each

vertex uses the updated states of its neighbors if they have been

updated. For example, in the first iteration, e’s state is updated

to 2 based on the updated state of b from the current iteration.

Compared to the synchronous mode in Fig. 2b, e changes

and converges faster. Finally, the asynchronous mode achieves

the same converged result in three rounds of iterations. We

observed that the updates for c and d depend on the state value

of e. In Fig. 2d, we rearrange the processing order by placing e
before c and d. With this adjustment, each vertex ensures that

all of its incoming neighbors are updated before it, leading to

the convergence of the graph after two iterations.

Motivation. From Fig. 1 and Fig. 2, we can see that the

processing order has a significant impact on the efficiency

of asynchronous iterative computation. An effective vertex

processing order can accelerate iterative computation. This

motivates us to search for the optimal processing order to

speed up iterative computation.

Our goal. As observed above, we can rearrange the vertices

processing order so that when updating each vertex, its neigh-

bors have already been processed and updated. Since the up-

dated neighbor state from the current iteration make the vertex

closer to the convergence state, the iterative computation will

be accelerated. In this paper, we aim to investigate the design

of a vertex reordering method capable of accelerating iterative

computations while keeping other factors constant, such as

the execution mode and task scheduling strategy of the graph

processing systems, as well as result accuracy.

GoGraph. To achieve the above goal, we propose a graph

reordering method, GoGraph, which can construct an efficient

vertex processing order to accelerate the iterative computation.

It has the following unique considerations and design.

Measure the quality of the processing order. Before formulat-

ing an effective reordering method, it is necessary to design

a metric for quantifying the efficiency of the vertex process-

ing order in accelerating iterative computation. While some

intuitive metrics, such as runtime and the number of iteration

rounds, can be regarded as benchmarks, they require complet-

ing iterative computations for meaningful results. Evaluating

the quality of the vertex processing order becomes quite chal-

lenging in the absence of full iterative computation. Regarding

the above problem, based on the theoretical guidance, we

introduce a metric function that counts the number of edges

whose sources are in front of destinations, which in turn

reflects the quality of the processing order.

A divide-and-conquer method for vertex reordering. It is not

trivial to find an optimal vertex processing order that en-

hances iterative computational efficiency. We demonstrate that

finding the optimal processing order is an NP-hard problem.

Therefore, directly establishing the optimal order for a given

metric is impractical. GoGraph adopts the divide-and-conquer

mindset. Initially, high-degree vertices are extracted from the

graph to minimize their impact on the localization decisions

of numerous low-degree vertices. Subsequently, the remain-

ing graph is divided into smaller subgraphs to simplify the

complexity of reordering, with a focus on intra- and inter-

subgraph perspectives. The reordering process involves finding

an optimal position for each vertex in the vertex processing

order within the subgraph, and an optimal position for each

subgraph in the subgraph processing order. This is achieved

2450

Authorized licensed use limited to: Northeastern University. Downloaded on April 06,2025 at 07:05:49 UTC from IEEE Xplore. Restrictions apply.

by maximizing the value of the metric function. Finally, the

high-degree vertices are taken into account to determine the

complete vertex processing order. We theoretically prove the

effectiveness and efficiency of GoGraph.

To summarize, we make the following contributions:

1) Metric Function. A novel metric function M(·) is proposed

to measure the efficiency of processing order in accelerating

iterative computation. We theoretically prove the effectiveness

of M(·) (Section III).

2) GoGraph. An heuristic graph reordering method GoGraph

is proposed, that can accelerate iterative computation sig-

nificantly. We also provide an efficient implementation of

GoGraph (Section IV).

3) Evaluation. We evaluate the effectiveness of GoGraph

in accelerating iterative computation with a comprehensive

experiment (Section V).

Furthermore, we first provide some preliminary founda-

tional knowledge and some based definitions in Section II.

And, finally, we list a comprehensive related work in Section

VI and conclude this paper in Section VII.

II. PRELIMINARIES

This section will introduce the fundamental knowledge

related to our work.

Graphs. Consider a directed graph denoted as G(V,E), where

V and E are the set of vertices and edges. Given a vertex v,

IN(v) = {u | (u, v) ∈ E} and OUT (v) = {w | (v, w) ∈ E}
represent the set of incoming neighbors (abbr. in-neighbors)

and outgoing neighbors (abbr. out-neighbors) of v, respec-

tively, |IN(v)| and |OUT (v)| are the number of incoming

neighbors (abbr. in-degree) and outgoing neighbors (abbr. out-
degree), respectively.

Vertex processing order. The vertex processing order OV =
[v0, · · · , v|V |−1] is one permutation of the vertices V in G.

There are |V |! permutations for the graph with |V | vertices.

We aim to find one vertex permutation that accelerates the

iterative computation as much as possible.

Ordinal number. We define the ordinal number of a vertex

v as its position in the processing order, denoted as p(v). The

value of p(v) ranges from 0 to |V |− 1. In each iteration, if a

vertex u is processed before vertex v, then its ordinal number

p(u) is smaller than that of v, i.e., p(u) < p(v), indicating that

a lower ordinal number corresponds to an earlier processing

order. For example, the ordinal numbers corresponding to the

five vertices a, b, c, d, e in Fig. 2d are 0, 1, 2, 3, 4, with

p(e) = 4. However, in the processing order shown in Fig. 2d,

as the vertices are reordered, p(e) is changed to 2.

Positive/Negative edge. An edge (u, v) is defined as a positive
edge if the ordinal number of the source u is smaller than

that of the destination v, i.e., p(u) < p(v). Otherwise, edge

(u, v) is a negative edge, i.e., p(u) > p(v). In the case of

the positive edges, the source has been updated when the

destination is being processed. Using the updated states of the

source to update the destination may speed up the convergence

of the destination. On the contrary, in the case of the negative

edges, when the destination is updated, the source has not been

updated yet, so it has to use the state of the source from the

previous iteration.

Iterative Computation. In each round of iterative compu-

tation, each vertex is updated using function F(·), where the

input of F(·) is the set of the states of its incoming neighbors.

In the k-th round of iteration, the update of the vertex v can

be expressed as follows,

xk
v = F({xk−1

u |u ∈ IN(v)}), (1)

where xk
v is the state value of v after the k-th iteration. When

processing vertex v, it accumulates the most recent state values

of its in-neighbors u and subsequently applies the function

F(·) based on these collected values. In synchronous iteration,

the state values of u are uniformly updated at the end of each

round, so the state values of u that vertex v gathers in the

k-th round originate from the k − 1-th round. To illustrate

this iterative process, we will employ the PageRank and SSSP

algorithms as specific examples.

PageRank: xk
v =

∑

u∈IN(v)

xk−1
u · d/OUT (u),

s.t., d is the damping factor.

SSSP: xk
v = min{xk−1

v , xk−1
u + d(u, v)|u ∈ IN(v)},

s.t., d(u, v) is the distance between u and v.

As discussed in Section I, using the updated state of the

neighbors from the current iteration can accelerate iterative

computation. In the case of neighbors that have not yet been

processed, we continue to use their states from the previous

iteration. The update function in Eq. 1 can be reformulated as

Eq. 2.

xk
v = F({xk

u1
|u1 ∈ IN(v), p(u1) < p(v)}

∪{xk−1
u2

|u2 ∈ IN(v), p(u2) > p(v)}). (2)

In the k-th round of the Eq. 2, u1 with ordinal numbers smaller

than v are updated, while u2 with ordinal numbers larger than

v remain unchanged. The vertex state update examples for

PageRank and SSSP can also be modified accordingly:

PageRank: xk
v =

∑

u1∈IN(v),p(u1)<p(v)

xk
u1

· d/OUT (u1) +

∑

u2∈IN(v),p(u2)>p(v)

xk−1
u2

· d/OUT (u2),

s.t., d is the damping factor

SSSP: xk
v = min{xk−1

v , xk
u1

+ d(u, v), xk−1
u2

+ d(u, v)|
u1, u2 ∈ IN(v), p(u1) < p(v), p(u2) > p(v)},

s.t., d(u, v) is the distance between u and v;
u1 is processed before v and u2 is after v.

In practice, the vertex update method in Eq. 2 has been

applied in many fields, such as Gauss-Seidel iteration [17] in

linear algebra, Adsorption [18], Katz metric [19], SimRank

[20], Belief propagation [21] and so on [22], [23].

2451

Authorized licensed use limited to: Northeastern University. Downloaded on April 06,2025 at 07:05:49 UTC from IEEE Xplore. Restrictions apply.

III. PROBLEM STATEMENT

Before introducing the vertex reordering method, we first

clarify the properties that function F(·) required to have.

Next, we formally define the vertex reordering problem and

introduce a metric function designed to assess the efficiency of

processing order in accelerating iterative computation. Finally,

we propose the objective function of our paper based on the

metric function.

In fact, if utilizing the updated state of neighbors to acceler-

ate the iterative algorithm, the vertex states change monoton-

ically increasing or decreasing, i.e., the update function F(·)
should be a monotonically increasing function.

Monotonic. In iterative computation, considering a monoton-

ically increasing function F(·), the vertex states progressively

decrease (or increase), moving closer to a convergent state.

During the update of each vertex, its state value diminishes

(or grows), advancing towards convergence, especially when

the state value of its neighbors is smaller (or larger). Then,

we have the following inequality

x̌v = F(xu1 , · · · x̌ui , · · ·xu|IN(v)|)

≤ x̂v = F(xu1
, · · · x̂ui

, · · ·xu|IN(v)|)

if x̌ui
≤ x̂ui

(3)

where {u1, · · ·ui, · · ·uIN(v)} is the set of v’s incoming neigh-

bors, x̌v, x̌ui and x̂v, x̂ui are two state values of v and ui

respectively.

There is a broad range of iterative algorithms with mono-

tonic vertex update functions, including SSSP , Connected

Components (CC) [24], Single-Source Weighted Shortest Path

(SSWP) [25], PageRank, Penalized Hitting Probability (PHP)

[26], Adsorption [27], and more. Monotonic property provides

a wider optimization space for iterative computation and has

been emphasized in many graph analysis works [14], [22],

[28], [29]. We also organize our vertex reordering method

according to the monotonic function F(·). The subsequent

lemma is derived directly from the monotonicity of F(·).
Lemma 1. Given the monotonically increasing function F(·)
of an iterative algorithm, x̌v = F(xu1

, · · · x̌ui
, · · ·xu|IN(v)|)

and x̂v = F(xu1 , · · · x̂ui , · · ·xu|IN(v)|) are two state values of
v, where {u1, · · ·ui, · · ·u|IN(v)|} are the incoming neighbor
of v, x̌ui

and x̂ui
are two state values of i-th incoming

neighbors of v, x∗v and x∗ui
are the converged states of v and

ui respectively. Then we have

|x∗v − x̌v| ≤ |x∗v − x̂v| if |x∗ui
− x̌ui | ≤ |x∗ui

− x̂ui | (4)

Proof. There are two cases in the proof, 1) the vertex state

continues to increase, and 2) the vertex state continues to

decrease.

When the state values of the vertices continue increas-

ing during the iterative computation, we have x∗ui
≥

max{x̌ui
, x̂ui

} and x∗v ≥ max{x̌v, x̂v}. Since |x∗ui
− x̌ui

| ≤
|x∗ui

− x̂ui |, then we have x̌ui ≥ x̂ui . According to inequation

3, we have x̌v ≥ x̂v . It means that x̌v is closer to the converged

state, i.e., |x∗v − x̌v| ≤ |x∗v − x̂v|.

Similarly, when the state values of the vertices continue

decreasing during the iterative computation, we have x∗ui
≤

min{x̌ui
, x̂ui} and x∗v ≤ min{x̌v, x̂v}. Since |x∗ui

− x̌ui | ≤
|x∗ui

− x̂ui |, then we have x̌ui
≤ x̂ui

. According to inequation

3, we have x̌v ≤ x̂v . It means that x̌v is closer to the converged

state, i.e., |x∗v − x̌v| ≤ |x∗v − x̂v|.
Based on the above lemma, we propose the following

theorem to explain why using the updated state of incom-

ing neighbors from the current iteration accelerates iterative

computation.

Theorem 1. Given the graph G, monotonically increasing
update function F(·) and two processing orders O1

V =
[a, · · · v, u, · · · z], O2

V = [a, · · ·u, v, · · · z]. There is an edge
(u, v) and no edge (v, u) in G. The difference between O1

V

and O2
V is the ordinal number of u and v, i.e., p(u) > p(v)

in O1
V and p(u) < p(v) in O2

V , which results in O2
V having

one more positive edge than O1
V . Then, we have

x̂k
v = FO1

V
(xk−1

u , · · ·)
x̌k
v = FO2

V
(xk

u, · · ·)
and |x∗v − x̂k

v | ≥ |x∗v − x̌k
v | (5)

where x∗v is the converged state of v, x̌k
v and x̂k

v are the state
values of v after k-th iteration resulted from O1

V and O2
V

respectively.

Proof. There is an edge (u, v) and no edge (v, u) in G.

Therefore, compared with O1
V , in O2

V , the ordinal number of

v is larger than u and u has been updated before updating v.

Thus when updating v, we can use the updated state of u from

the current iteration, i.e., x̂k
v = FO1

V
(xk

u, · · ·). While in O1
V ,

we have to use the state of u from the previous iteration, i.e.,

x̌k
v = FO2

V
(xk−1

u , · · ·).
Since F(·) is a monotonically increasing function, the states

of the vertices gradually progress toward the convergence

states. The state of updated u is closer to converged state,

i.e., |x∗u − xk−1
v | ≥ |x∗u − xk

v |. According to the Lemma 1, we

have |x∗v − x̂k
v | ≥ |x∗v − x̌k

v |.
The theorem presented above highlights that leveraging

the updated state of incoming neighbors from the current

iteration accelerates iterative computation. The more updated

incoming neighbors are involved, corresponding to a higher

count of positive edges, results in a faster convergence of the

vertex. This implies that the speed of vertex convergence is

intricately linked to the order in which vertices are processed.

Consequently, the promotion of iterative computation can be

achieved through the adoption of an efficient processing order,

ultimately reducing the required number of iteration rounds.

In summary, the problem addressed in this paper can be

formulated as follows.

Problem Formulation. Find an optimal graph processing order,

denoted as OV = R(G), that can minimize the number of

iteration rounds k required by the iterative algorithm when

performing F(·) with OV , i.e.,

OV = argmin
k

(|X∗
V � (

Xk
V = Fk

R(G)(X
0
V)

)| ≤ ε). (6)

2452

Authorized licensed use limited to: Northeastern University. Downloaded on April 06,2025 at 07:05:49 UTC from IEEE Xplore. Restrictions apply.

where X∗
V = {x∗v|v ∈ V } is the state value set of converged

vertex, Xk
V = Fk

R(G)(X
0
V) is the set of vertex states after

k iterations using function F(·) with OV = R(G) as the

processing order, R(G) is the graph reordering function that

can return a permutation of vertices, ε ≥ 0 is the maximum

tolerable difference between the vertex convergence state and

the real state, � computes the difference between X∗
V and

Xk
V . In general, there are two implementations of |X∗

V �Xk
V |,

i) max(|x∗v −xk
v |, v ∈ V), e.g., in SSSP, ii)

∑
v∈V (|x∗v −xk

v |),
e.g., in PageRank.

However, before iterative computation, it is impossible to

know the number of iterations for a given processing order

OV . Thus, we are not able to know which processing order

OV returned by R(G) is optimal. Therefore, it is required

to design another metric to measure the quality of processing

orders.
As observed in Section I and supported by Theorem 1, the

processing of each vertex shows that more updated incoming

neighbors corresponds to fewer iteration rounds and shorter

runtime in iterative computation. Based on this insight and

intuition, we propose the following measure function.

Metric Function. Given a graph processing order OV , we use

the following measure function to measure the efficiency of

processing order OV in accelerating iterative computation.

M(OV) =
∑
v∈V

∑
u∈IN(v)

χ(u, v) =
∑

(u,v)∈E
χ(u, v)

where

χ(u, v) =

{
1 if p(u) < p(v),

0 if p(u) > p(v).

(7)

It can be seen that M(OV) counts the sum of incoming

neighbors with smaller ordinal numbers for each vertex. In

other words, the value of M(OV) is the number of edges

where the source vertex has a smaller ordinal number than

the destination vertex, indicating positive edges. The func-

tion M(OV) achieves its maximum value when all vertices’

incoming neighbors are in front of them, i.e., the incoming

neighbors have smaller ordinal numbers. In this scenario, as

all incoming neighbors are positioned in front of each vertex,

updating each vertex ensures that its incoming neighbors

have been updated and are closer to the convergence state.

Leveraging the updated state of incoming neighbors propels

the vertex closer to convergence, thereby accelerating the

iterative computation.
Based on the measure function, we propose the following

objective function.

Objective Function. Since the value of M(·) serves as a metric

to measure the efficiency of processing order in accelerating

iterative computation, the objective of this paper is to identify

the optimal graph processing reorder, denoted as OV = R(G),
that maximizes the M(·) value.

OV = argmax
R(G)

M(R(G)), (8)

where R(G) returns a permutation of vertices in V .

NP-hard & NP-approximate. Derived from the objective func-

tion, our goal can be seen as identifying an optimal processing

order that maximizes the number of positive edges. This is

similar to the topological sort. The topological ordering of a

directed graph is a linear ordering of its vertices such that

for every directed edge (u, v) from vertex u to vertex v, u
comes before v in the ordering. Therefore, if the graph is a

directed acyclic graph, then we can use the topological sorting

algorithm [30] to reorder the vertices. In this case, M(R(G))
will achieve the maximum value |E|.

A more viable approach involves first generating a directed

acyclic subgraph from the cyclic graph by selectively removing

edges, followed by the application of the topological sorting

algorithm. Since the primary objective of reordering is to

enhance the number of positive edges, preserving as many

edges as possible in the generated directed acyclic subgraph

is crucial. This problem is known as the Maximum Acyclic

Subgraph (MAS) problem, and it has been demonstrated to be

both NP-hard and NP-approximate [31]–[33]. Consequently,

maximizing the value of M(R(G)) is inherently an NP-hard

and NP-approximate problem.

In theory, [32] has proven that the lower bound of the

number of edges that can be preserved in acyclic subgraphs

is |E|/2. However, in practice, there have been many works

[32], [34]–[37] that have demonstrated the ability to identify

larger directed acyclic subgraphs. Specifically, [38]–[40] de-

rive a directed acyclic subgraph by deleting vertices or edges

from Conditional Preference Networks, and [37] identifies

the maximum acyclic subgraph based on matrix. Despite

these achievements, these methods are not suitable for our

problem. They are either designed for specific scenarios or

are impractical for large-scale graph data.

On the other hand, even if the maximum acyclic subgraph

is obtained and topological sorting is employed to derive

the processing order that maximizes M(R(G)), conventional

topological sorting algorithms may overlook the neighbor

relationships between vertices. This oversight can result in

two connected vertices being positioned far apart from each

other in the processing order. During iterative computation,

frequent access to the neighbors of each vertex is common.

The CPU cache hit ratio tends to decrease when a vertex

is situated far away from its neighbors [41], which reduces

computational efficiency. To overcome the above problems, in

this paper, we introduce an efficient graph reordering method

called GoGraph.

IV. REORDERING METHOD

In this section, we introduce the vertex reordering algorithm,

GoGraph, an efficient and effective vertex reordering method.

A. GoGraph

Due to the complex links between vertices in the graph, the

change in the ordinal number of a vertex may result in some

changes in edges, i.e., some positive edges become negative

and some negative edges become positive, which result in an

unpredictable M(·). Therefore, it is difficult to reorder the

2453

Authorized licensed use limited to: Northeastern University. Downloaded on April 06,2025 at 07:05:49 UTC from IEEE Xplore. Restrictions apply.

d
ec

a

h f g

b

(a) The initial graph.

d
ec

a

h f g

b

(b) Extract high-degree vertices.

d
e

f g

G1

G2

(c) Divide the remaining
vertices

OV1
=[d, e] OV2

=[g, f]

(d) Reordering vertices intra-
subgraphs.

[[d, e], [g, f]] OV = [d, e, g, f]

(e) Reordering vertices inter-
subgraphs.

a b

[d, e, g, f]

ch

[a, d, e, g, f, b] [h, a, d, e, g, f, c, b]

(f) Inserting high-degreed/isolated vertices into the processing order.

Fig. 3: An illustrative example of GoGraph

vertex from the perspective of the whole graph. In GoGraph,

we adopt a divide-and-conquer method for vertex reordering.

The method initially extracts the high-degree vertices from

the graph, then divides the graph into subgraphs and reorders

the vertices within and between these subgraphs, yielding the

complete vertex processing order.

The overview of GoGraph is illustrated in Fig. 3. It

comprises following steps, 1) extract high-degree & isolated
vertices, 2) divide other vertices, 3) reorder vertices within
subgraphs, 4) reorder subgraphs and 5) insert high-degree &
isolated vertices.

Next, we will introduce the intuitions and details of each

step.

Extract high-degree vertices. It is widely acknowledged that

most real-world graphs exhibit a power-law property, where

a very small number of vertices have extremely high de-

grees, while the majority of vertices have lower degrees. This

property poses a challenge for the vertex reordering process.

In the process of reordering, the placement of high-degree

vertices in the reordering subsequence significantly influences

the positioning decisions of numerous lower-order vertices.

Thus we first remove the high-degree vertice VHD and their

edges EHD from the graph.

We take Fig. 3a as an example to illustrate this point.

If the high-degree vertices are not removed, we may first

reorder a and b and assign a higher ordinal number to a
than b to make edge (b, a) positive. Consequently, we obtain

a temporary processing order [b, a]. Then we insert other

vertices into [b, a]. In order to achieve the optimal vertex

processing order, when inserting each vertex, we try to maxi-

mize M(·) value. Ultimately, the optimal vertex processing

order is O1
V = [d, e, c, b, h, a, g, f]. On the contrary, after

removing a and b, we first reorder d, e, f , and g, where h
and c become isolated and also be removed. It is evident that

the optimal processing order is [d, e, g, f]. Finally, we insert

a, b and c, h into [d, e, g, f] and obtain the processing order

O2
V = [h, a, c, d, e, g, f, b]. The M(·) values of these two

orders are M(O1
V) = 10 and M(O2

V) = 14. Based on the

previous definition of M(·), O2
V is a better processing order.

Although the edge (b, a) is sacrificed in O2
V due to a’s higher

ordinal number than b, it brings more positive edges.

It is notable that after removing the high-degree vertices

and their edges from the graph, there will appear some isolated

vertices that have no edges with other vertices. As illustrated in

Fig. 3b, vertex c and h become isolated vertices after removing

a, b since they only connect with a and b. Since isolated

vertices have no edges connecting them to other vertices, they

do not influence the reordering of other vertices. Therefore,

we eliminate isolated vertices, denoted as VI .

Divide other vertices. Due to the complex interconnection be-

tween vertices, although the complexity of the graph structure

is reduced after removing high-degree vertices and isolated

vertices, it is still difficult to reorder vertices from the per-

spective of the whole graph. Therefore, to simplify reordering,

we divide the remaining graph into smaller subgraphs. Then

design the reordering method considering both intra- and inter-

subgraphs perspectives. The graph dividing result requires that

there are as many edges within the subgraph as possible and

as few edges between the subgraphs as possible. The reason

is explained as follows.

Firstly, when reordering vertices within a subgraph, if there

are few edges between vertices intra-subgraph and many edges

between vertices inter-subgraph, the better local reordering

results may not bring a better global reordering result. Instead,

the result of global reordering is determined by the reordering

result of vertices between subgraphs.

Secondly, [41] points out that the locality of vertices in the

processing order has a great impact on CPU cache perfor-

mance. In most graph algorithms, accessing a vertex often ne-

cessitates accessing its neighbors. For example, in PageRank,

updating a vertex requires accessing the states of its incoming

neighbors. Sequential accesses to the neighbor states of ver-

tices stored in more distant locations in physical memory may

result in serious cache misses. Therefore, vertices connecting

each other should be as close as possible in the processing

order. Thus, we should group the vertices that are closely

connected into the same subgraphs.

Therefore, when dividing the graph, there should be as many

edges as possible within the subgraph and as few edges as

possible between subgraphs. This is similar to the purpose of

graph community detection or graph partitioning in distributed

computing, so we can employ these methods such as Louvain

[42] or Metis [43]. Finally, we obtain a set of subgraphs of

the graph {G1, · · · , GK}, where Gi = {Vi, Ei}.

Reorder vertices within subgraphs. After dividing the graph,

2454

Authorized licensed use limited to: Northeastern University. Downloaded on April 06,2025 at 07:05:49 UTC from IEEE Xplore. Restrictions apply.

we first reorder the vertices inside each subgraph Gi. To

begin, we can randomly select a vertex as the initial vertex

of the processing order OVi formed by the vertices Vi in the

subgraph. In practice, the initial vertex always has the smallest

in-degree, since such vertex tends to rank at the front of the

processing order. We then select a vertex from the remaining

vertices to insert into the processing order. We prefer selecting

the vertex v with BFS, so that v has better locality with the

vertices in Oc
Vi

.

For each selected vertex v, we search the optimal insertion

position from the tail to the head of Oc
Vi

that maximizes the

M(R(Gi)) value based on the position of the vertices that

are in Oc
Vi

. Intuitively, the essence of inserting vertices is to

maximize the number of positive edges. It is worth mentioning

that the overhead of such sequential attempts is not substantial,

since we only need to search at locations near v’s neighbors in

Oc
Vi

(the details will be discussed in implementation, Section

IV-C)

Reorder subgraphs. Next, we reorder the subgraphs to merge

the order of vertices within subgraphs into a whole processing

order. To make the vertices in the same subgraph continuous

in the processing order, we treat the entire subgraph as a

super vertex, which brings vertices within the same subgraph

physically closer in memory, thereby reducing CPU cache

misses. There will be edges between two super vertexes if

there are edges between vertices in these two subgraphs, as

shown in Fig. 3c, there is an edge between G0 and G1

since there is an edge (e, g). Then we reorder the super

vertices formed by subgraphs using a similar method that

reorders vertices within subgraphs. The difference is that there

is a weight value on the edge between subgraphs, which

is defined as the number of edges from one subgraph to

another one, i.e., wGi,Gj
= |{(u, v)|u ∈ Gi, v ∈ Gj}|.

Then the objective function of ordering super vertices becomes

M(OP) =
∑

Gi,Gj∈P χc(Gi, Gj), where χc(Gi, Gj) =
wGi,Gj

if p(Gi) < p(Gj), else χc(Gi, Gj) = 0, where p(Gi)
returns the ordinal number of super vertex formed by Gi.

After reordering subgraphs, the processing order of G′ will

be obtained by decompressing the super vertices formed by

subgraphs.

Insert high-degree & isolated vertices. So far, we have re-

ordered all vertices except for those with high degrees and

isolated vertices. Since isolated vertices do not have connected

edges with the vertices presently in the processing order,

we prioritize inserting vertices with high degrees into the

processing order, followed by the insertion of isolated vertices.

We search for the optimal position to insert v from front to

back, maximizing the increase in the M(·) value. The insertion

method is similar to the approach used when reordering

vertices within a subgraph. For isolated vertices, we employ

the same method as inserting high-degree vertices into the

existing processing order.

Next, we analyze the effectiveness and efficiency of Go-

Graph theoretically.

vv

Oc = [h, …, p, …, q, …, u, …, t]

Fig. 4: Example of positive and negative edges when vertex

v is inserted into the head or tail of Oc, where red dashed

lines represent positive edges and blue dashed lines represent

negative edges

B. Effectiveness

Randomly, the probability of each edge being positive edge

is 1/2, and the M(R(G)) is |E|/2. According to the following

analysis, it can be seen that the M(R(G)) value of the

processing order obtained by GoGraph is no smaller than

|E|/2, which is no worse than a random processing order.

Before the theoretical analysis, we first propose the follow-

ing theorem.

Lemma 2. Given a current processing order Oc, and a
candidate vertex v to be inserted into Oc, after inserting v into
the Oc using GoGraph, the value of M(Oc) will increase by
at least |Ec

v|/2, where |Ec
v| is the number of edges connecting

v and vertices in Oc.

Proof. There are two situations after v is inserted into Oc, i)

v is inserted into the head or tail of Oc, and ii) v is inserted

into another position of Oc.

We denote the neighbors of v that are in Oc are N c
v =

{IN(v) ∪OUT (v)} ∩Oc, then the edges between v and N c
v

are Ec
v , i.e.|N c

v | = |Ec
v|.

For the first case, when v is inserted into the head (tail)

of Oc, outgoing edges (incoming edges) of v in Ec
v are

positive edges since v’s ordinal number is smaller (larger) than

its outgoing neighbors. Then, the incoming edges (outgoing

edges) are negative. Thus, when v is inserted into head or tail

of Oc, there are max(|{N c
v ∩ IN(v)}|, |{N c

v ∩ OUT (v)}|)
edges are positive edges, where N c

v∩IN(v) and N c
v∩OUT (v)

are incoming neighbor and outgoing neighbors of v in Oc

respectively. As we all know max(|{N c
v ∩ IN(v)}|, |{N c

v ∩
OUT (v)}|) ≥ (|{Nc

v ∩ IN(v)}| + |{N c
v ∩ OUT (v)}|)/2 =

|N c
v |/2. Therefore, the number of positive edges is no smaller

than |Ec
v|/2.

For the second case, v is inserted into another position that

maximizes the M(·) value. It means that we find a better

inserting position that makes the number of positive edges

larger than inserting into the tail or head. Then the number of

positive edges is larger than |Ec
v|/2.

In summary, after inserting v into Oc, at least |Ec
v|/2 edges

are positive edges.

For the example in Fig. 4, (v, p), (q, v), (v, u) are edges of v
that connect v and vertices in Oc. If v is inserted into the head

of Oc, v’s outgoing edges {(v, p), (v, u)} are positive edges

while incoming edge (q, v) is a negative edge. If v is inserted

2455

Authorized licensed use limited to: Northeastern University. Downloaded on April 06,2025 at 07:05:49 UTC from IEEE Xplore. Restrictions apply.

into the tail, then (q, v) becomes a positive edge, while (v, p)
and (v, u) become negative edges.

Based on the lemma, we have the following theorem.

Theorem 2. After reordering vertices in graph G(V,E), we
obtain the processing order OV . Then we have

M(OV) ≥ |E|/2 (9)

Proof. During the reordering process, there are 4 types of

edges, 1) the edges within each subgraph EVi , 2) the edges

between subgraphs EP , 3) the edges between high-degree

vertices and the vertices in subgraphs EHD, 4) the edges

between isolated vertices and high-degree vertices EISO, i.e.,

E =
⋃N

i=1 EVi
∪ EP ∪ EHD ∪ EISO.

In each subgraph, when inserting each vertex v, |Ec
v| only

contains the edges connecting v and the vertices in the current

local processing order Oc
Vi

, not the edges connecting v and

other vertices. Therefore, for each edge (u, v) ∈ Ei, (u, v) ∈
Ec

u if v is inserted into Oc
Vi

before u otherwise (u, v) ∈ Ec
v .

Thus we have EVi
=

⋃
v∈Vi

N c
v . According to Lemma 2, we

have M(OVi) ≥
∑

v∈Vi
|Ec

v|/2 = |Ei|/2.

Similarly, for the other 3 types of edges, the number of

positive edges between subgraphs is at least |EP |/2, the

number of positive edges between high-degree vertices and

the vertices in subgraphs is at least |EHD|/2, the number

of positive edges between isolated vertices and high-degree

vertices is at least |EISO|/2.

Finally, we have the number of positive edges is at least∑N
i=1 |Ei|/2 + |EP |/2 + EHD/2 + |EISO|/2 = |E|/2, i.e.,

M(OV) ≥ |E|/2.

C. Implementation

GoGraph adopts a divide-and-conquer idea, and a sketch of

its implementation is shown in Algorithm 1.

In terms of the core idea of GoGraph, the essence lies in

finding an optimal position of the processing order for vertex

v that maximizes M(·), then inserting the candidate v into

this position. However, before obtaining the global processing

order, it is impractical to obtain the real ordinal number of

each vertex, because with the vertex insertion, the real ordinal

number value of the vertex will continue to change. Therefore,

we use val to represent the ordinal number (line 1). The

larger the val, the larger the oral number of the vertex in the

processing order. Finally, we sort vertices according to val
to derive the real processing order and the ordinal number of

each vertex (line 36).

Before computing the val of vertices, we first extract the

high-degree vertices (line 2). As a rule of thumb, we simply

extract the top 0.2% vertices with the highest degree. Then

we divide the graph (line 3) with the exiting graph partitioning

method, such as Rabbit-Partition [44], Metis [43], and Louvain

[42]. In our implementation, we use the graph partitioning

method introduced in Rabbit. We proceed to compute the val
of each vertex within Gi (line 4-8). It is notable that the vertex

val is a local value within Gi. After computing the local vertex

val, we treat each subgraph as a super-vertex (line 9-11), the

Algorithm 1: GoGraph Algorithm Sketch

Input: Graph G(V,E)
Output: Vertex processing order OV

1 Init v.val of each v with ∞; // val represents the
value of the ordinal number

// ***Divide phase***
2 Extract high-degree vertices, isolated vertices and their

edges GHD, GISO from G, the remain vertices and

edges form subgraph G′;
3 Divided graph G′ into K subgraphs {G1, · · · , GK}

with graph partitioning or clustering method;

// ***Conquer phase***
4 for each subgraph Gi(Vi, Ei) do
5 OVi ← ∅; // init the processing order of Gi

6 for each vertex v in Vi do
7 v.val ←GetOptVal(OVi

, v)
8 OVi

.add(v);

// ***Combine phase: reorder subgraphs***
9 for each subgraph Gi do

10 create super vertex svi with Vi;

11 svi.val ← ∞; // sv.val represents the value of
the ordinal number of sv

12 for each svi do
13 for each svj do

// compute the weight of edge
14 w(svi, svj) ← |{(u, v)|u ∈ Gi, v ∈ Gj}|
15 Construct a graph Gsv with vertices set

{svi|1 < i ≤ K} and edges set

{(svi, svj)|1 ≤ i ≤ K, 1 ≤ j ≤ K};

16 OS ← ∅;// init the processing order of Gsv

17 for each super vertex sv do
18 sv.val ←GetOptVal(OS , sv)
19 OS .add(sv);

20 OV ← ∅; // init the processing reorder of G
// ***decompose super vertices, update val***

21 Sort OS in the ascending order of vs.val;
22 mvalpre ← 0;

23 for each super vertex sv ∈ OS [i] do
24 mvalcur ← 0;

25 for each vertex v in sv do
26 v.val ← v.val +mvalpre;

27 mvalcur ← max(mvalcur, v.val);
28 OV .add(v);

29 mvalpre = mvalcur;

// ***reorder high-degree & isolated vertices***
30 for each vertex v in VHD do
31 v.val ← GetOptVal(OV , v);

32 OV .add(v);

33 for each vertex v in VISO do
34 v.val ← GetOptVal(OV , v);

35 OV .add(v);

36 Sort OV in the ascending order of v.val;// obtain
the final processing order

2456

Authorized licensed use limited to: Northeastern University. Downloaded on April 06,2025 at 07:05:49 UTC from IEEE Xplore. Restrictions apply.

1 function GetOptVal(order O, vertex v)
2 Nv ← {IN(v) ∪OUT (v)} ∩O;

3 Sort Nv in the ascending order of v.val;
4 pev = |OUT (v) ∩O|; // init the number of

positive edges
5 val ← 0; // init the val
6 maxpev ← −∞; // the max number of postive

edges
7 for each vertex Nv[i] in Nv do
8 if Nv[i] ∈ OUT (v) then
9 if v is super vertex then

10 pev ← pev − w(v,Nv[i]);
11 else
12 pev ← pev − 1;

13 else
14 if v is super vertex then
15 pev ← pev + w(v,Nv[i]);
16 else
17 pev ← pev + 1;

18 if maxpev < pev then
19 maxpev ← pev;

20 val ← (Nv[i].val +Nv[i+ 1].val)/2;

// insert v between Nv[i] and
Nv[i+ 1]

21 return val;

edges between super-vertices have weights that are equal to

the number of edges between the subgraphs (line 14). Then

we compute the val of each super vertex (line 17-19). After

that, we sort the subgraphs ascending with val of the super

vertex (line 21). Then, we unzip the super vertices and obtain

the global val of each vertex in G′, which is done by adding

the maximum val of vertices in the previous subgraph to the

val of each vertex for Gi (line 22-29).

The val is computed by finding the current optimal position

in the current processing order, and taking the average of

the val of the predecessor and successor to indicate a value

in between. During the search for the optimal position, it

is unnecessary to recompute the value of M(·) for every

potential insertion position of vertex v. This is due to the fact

that for a vertex not connected to v, the count of positive

and negative edges remains unchanged when v is inserted in

front of or behind it. Consequently, the value of M(·) also

remains unchanged. As shown in Fig. 4, inserting v into the

front or behind of h, the value of M(Oc) remains unchanged

since (v, p) and (v, u) are always positive. Therefore, to find

the best position in the current order, it is enough to count

the number of positive edges pev when v is inserted into the

front or behind each neighbor, which can be implemented as

follows (shown in GetOptVal function).

Firstly, we extract v’s neighbors that are in the processing

order and form a neighbor sequence (line 2), then we sort the

neighbors of vertex v in ascending order according to their

val and form a sorted neighbor sequence (line 3). Then, we

traverse each position in the neighbor sequence from the head

or tail to find the optimal position one by one, and update

the number of positive edges pev incrementally (lines 7-20),

instead of recounting. If v is inserted into the head of the

neighbor sequence, the initial value of pev = |OUT (v)| ∩OV

(line 4). After moving the v to the back of the next neighbor,

pev is updated. If the next neighbor is incoming neighbor,

then pev = pev+1 (lines 8-12). Otherwise, the pev = pev−1
(lines 13-17). Note that if v is a super vertex, then the update

granularity of pev is the weight of connected edges (line

10 and line 15). When v moves to the tail of the neighbor

sequence, the value of pev = |IN(v)| ∩OV . For the example

in Fig. 4, we assume there is a neighbor sequence [p, q, u].
With v as the head, initially the pev = 2. After moving v
behind p, pev = 2 − 1 = 1, since p is an outgoing neighbor.

After v moves behind q, pev = 1 + 1 = 2, since q is an

incoming neighbor. Once the optimal position is determined,

we compute the val of v with its predecessor and successor

(line 20).

V. EXPERIMENTS

A. Experimental Setup

In default, the experiments are performed on a Linux server

with Intel Xeon Gold 6248R 3.00GHz CPU, 98 GB memory,

and it runs on 64-bit Ubuntu 22.04 with compiler GCC 7.5.

Graph Workloads. We use four typical graph analysis algo-

rithms in our experiments, including PageRank [1], Single

Source Shortest Path (SSSP), Breadth First Search (BFS), and

Penalized Hitting Probability (PHP) [45]. When the difference

between vertex state value in two consecutive iterations is

less than 10−6, PageRank and PHP are considered to have

achieved convergence. For SSSP and BFS, the algorithms are

considered to have reached convergence when all vertex states

are no longer changing.

TABLE I: Datasets

Dataset Vertices Edges Abbreviation

Indochina [16] 11,358 49,138 IC

SK-2005 [16] 121,422 36,7579 SK

Google [46] 875,713 5,241,298 GL

Wiki-2009 [16] 1,864,433 4,652,358 WK

Cit-Patents [47] 3,774,768 18,204,371 CP

LiveJournal [16] 4,033,137 27,972,078 LJ

Datasets. Six real-world datasets are used in our experiments,

including indochina-2004 [16], sk-2005 [16], Google [46],

wikipedia-2009 [16], cit-Patents [47] and soc-livejournal [16].

The details of each dataset are outlined in Table I.

Competitors. We compare GoGraph with the 6 graph ordering

methods listed, Default, Degree Sorting, Hub Sorting [48],

Hub Clustering [49], Rabbit [44], and Gorder [41]. The default

order employs the original IDs as the processing order.

2457

Authorized licensed use limited to: Northeastern University. Downloaded on April 06,2025 at 07:05:49 UTC from IEEE Xplore. Restrictions apply.

������ ������ ��	��� ��	
����� ��		� ����� �����

���
���
���
���
���
���
���
���
���

�� �� �� �� �� ��

	

�
�
�
��
��
��
�
�

(a) PageRank

���
���
���
���
���
���
���
���
���

�� �� �� �� �� ��

	

�
�
�
��
��
��
�
�

(b) SSSP

���
���
���
���
���
���
���
���
���

�� �� �� �� �� ��

	

�
�
�
��
��
��
�
�

(c) BFS

���
���
���
���
���
���
���
���
���

�� �� �� �� �� ��

	

�
�
�
��
��
��
�
�

(d) PHP
Fig. 5: The comparison of runtime

������ ������ ��	��� ��	
����� ��		� ����� �����

���
���
���
���
���
���
���
���

�� �� �� �� �� ��

	
��
�
�
��
��
�
��
��
�

(a) PageRank

�	�
�	

�	�
�	�
�	
�	�
�	

�	�

�� �� �� �� �� ��

�
��
�
��
��
��
�
��
��
�

(b) SSSP

�	�
�	

�	�
�	�
�	
�	�
�	

�	�

�� �� �� �� �� ��

�
��
�
��
��
��
�
��
��
�

(c) BFS

�	�
�	

�	�
�	�
�	
�	�
�	

�	�

�� �� �� �� �� ��

�
��
�
��
��
��
�
��
��
�

(d) PHP
Fig. 6: The comparison of iteration rounds

B. Overall Performance

We first compare GoGraph with the competitors in terms of

the runtime and number of iteration rounds for each graph

algorithm executed on graphs in Table I. The Normalized
runtime and iteration rounds results are reported in Fig. 5 and

Fig. 6, respectively, where the result of Default order is treated

as the baseline, i.e., the Default finishes in unit time 1. It can

be seen from Fig. 5, GoGraph outperforms others in all cases.

Specifically, GoGraph achieves 2.10× speedup on average (up

to 3.33× speedup) over Default, 1.66× speedup on average

(up to 2.75× speedup) over Degree Sorting, 1.85× speedup

on average (up to 3.24× speedup) over Hub Sorting, 1.93×

speedup on average (up to 3.34× speedup) over Hub Clus-

tering, 1.80× speedup on average (up to 2.42× speedup) over

Rabbit, and 1.62× speedup on average (up to 2.68× speedup)

over Gorder. On the other hand, in the measurement of the

number of iterative rounds as shown in Fig. 6, GoGraph incurs

the least number of iteration rounds on most tested conditions.

Specifically, GoGraph reduces the number of iteration rounds

on average by 52% (up to 71%) compared with Default, 39%

(up to 65%) compared with Degree Sorting, 40% (up to 70%)

compared with Hub Sorting, 45% (up to 68%) compared with

Hub Clustering, 32% (up to 57%) compared with Rabbit,

and 39% (up to 67%) compared with Gorder. It is worth

noting that GoGraph does not appreciably reduce the number

of iteration rounds in the PageRank result for the GL graph,

demonstrating that the default order of GL graph is naturally a

well-defined processing order. The gain of the corresponding

GoGraph on the GL graph comes from the reduction of cache

miss. Another observation is that Orignal, Degree Sorting, Hub

Sorting, and Hub Clustering exhibit similar trends in runtime

and number of iteration rounds, whereas Rabbit and Gorder

do not. This distinction is because the former focuses on the

effect of vertex processing order, while the latter concentrates

on CPU cache optimization. GoGraph takes both into account

in a comprehensive way.

C. Convergence comparison

To evaluate the effect of GoGraph’s reordering, we com-

pared the convergence rates of GoGraph and its competitors.

Our evaluation consists of running the PageRank and SSSP

algorithms on CP and LJ graphs, both of which use dif-

ferent reordering algorithms. We use the absolute difference

between the sum of vertex state values at convergence and

the sum of all vertex state values at time t to represent

the distance to convergence, mathematically expressed as:

distt =
∣∣∑

v∈V x∗ −∑
v∈V xt

∣∣. Its trend over time is shown

in Fig. 7. We can see that GoGraph achieves convergence

faster in all cases. In achieving the same converged state, the

GoGraph algorithm consumes only 59% of the average time

used by other algorithms (with a minimum requirement of

37%). This efficiency is attributed to the advantages gained in

each iteration of the vertex processing order constructed by

GoGraph.

D. Impact of processing order in improving Async mode

To verify the impact of the asynchronous update mode and

the processing orders on accelerating iterative computation,

we compare the runtime of PageRank and SSSP on different

graphs using synchronous update mode and default processing

order (Sync + Def.), asynchronous update mode and default

processing order (Async + Def.), asynchronous update mode

and the processing order generated by GoGraph (Async +

GoGraph). Fig. 8 shows the normalized results. It is shown

that asynchronous updating mode can accelerate iterative

computation compared with synchronous updating mode. And

GoGraph achieves significant improvements, obtaining 1.56×-

6.30× (3.04× on average) speedups.

E. CPU Cache Miss

To figure out the effect of GoGraph on reducing cache miss,

we ran PageRank algorithm on all graphs and recorded the

cache misses. The results are shown in Fig. 9. Compared to

its competitors, GoGraph can reduce the cache miss by 30%

2458

Authorized licensed use limited to: Northeastern University. Downloaded on April 06,2025 at 07:05:49 UTC from IEEE Xplore. Restrictions apply.

������� ��	
��� ��
��� ��������� ������ ������ �������

�
���
���
���
���
�

���

� 	 �� �� ��
�

�
�
���
��

��
��
��

�������

(a) PageRank on CP

�
���
���
���
���
�

���

� 	 �� �� ��
�

�
�
���
��

��
��
��

�������

(b) PageRank on LJ

�����

�����

�����

�����

�����

� � 	 � ��

��
��
�

��
��
��

��������

(c) SSSP on CP

�������

�������

�������
	������

�������

�
 � �� �� ��

�
�
���
�!

��
!�
��

�������

(d) SSSP on LJ

Fig. 7: The comparison of convergence speed

�#����
��� �$#����
��� �$#�����%�&�'�

���
���
���
��	
��

���
���

� �� �� �� � ��

�
��
�
��
��
�	

�

��
���

�

(a) PageRank

�
��
��
��
��
��
���

�� �� �� �� �� ��

�
��
�
��
��
�	

�

��
���

�

(b) SSSP

Fig. 8: Impact of processing order in improving Async mode

������� ��	
��� ���
��� ����������
������ ������ �������

�

��

��

���

���

��

�� �� �� �� �� ��

�
��
�
�	

�
�

��
��

��
��

�
�

Fig. 9: Cache miss comparison

���������������	
	
��
�� �������

�

��

��

��

���

�� �� �� �� �� ��

�
��
�
��
��
 	

�
�!
"

#
�$
$

Fig. 10: The impact of parti-

tion on cache miss

on average, which means that we incur less I/O overhead

when reading graphs from memory. This is attributed to our

consideration of localization when dividing the graphs.

To evaluate the impact of graph partitioning on reducing

cache misses, we recorded the cache misses of PageRank on

different processing orders obtained by GoGraph with and

without partitioning. The results are depicted in Fig. 10. It

illustrates that the graph partition contributes to reducing 33%

(up to 58%) cache misses.

F. Efficiency of Metric Function

The design of GoGraph revolves around maximizing the

value of M(·), in that the higher the value of M(·), the fewer

the number of iteration rounds. To verify this claim, we record

M(·) values of processing orders of CP graph after applying

different reorder methods and the number of iteration rounds

of various algorithms on these orders. The results are shown

in Table II.

It can be seen that i) the larger the M(·) value of the

processing order is, the fewer iteration rounds the algorithm

requires, which is in line with our claims and expectations.

ii) The M(·) value of processing order produced by GoGraph

is the largest and the number of iteration rounds always are

smallest. It means that the metric function M(·) is effective

TABLE II: Metrics and Iteration Rounds of Various Algo-

rithms After Applying Different Reorder Methods on CP.

Reorder
method

M(·) M(·)
|E|

Number of iteration rounds

PageRank SSSP BFS PHP

Default 1,302,313 0.07 99 25 36 67
HubCluster 2,303,977 0.13 94 20 34 52

DegSort 3,623,082 0.20 77 20 25 48
HubSort 3,691,804 0.20 77 22 26 44
Gorder 5,875,924 0.32 76 19 22 43
Rabbit 8,883,616 0.49 75 20 25 49

GoGraph 13,871,315 0.76 54 14 17 27

for measuring the efficiency of processing order in accelerating

iteration computations.

G. Memory Usage

Our method boosts iterative computation performance by re-

ducing iteration counts without theoretically increasing mem-

ory overhead, compared to the baseline (synchronous update

with default graph order). To evaluate memory overhead,

we examined memory usage in three scenarios: synchronous

update with default order (Sync. + Def.), asynchronous update

with default order (Async. + Def), and asynchronous update

reordered by GoGraph (Async. + GoGraph), shown in Fig. 11.

Memory usage across these methods is similar. GoGraph im-

proves iterative computation efficiency by reordering process-

ing without extra data structures. However, the synchronous

approach slightly increases memory overhead due to recording

vertices’ current and previous states.

�#����
 �� �$#����
 �� �$#�����%�&!'�

�
��
��
��
��
��
���

�� �� �� �� �� ��

�
��
�
�	

�

�
�
��

��
��
!

��
��

(a) PageRank

�
��
��
��
��
��
���

�� �� �� �� �� ��

�
��
�
�	

�

�
�
��

��
��
!

��
��

(b) SSSP

Fig. 11: Memory usage of different iterative computations

H. Average Degrees

To evaluate the impact of average graph degrees on Go-

Graph’s performance, we generated a series of graphs with

different average degrees (2, 4, 6 and 8) using the Barabasi-

Albert model [50] in NetworkX, each with 1,000,000 vertices.

We applied different reordering methods and ran PageRank

2459

Authorized licensed use limited to: Northeastern University. Downloaded on April 06,2025 at 07:05:49 UTC from IEEE Xplore. Restrictions apply.

on these graphs. Fig. 12 shows PageRank’s runtime and

iteration counts across datasets, showing GoGraph’s superior

performance in both aspects with varying average degrees.

������� ����	
� ����	
� ��������
 ������ �	
��
 �	�
���

���

���

���

����

����

����

� � � �

�
�	

��
�

��
�

���������

(a) Runtime

���

����

����

����

����

� � � �

��
��

��
��

��
�

�	
��
��
�

(b) Number of Iteration Rounds

Fig. 12: The impact of different average degrees

Increased average degrees led to longer PageRank runtimes

due to larger graph sizes, though iteration counts stayed

similar. However, reordering methods were less effective on

these synthetic graphs compared to real ones, as the default

order of generated graphs is already more optimal than that

of real graphs, diminishing the enhancements from GoGraph

and others.

I. Partition Methods

In GoGraph, we use the graph partition method introduced

in Rabbit (Rabbit-Partition) by default. To evaluate the effec-

tiveness of various graph partitioning methods in GoGraph,

we employed Metis [43], Louvain [42], and Fennel [51] for

graph partitioning. Fig. 13 presents the normalized runtime and

iteration counts of PageRank on graphs reordered by GoGraph

using these methods, with Rabbit-Partition as the baseline.

���������������� ����� ��(
�� �����

�

���

�

���

�

�� �� �� �� �� ��

�
��
�
��
��
��

��
��
���

��
��

�

(a) Normalized Runtime

 !�

"

"!�

�

�� �� �� �� �� ��

�
	

�
�
��
��
�
	�
��
�

(b) Normalized Rounds

Fig. 13: The impact of different partition methods

The results indicate that different partitioning methods im-

pact the runtime and iteration counts for graph algorithms

on reordered graphs. Rabbit-Partition, Metis, and Louvain

showed similar performance, while Fennel underperformed

due to its stream-based approach, which makes decisions with

partial graph knowledge. Thus, a superior partitioning method

enhances GoGraph’s performance.

VI. RELATED WORK

Optimizations on synchronous iteration. There have been

efforts to accelerate iterative computing by exploring asyn-

chronous computing modes. Priter [52] and Maiter [14] pref-

erentially select vertices in each iteration, aiming to expedite

algorithm convergence by performing iterative computations

on specific vertices instead of all vertices., thereby trying

to avoid some inefficient computation. However, this method

requires user-defined vertex selection strategies, which is not

a trivial work. FBSGraph [53] employs a forward and back-

ward sweeping execution framework for vertex processing,

addressing the issue of slow propagation of vertex states when

their outgoing neighbors precede them in the processing order.

PathGraph [54] further optimizes the path of vertex state

propagation, enhancing the efficiency of state propagation.

GoGraph tries to maximize the advantages of asynchronous

computations by rearranging graph processing order based

on revealing the reason why asynchronous updating mode

accelerates iterative computations.

Graph reordering. Vertex reordering has been a focal point in

graph data preprocessing to enhance memory access efficiency

through increased vertex locality. To improve the temporal and

spatial locality, Gorder [41] uses a slide window to compute

the score between the ordered vertices and the unordered ver-

tices. The larger the score, the more frequently the unordered

vertices will be accessed after the ordered vertices, from which

an ordering algorithm can be deduced. Rabbit [44] maps

the more frequently accessed vertices close to the L1 cache,

thus reducing the overhead of swapping cache lines. Hub

Clustering [49] assigns a contiguous range of subscripts to hub

vertices whose degrees are larger than the average degree at the

front of the graph data array. Since the neighbors of the high-

degree vertices are likely to overlap, storing them together

in memory decreases the frequency of cache line swapping.

Hub Sorting (also known as frequency based clustering) [48]

is a lightweight reordering method that extracts hub vertices,

arranges them in descending order, and then swaps them with

the vertices with continuous subscripts at the front of the

data array. Thus, the subscripts of non-hub vertices can be

preserved as much as possible in order to reduce the cost of re-

ordering operations and improve the locality of the power law

graph. They reorder vertices to enhance graph locality, boost

cache hit rates, and speed up iterations. GoGraph optimizes

vertex processing order, allowing more vertices to refresh their

states using neighbors’ latest states within the same iteration.

VII. CONCLUSION

In this paper, we propose GoGraph, a graph reordering

algorithm that establishes a well-formed graph processing

order, resulting in a reduction of the number of iteration

rounds and acceleration of iterative computation. Specifically,

we introduce a metric to evaluate the quality of the processing

order, based on the count of positive edges. GoGraph employs

a divide-and-conquer strategy to optimize this metric, with

experimental results validating its effectiveness in reorganizing

the vertex processing order.

ACKNOWLEDGMENT

This work is supported by The National Key R&D Pro-

gram of China (2018YFB1003400), The National Natural Sci-

ence Foundation of China (U2241212, 62072082, 62202088,

62072083, and 62372097), Joint Funds of Natural Science

Foundation of Liaoning Province (2023-MSBA-078), Re-

search Grants Council of Hong Kong, China, No.14205520,

and Fundamental Research Funds for the Central Universities

(N2216012 and N232405-17).

2460

Authorized licensed use limited to: Northeastern University. Downloaded on April 06,2025 at 07:05:49 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] L. Page, S. Brin, R. Motwani, and T. Winograd, “The pagerank citation
ranking: Bringing order to the web,” Stanford InfoLab, Tech. Rep., 1999.

[2] Y. Low, J. Gonzalez, A. Kyrola, D. Bickson, C. Guestrin, and J. M.
Hellerstein, “Distributed graphlab: A framework for machine learning
and data mining in the cloud,” PVLDB, vol. 5, no. 8, 2012.

[3] J. E. Gonzalez, Y. Low, H. Gu, D. Bickson, and C. Guestrin, “Pow-
ergraph: Distributed graph-parallel computation on natural graphs,” in
OSDI ’12, 2012, pp. 17–30.

[4] X. Zhu, W. Chen, W. Zheng, and X. Ma, “Gemini: A computation-
centric distributed graph processing system,” in OSDI ’16, 2016, pp.
301–316.

[5] D. Nguyen, A. Lenharth, and K. Pingali, “A lightweight infrastructure
for graph analytics,” in SOSP ’13, 2013, pp. 456–471.

[6] W. Fan, J. Xu, Y. Wu, W. Yu, and J. Jiang, “Grape: Parallelizing
sequential graph computations,” PVLDB, vol. 10, no. 12, pp. 1889–1892,
2017.

[7] P. Yi, J. Li, B. Choi, S. S. Bhowmick, and J. Xu, “Flag: towards graph
query autocompletion for large graphs,” DSE, vol. 7, no. 2, pp. 175–191,
2022.

[8] H. Wu, C. Song, Y. Ge, and T. Ge, “Link prediction on complex
networks: An experimental survey,” DSE, vol. 7, no. 3, pp. 253–278,
2022.

[9] P. Macko, V. J. Marathe, D. W. Margo, and M. I. Seltzer, “Llama:
Efficient graph analytics using large multiversioned arrays,” in ICDE
’15. IEEE, 2015, pp. 363–374.

[10] C.-Y. Liu, W. Choi, S. Khadirsharbiyani, and M. Kandemir, “Mbfgraph:
An ssd-based external graph system for evolving graphs,” in SC ’23,
2023, pp. 1–13.

[11] S. Brin and L. Page, “The anatomy of a large-scale hypertextual web
search engine,” COMNET, vol. 30, no. 1-7, pp. 107–117, 1998.

[12] M. Ghaffari and J. Li, “Improved distributed algorithms for exact
shortest paths,” in SIGACT ’18, 2018, pp. 431–444.

[13] C. Xie, R. Chen, H. Guan, B. Zang, and H. Chen, “Sync or async: time
to fuse for distributed graph-parallel computation,” in PPoPP ’15, 2015,
pp. 194–204.

[14] Y. Zhang, Q. Gao, L. Gao, and C. Wang, “Maiter: An asynchronous
graph processing framework for delta-based accumulative iterative com-
putation,” TPDS, vol. 25, no. 8, pp. 2091–2100, 2013.

[15] W. Fan, P. Lu, X. Luo, J. Xu, Q. Yin, W. Yu, and R. Xu, “Adaptive
asynchronous parallelization of graph algorithms,” in SIGMOD ’18,
2018, pp. 1141–1156.

[16] R. Rossi and N. Ahmed, “The network data repository with interactive
graph analytics and visualization,” in AAAI ’15, vol. 29, no. 1, 2015.

[17] D. P. Koester, S. Ranka, and G. C. Fox, “A parallel gauss-seidel
algorithm for sparse power system matrices,” in SC ’94, 1994, pp. 184–
193.

[18] S. Baluja, R. Seth, D. Sivakumar, Y. Jing, J. Yagnik, S. Kumar,
D. Ravichandran, and M. Aly, “Video suggestion and discovery for
youtube: taking random walks through the view graph,” in WWW ’17,
2008, pp. 895–904.

[19] L. Katz, “A new status index derived from sociometric analysis,”
Psychometrika, vol. 18, no. 1, pp. 39–43, 1953.

[20] G. Jeh and J. Widom, “Simrank: a measure of structural-context simi-
larity,” in KDD ’02, 2002, pp. 538–543.

[21] J. Pearl, “Reverend bayes on inference engines: A distributed hierarchi-
cal approach,” in AAAI ’82, 1982, pp. 133–136.

[22] Q. Wang, Y. Zhang, H. Wang, L. Geng, R. Lee, X. Zhang, and G. Yu,
“Automating incremental and asynchronous evaluation for recursive
aggregate data processing,” in SIGMOD ’20, 2020, pp. 2439–2454.

[23] F. Yao, Q. Tao, W. Yu, Y. Zhang, S. Gong, Q. Wang, G. Yu, and
J. Zhou, “Ragraph: A region-aware framework for geo-distributed graph
processing,” PVLDB, vol. 17, no. 3, pp. 264–277, 2023.

[24] T.-S. Hsu, V. Ramachandran, and N. Dean, “Parallel implementation
of algorithms for finding connected components in graphs.” in Parallel
Algorithms, 1994, pp. 23–41.

[25] Y. Yang, M. Jiang, and W. Li, “2d path planning by lion swarm
optimization,” in ICRAS ’20. IEEE, 2020, pp. 117–121.

[26] Y. Wu, R. Jin, and X. Zhang, “Fast and unified local search for random
walk based k-nearest-neighbor query in large graphs,” in SIGMOD ’14,
2014, pp. 1139–1150.

[27] S. Baluja, R. Seth, D. Sivakumar, Y. Jing, J. Yagnik, S. Kumar,
D. Ravichandran, and M. Aly, “Video suggestion and discovery for
youtube: taking random walks through the view graph,” in WWW ’08,
2008, pp. 895–904.

[28] G. Feng, Z. Ma, D. Li, S. Chen, X. Zhu, W. Han, and W. Chen,
“Risgraph: A real-time streaming system for evolving graphs to support
sub-millisecond per-update analysis at millions ops/s,” in SIGMOD ’21,
2021, pp. 513–527.

[29] K. Vora, R. Gupta, and G. Xu, “Kickstarter: Fast and accurate compu-
tations on streaming graphs via trimmed approximations,” in ASPLOS
’17, 2017, pp. 237–251.

[30] P. E. Black, “Topological sort,” https://www.nist.gov/dads/HTML/
topologicalSort.html.

[31] R. M. Karp, Reducibility among combinatorial problems. Springer,
2010.

[32] V. Guruswami, R. Manokaran, and P. Raghavendra, “Beating the random
ordering is hard: Inapproximability of maximum acyclic subgraph,” in
FOCS ’08, 2008, pp. 573–582.

[33] C. Lu, J. X. Yu, R.-H. Li, and H. Wei, “Exploring hierarchies in online
social networks,” TKDE, vol. 28, no. 8, pp. 2086–2100, 2016.

[34] R. Hassin and S. Rubinstein, “Approximations for the maximum acyclic
subgraph problem,” IPL, vol. 51, no. 3, pp. 133–140, 1994.

[35] B. Berger and P. W. Shor, “Tight bounds for the maximum acyclic
subgraph problem,” JALG, vol. 25, no. 1, pp. 1–18, 1997.

[36] M. Charikar, K. Makarychev, and Y. Makarychev, “On the advantage
over random for maximum acyclic subgraph,” in FOCS ’07, 2007, pp.
625–633.

[37] A. Cvetkovic and V. Y. Protasov, “Maximal acyclic subgraphs and
closest stable matrices,” SIMAX, vol. 41, no. 3, pp. 1167–1182, 2020.

[38] J. Goldsmith, J. Lang, M. Truszczynski, and N. Wilson, “The compu-
tational complexity of dominance and consistency in cp-nets,” JAIR,
vol. 33, pp. 403–432, 2008.

[39] T. Cormen, “Introduction to algorithms th cormen, ce leiserson, rl rivest,
and c. stein, eds,” 2001.

[40] Z. Liu, K. Li, and X. He, “Cutting cycles of conditional preference
networks with feedback set approach,” Computational Intelligence and
Neuroscience, vol. 2018, 2018.

[41] H. Wei, J. X. Yu, C. Lu, and X. Lin, “Speedup graph processing by
graph ordering,” in SIGMOD ’16, 2016, pp. 1813–1828.

[42] V. D. Blondel, J.-L. Guillaume, R. Lambiotte, and E. Lefebvre, “Fast
unfolding of communities in large networks,” JSTAT, vol. 2008, no. 10,
p. P10008, 2008.

[43] G. Karypis and V. Kumar, “A fast and high quality multilevel scheme for
partitioning irregular graphs,” SISC, vol. 20, no. 1, pp. 359–392, 1998.

[44] J. Arai, H. Shiokawa, T. Yamamuro, M. Onizuka, and S. Iwamura,
“Rabbit order: Just-in-time parallel reordering for fast graph analysis,”
in IPDPS ’16. IEEE, 2016, pp. 22–31.

[45] Z. Guan, J. Wu, Q. Zhang, A. Singh, and X. Yan, “Assessing and ranking
structural correlations in graphs,” in SIGMOD ’11, 2011, pp. 937–948.

[46] J. Leskovec, K. J. Lang, A. Dasgupta, and M. W. Mahoney, “Community
structure in large networks: Natural cluster sizes and the absence of large
well-defined clusters,” IM, vol. 6, no. 1, pp. 29–123, 2009.

[47] J. Leskovec, J. Kleinberg, and C. Faloutsos, “Graphs over time: densifi-
cation laws, shrinking diameters and possible explanations,” in SIGKDD
’05, 2005, pp. 177–187.

[48] Z. Yunming, K. Vladimir, M. Charith, Z. Matei, and S. P. Amaras-
inghe, “Optimizing cache performance for graph analytics,” CoRR, vol.
abs/1608.01362, 2016.

[49] V. Balaji and B. Lucia, “When is graph reordering an optimization?
studying the effect of lightweight graph reordering across applications
and input graphs,” in IISWC ’18. IEEE Computer Society, 2018, pp.
203–214.

[50] A.-L. Barabási and R. Albert, “Emergence of scaling in random net-
works,” Science, vol. 286, no. 5439, pp. 509–512, 1999.

[51] C. Tsourakakis, C. Gkantsidis, B. Radunovic, and M. Vojnovic, “Fennel:
Streaming graph partitioning for massive scale graphs,” in WSDM ’14,
2014, pp. 333–342.

[52] Y. Zhang, Q. Gao, L. Gao, and C. Wang, “Priter: A distributed
framework for prioritized iterative computations,” in SoCC ’11, 2011,
pp. 1–14.

[53] Y. Zhang, X. Liao, H. Jin, L. Gu, and B. B. Zhou, “Fbsgraph:
Accelerating asynchronous graph processing via forward and backward
sweeping,” TKDE, vol. 30, no. 5, pp. 895–907, 2018.

2461

Authorized licensed use limited to: Northeastern University. Downloaded on April 06,2025 at 07:05:49 UTC from IEEE Xplore. Restrictions apply.

[54] P. Yuan, C. Xie, L. Liu, and H. Jin, “Pathgraph: A path centric graph
processing system,” TPDS, vol. 27, no. 10, pp. 2998–3012, 2016.

2462

Authorized licensed use limited to: Northeastern University. Downloaded on April 06,2025 at 07:05:49 UTC from IEEE Xplore. Restrictions apply.

