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Abstract—GPUs are being applied widely to batch workloads
that benefit from the parallel processing capabilities of GPUs.
To enable the processing of concurrent batch-based transactions
on GPUs, existing systems build dependency graphs during
a pre-execution phase to manage read and write operations.
However, as dependency-graph maintenance introduces a sub-
stantial overhead, there is a need for more efficient transaction
support to exploit the power of GPUs more fully for transaction
processing. This paper proposes LTPG, a novel GPU-enabled
database system that offers increased versatility and efficiency
by eliminating the need for predefined read/write-sets. LTPG
employs deterministic optimistic concurrency control to ensure
correct transaction execution, thus avoiding the maintenance of
dependency graphs. The proposed concurrency control simpli-
fies transaction processing workflows and avoids the overhead
associated with managing dependency graphs, thus resulting
in improved efficiency. LTPG divides a workflow into three
stages: execution, conflict detection, and write-back, leveraging
the parallelism of GPUs. Moreover, several additional optimiza-
tion strategies are adopted to improve system performance.
Experiments with real-world workloads from two benchmarks
verify LTPG can achieve effective improvement in the throughput
and latency compared to the leading baselines.

Index Terms—Database, deterministic concurrency control,
transaction processing, GPU

I. INTRODUCTION

Advancements in General Purpose Graphics Processing

Units (GPGPUs) have opened up new possibilities for ac-

celerating DataBase Management Systems (DBMS). Previous

studies have focused on utilizing GPUs for OnLine Analytical
Processing (OLAP) workloads and leveraging the vectorized

execution model of GPUs [5], [6], [12], [32]. In contrast,

little attention has been given to means of exploring GPUs to

enhance the performance of OnLine Transaction Processing

(OLTP) performance. Compared to OLAP tasks, the run-time

of OLTP is typically short [4]. This means the benefit of GPU

parallelism to a single transaction may be marginal. However,

organizing transactions into batches holds immense potential,

as the vectorized processing capabilities of GPUs enable the

processing of large numbers of such transaction batches in par-

allel. Existing studies [4], [14] have already demonstrated the

feasibility of GPU-powered OLTP systems as cost-effective

alternatives to expensive multi-core CPU-powered systems.

* Corresponding author

These GPU-powered systems can even achieve up to a 10-

fold improvement over the benchmark multi-core database,

DBx1000 [4].

When processing transactions on GPUs, existing ap-

proaches [4], [14] employ both transaction batching and

deterministic pessimistic concurrency control. Batching takes

advantage of the concurrent computing capabilities of GPUs,

while deterministic pessimistic concurrency control ensures

the correct execution of transactions within a batch.

There are two main challenges with existing systems. First,

the deterministic pessimistic concurrency control requires a

preprocessing phase before the actual transaction processing

to obtain the read-write sets of transaction batches. This

reduces system generality and increases time consumption.

Second, deterministic pessimistic concurrency control causes

serialization in transaction execution, which further increases

transaction processing time. The difficulty in addressing these

two challenges lies in the fact that they are inherent problems

of the existing approaches and can only be partially mitigated

by adopting certain strategies. Further, the existing solutions

based on CPU systems cannot be applied directly to address

the challenges we face. Due to the differences in hardware

architectures, the existing solutions are not suitable for the

Single Instruction Multiple Threads (SIMT) [31] architecture

of GPUs. Instead, we need to design completely new solutions

that are compatible with GPUs.

We propose LTPG, which is a system that utilizes de-

terministic optimistic concurrency control and leverages the

data parallelism of GPUs for efficient transaction processing.

Regarding the first challenge, LTPG can process transactions

directly without pre-processing. This allows LTPG to handle a

wider range of business scenarios compared to existing GPU

transaction processing systems [4], [14]. Regarding the second

challenge, LTPG significantly reduces the execution time of a

single batch of transactions by employing transaction abort

and re-execution in the next batch to resolve conflicts. This

decomposes transactions into modularized reusable compo-

nents. Thus, LTPG meets the same instruction requirements

across multiple warps. Each warp focuses on a specific type of

transaction operation such as Select or Update. Then conflict-

ing operations can be identified through our conflict detection
mechanism before entering the write-back phase. LTPG main-
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tains correctness by guaranteeing serializable transactions. By

organizing fine-grained transactions into mutually exclusive

types, the system enables more effective management of

shared resources, such as device memory. In conclusion, LTPG

is built to fully utilize GPUs and accelerate the overall process.

To summarize, we make the following contributions:

• We propose LTPG, a GPU-based batch transaction pro-

cessing system designed for deterministic databases. Un-

like existing GPU-based systems, LTPG eliminates the

need for transaction dependency graphs, resulting in

reduced processing overhead and increased efficiency.

• We provide new GPU-based batch transaction processing

optimizations: (1) a transaction decomposition and warp

grouping for GPU data parallelism and (2) a dynamic

hash bucket technique for faster conflict detection.

• We propose an optimization technique for large-batch-

based transaction processing, which encompasses three

sub-techniques that reduce transaction aborts in high-

contention scenarios.

• We conduct experiments using the TPC-C [1] and

YCSB [7] benchmarks. The results show that LTPG

significantly improves transaction throughput by up to

1.9× over the state-of-the-art GPU-based OLTP systems

and up to 7× over the state-of-the-art multi-core CPU

OLTP systems.

The rest of the paper is organized as follows. In Section III

and Section III, we discuss the background and related work.

We give an overview of our proposed system in Section IV. In

Section V, we detail LTPG and our optimization techniques.

We cover our empirical study and its findings in Section VI.

Finally, we conclude the paper with Section VII.

II. BACKGROUND

A. Introduction to GPU programming

We briefly introduce four important concepts in GPU pro-

gramming. (i) A warp is a batch of threads that perform in-

structions simultaneously, ensuring efficient and simultaneous

processing. (ii) Atomic operations carry out read-modify-

write tasks on shared data in a single step. They prevent

errors that occur when multiple threads try to modify the

same data simultaneously. (iii) Synchronization in computing,

particularly in the context of parallel processing, refers to the

coordination of concurrent processes or threads. It ensures the

correct execution and data consistency of parallel processes.

Existing works [19], [20] demonstrate that GPUs have signif-

icant parallel advantages in accelerating computations.

B. Main memory transaction systems

Main memory transaction systems process transactions

without relying on disk-based storage, providing high per-

formance due to fast data access [8], [15], [17], [21], [22],

[24], [26], [34]–[36], [38]. Some of the systems designed for

highly concurrent workloads [35], [38], [18], [22] adapt their

concurrency control protocols to support highly concurrent

workloads. DBx1000 [37] is a database focused on OLTP

performance on multi-core CPUs. Bamboo [13] explores a

transaction concurrency control protocol that uses an improved

two-phase locking mechanism on multi-core databases, with

a primary focus on transactional performance on popular

data. The main-memory Silo database [34], [39] introduces an

Optimistic Concurrency Control (OCC) protocol, which allows

for a significant reduction in contention and contention-related

overhead in highly concurrent transaction processing environ-

ments. However, Silo [34] suffers from performance crashes

under high contention. TicToc [38] aims to maintain the advan-

tages of OCC at low contention and mitigates its shortcomings

at high contention. Specifically, it employs two timestamps: the

write timestamp is similar to the timestamp of OCC records,

whereas the read timestamp allows TicToc [38] to commit

some conflicting transactions by reordering them. Timestamps

become more expensive to maintain than OCC, but reordering

has benefits for highly competitive workloads. Multi-Version

Concurrency Control (MVCC) systems [18], [22], [2], [27]

keep multiple versions for each record. These versions allow

more transactions to be committed by reordering. As for high-

contention transaction optimization, timestamp splitting splits

records based on workload characteristics to optimize I/O.

It has a coarser granularity, which reduces the overhead of

fine-grained locking and is sufficient to reduce conflicts. In

general, Deterministic Concurrency Control is often used to

reduce the replication overhead and communication overhead

of scalable transaction processing [16], [25]. The core idea

of deterministic concurrency control is to ensure that different

replicas always produce the same result independently (as long

as the same input transaction is given) to avoid the use of

expensive commit and replication protocols [11], [28]–[30].

C. Deterministic Databases Transaction Systems

A deterministic database transaction system ensures pre-

dictable and repeatable transaction outcomes, promoting data

consistency and stability. Existing studies can be categorized

into CPU-based systems [10] [9] [33] [23] and GPU-based

systems [14] [3] [4].

CPU-based systems. BOHM [10] employs a two-step process

for transactions. In the first step, it inserts primary key

placeholders of the write set into a multi-version storage

layer along with the Transaction ID (TID). In the second

step, each transaction reads a specific version for each key

in its read set (the one with the largest TID up to the

current TID) to ensure determinism. PWV [9] decomposes

each input transaction into fragments, allowing each fragment

to access a non-overlapping partition of a database table. A

dependency graph is then computed to meet data dependency

and commit dependency requirements. Calvin [33] utilizes a

single-threaded lock manager to grant read/write locks based

on pre-declared read/write-sets. After acquiring all locks for a

transaction, the lock manager assigns it to an available worker

thread for execution.

Aria [23] executes transactions in two steps. In the first

step, each transaction reads from the current database snapshot

and saves writes in a local write set. It adopts a single-

version approach, buffering write transactions until the end
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TABLE I
SUMMARY OF DIFFERENCES BETWEEN SCHEMES

System Versioning Initialization Execution Granularitya Need Handel Handle Parallelismb

R/W set? skew? contention? mode

BOHM [10] Multi Partitioned Shared 1 thread Yes No No task
PWV [9] Single Partitioned Partitioned several threads Yes No Yes task

Calvin [33] Single 1 thread Shared 1 thread Yes Yes No task
Aria [23] Single No need Shared 1 thread No Yes Yes task

Bamboo [13] Single No need Shared 1 thread No Yes Yes task
GPUTx [14] Single Using GPU Shared 1 thread Yes No No task
GaccO [4] Singlec Using GPU Partitioned several threads Yes No No task

LTPG Single Using CPU Shared several warps No Yes Yes data

a Transaction execution granularity.
b Task parallelism or data parallelism.
c GaccO has a single version in GPU but multiple versions in CPU.

of the batch. Once all transactions in the batch are exe-

cuted on the replicas, they proceed to the second phase, i.e.,

the commit phase. This phase involves multiple independent

worker threads on the replica. If a transaction conflicts with

an earlier one (smaller TID) due to operations performed, it is

aborted and rescheduled for the next batch. TIDs are assigned

based on transaction arrival time. Non-aborted transactions are

committed by the system.

GPU-based systems. GPUTx [14] employs a batch transaction

model where transactions are predefined and set up as stored

procedures, executed as CUDA device functions for optimal

parallelism on the GPU at the data field level. To guarantee

correct execution, it uses a T-dependency graph—a directed

acyclic graph that maps out data dependencies to maintain the

integrity of batch executions.

GalOP [3] and GaccO [4] are the same systems using a de-

terministic concurrency scheme to execute batch transactions

on the GPU while the CPU executes non-batch transactions.

The system optimizes data movement overhead by storing

primary copies of all tables on the CPU and only retaining

secondary copies of tables needed for GPU transactions in

GPU memory. To maintain data consistency, updates are

propagated between the CPU and GPU copies of the tables.

We give more details about GaccO [4] below. GaccO [4]

utilizes pre-processing on the GPU to determine the conflict

order of transactions within a batch. This conflict order is then

employed during transaction execution to manage concurrent

access to shared resources. During the pre-processing stage,

GaccO [4] creates access tables and other auxiliary tables.

These tables facilitate efficient execution of the conflict order

determined by GaccO [4]. To achieve this, GaccO [4] must

first arrange its access table in ascending order based on TIDs,

enabling it to identify the appropriate sequence of transactions

capable of accessing contested tuples. To guarantee correct

operation, GaccO [4] employs supplemental scheduling tech-

niques to prioritize the initial transaction appearing in the

overall order for processing by the GPU’s internal scheduler.

Additionally, GaccO [4] offers two innovative enhancements.

Firstly, it converts locks and mutexes applied to objects

into interchangeable atomic actions performed on equivalent

pieces of information. Secondly, GaccO [4] leverages intra-

transaction parallelism instead of sequential steps within each

transaction, thereby boosting performance.

III. RELATED WORK

Limitations of CPU-based systems. BOHM [10], PWV [9],

and Calvin [33] face limitations due to explicit and implicit

dependency graphs, as shown in Fig. 1. Aria [23], in contrast,

does not rely on dependency graphs. However, it is less

efficient when handling significantly longer transactions in a

batch due to its thread assignment approach. Furthermore,

Aria [23] is not suitable for GPUs as it struggles with data

conflicts arising from a larger number of threads, especially

in large transaction batches. DBx1000 [37] and Bamboo [13]

are databases designed for multi-core CPUs. Many of their

optimizations are not suitable for GPU’s Single Instruction

Multiple Thread (SIMT) architecture.

Limitations of GPU-based systems. Both GPUTx [14] and

GaccO [4] suffer from inefficiency when executing highly

contended transactions serially, due to leveraging dependency

graphs, as shown in Fig. 1. In particular, GaccO [4] incurs

data transmission costs between CPU and GPU. For large

transaction batches, the dependency graph complexity and

branching increase, resulting in inefficiency during transaction

processing acceleration.

Comparison between LTPG and existing GPU-based systems.
As the biggest difference between LTPG and existing GPU-

based systems, LTPG does not require a pre-execution phase

to obtain the read and write sets. In addition, LTPG allows

multiple transactions to be batched and executed simultane-

ously on the GPU, ensuring high performance. In contrast,

GaccO requires transactions to be classified and can only

process the same type of transactions within a batch. When

facing a workload with mixed transaction types, GaccO may

be difficult to generalize.

Table I summarizes the differences between existing sys-

tems and LTPG. Note that, LTPG eliminates the need to

construct dependency graphs for deterministic transaction con-

currency. At the same time, it transforms task parallelism into

data parallelism, making transactions more adaptable to GPU

execution architectures. In addition, it reduces the data transfer

overhead by residing the data in GPU memory and achieves

improvement in GPU utilization.
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Fig. 1. Comparison with existing models.

IV. SYSTEM OVERVIEW

Here, we introduce LTPG, a novel system that accelerates

transaction processing using GPUs. In Fig. 2, LTPG involves

three main steps: execution, conflict detection, and write-back.

Before formally starting the execution of transactions, LTPG

captures a snapshot of the current database and incoming

transactions. Separate GPU memory spaces are created for

local read-write sets and state sets. Next, LTPG assigns TIDs

to incoming transactions based on their arrival order. Finally,

the snapshots, transactions, and related data structures are

transmitted to the GPU for execution.

Execution. During execution, all operations are conducted

using the local read and write sets, thus avoiding data updates

before write-back. Additionally, each transaction must register

its TIDs in a hash table linked to the relevant data items, to

facilitate future conflict detection.

Conflict detection. During conflict detection, LTPG examines

the TIDs stored in the hash table to identify any conflicting

WAW, RAW, or WAR operations. If such conflicts exist, they

are marked before proceeding to commitment.

Write-back. Here, it is decided whether to commit or abort

each transaction based on the results from the conflict de-

tection phase. Transactions that are committed write their

modifications back to the database snapshot, whereas aborted

transactions await re-execution or return.

Following the write-back phase, both the transactions and

associated data structures are returned to the CPU, allowing

aborted transactions to be rescheduled for re-execution in the

next batch. Database snapshots are saved regularly to the

hard drive for permanent storage. LTPG provides two data

synchronization methods. The first relies on a user-defined

interval for transferring data from the GPU to the CPU,

streamlining the synchronization process during GPU transac-

tion execution. Although this method involves data movement

between the CPU and GPU, it simplifies data synchronization.

The second only transfers the transaction read/write-set and

conflict flag table to the CPU after processing each batch.

This method reduces the data transfer volume significantly

and avoids the need for comprehensive database traversals

during synchronization, which boosts efficiency. Further, the

more frequent update intervals ensure stronger consistency

between CPU and GPU data, enhancing system robustness.
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Fig. 2. Execution flow of LTPG.

We report the overhead of copying transaction read/write-sets

in Section.VI-C.

Note that LTPG stores both database snapshots that are

used in transaction processing and conflict log tables in GPU

memory. This is to avoid data transfer overhead. The CPU also

records each batch of transactions on the hard drive as logs.

LTPG guarantees consistent transaction outcomes by assigning

a unique TID to each transaction in a batch, logging it for

reference. If re-execution is necessary, the system pulls the

transactions from the log, while preserving their original TIDs

and dependencies. This consistency in transaction handling,

coupled with the same commit policy, ensures uniform commit

results, ensuring LTPG’s determinism.

In LTPG, it is necessary to ensure that each stage is fully

completed before moving on to the next stage. However, grid

synchronization alone is insufficient to guarantee the complete

execution of all threads on the device. Thus, we employ

the cudaDeviceSynchronize() primitive to achieve isolation

between kernel functions. Further, if there are data conflicts for

some operations within a transaction, they need to be present

in the same device function. During the execution phase, data

from the database snapshot is copied to local sets to prevent

interference between the execution and write-back phases.

Novelty. LTPG stands out in three main ways. First, LTPG

is designed as a transaction processing system tailored for

the Single Instruction Multiple Thread (SIMT) architecture

of GPUs and data access patterns. Its essential feature is

to reorganize sub-transactions to make the most out of the

capabilities of GPUs. Second, LTPG can process transactions

directly without pre-processing. This allows LTPG to handle a

wider range of business scenarios compared to existing GPU

transaction processing systems [4], [14]. Finally, unlike other

systems in its category [4], [14], LTPG does not need to

maintain dependency graphs, which enables it to utilize better

the concurrency offered by GPUs. LTPG also does not require

pre-execution to obtain transaction read/write-sets, allowing it

to adapt to more scenarios.

Comparison between LTPG and Aria. LTPG operates on in-

memory databases using GPUs, while Aria is designed for

distributed in-memory databases on CPUs. This leads to three

main differences. First, the architectures of LTPG and Aria

differ. LTPG, designed for transactional concurrency, ensures

smooth GPU operation by dividing transaction processing into
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Algorithm 1: Core architecture of LTPG

Input : Transactions T , Snapshot S, Conflict logs CL
Iutput: Transaction results Txr

1 launchKernel(execute, T, S, CL)
2 cudaDeviceSynchronize()
3 launchKernel(conflict_d, T, S, CL)
4 cudaDeviceSynchronize()
5 launchKernel(writeback, T, S, CL)
6 cudaDeviceSynchronize()
7 Function execute(T, S, CL):
8 Warp.get(instructions)
9 foreach thread in Warp do:

10 thread.exec(instructions)
11 // readMem or recordTID or recordLS
12 Function conflict_d(T, S, CL):
13 if Warp check read operations
14 foreach thread in Warp do rcheck(T,CL)
15 else
16 foreach thread in Warp do wcheck(T,CL)
17 Function writeback(T, S, CL):
18 status = getStatus(T )
19 if status == Commit
20 writeMem(T, S)
21 else
22 Abort

conflict detection and write-back phases. This guarantees the

resolution of all conflicts before transaction commit and en-

ables robust transaction handling by LTPG. On the other hand,

Aria follows a simpler serial execution strategy, bypassing the

need for a detailed conflict resolution process. Second, the

two systems have different optimization foci. LTPG targets

optimal GPU transaction execution, whereas Aria prioritizes

ease of horizontal scaling. Finally, LTPG and Aria leverage

batch processing for distinct purposes. LTPG maximizes GPU

concurrency, while Aria minimizes inter-node communication

overhead in distributed settings.

We highlight that porting Aria to GPUs is challenging for

two main reasons. First, it requires larger batch sizes to fully

utilize the numerous threads of GPUs, which unfortunately

causes more transaction aborts. Second, since Aria does not

sort transactions by type for each thread, directly moving it

to a GPU would cause considerable thread divergence, which

greatly degrades GPU performance. LTPG offers an innova-

tive approach to optimizing GPU utilization and maintaining

transactional integrity.

Algorithm.1 illustrates the flow of LTPG. Since both the

database snapshot and the conflict log tables reside in GPU

memory, only the transaction execution information needs to

be transferred to the GPU memory before each round of

transaction processing. We split all operations in a transaction

into several functions. We use readMem to read data from

GPU memory. We use recordTID to record TIDs in conflict

logs. We use recordLS to keep data in local sets temporarily.

We use writeMem to write data to snapshots in the write-back

phase. We schedule GPUs in terms of warps to avoid intra-

warp branch divergence. These three transaction processing

phases of LTPG are implemented as separate kernel functions

to ensure global synchronization (Lines 1, 3, and 5). We use

CUDA synchronization instructions to ensure that the previous

phase has finished before the beginning of the next phase.

V. GPU DETERMINISTIC CONCURRENCY CONTROL

This section first presents a new time cost model for

measuring execution efficiency and compares it with that

of the state-of-the-art GPU-based OLTP system Gacco [4].

Then it proposes various strategies in LTPG to enable LTPG’s

deterministic optimistic concurrency control approach for

batch processing with GPU vectorized computation (see Sec-

tion V-B–V-E).

A. Time Cost Analysis

Time cost model of Gacco. We provide a detailed descrip-

tion of the deterministic transaction processing in GaccO in

Section II. The time cost of GaccO [4], denoted as TG, is

calculated as follows.

TG = Tgpp + Tgs + Tge + Tgt, (1)

where Tgpp is the time cost of the preprocessing phase in

GaccO [4]. We use Tgs to denote the time cost of sorting. We

define Tge as the time cost of the execution phase. We use Tgt

to denote the time cost of data transfer.

transaction starts, and Tdth is the time cost of transferring

updated data to the host.

Time cost model of LTPG. Based on the system described in

Section IV, the time cost of LTPG, denoted as TL, is calculated

as follows.
TL = Tle + Tlc + Tlw + Tlt, (2)

where Tle is the time cost of the execution phase, Tlc is the

time cost of the conflict detection phase, Tlw is the time cost

of the write-back phase, Tlt is the time cost of data transfer.

Comparison between the two time cost models. The main time

cost of GaccO is the time spent on transaction preprocessing

and the deterministic concurrent execution of transactions.

Also, LTPG needs to consider the number of aborted trans-

actions caused by data conflicts, and LTPG indeed has a

higher abort rate than Gacco [4]. This is because LTPG trades

abort for better parallelism and versatility, which is its main

advantage. In particular, existing systems [4], [14], which

rely on dependency graphs to ensure that all transactions are

processed, encounter challenges of degenerating to serialized

execution when facing high-contention transactions. This issue

adversely impacts the latency of all transactions in a batch.

We present a detailed analysis of the batch-level latency for

LTPG and GaccO [4] in Section VI-C. Due to its superior

concurrency and significantly lower latency, LTPG exhibits a

much higher overall throughput than GaccO [4]. Moreover,

with the high-contention transaction optimization incorporated

into LTPG, robust commit performance is guaranteed, even for

transactions characterized by high contention.
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Fig. 3. Example of adaptive warps division.

B. Adaptive Warp Division for Data Parallelism

Earlier, we mentioned that GPUs utilize Single Instruc-

tion Multiple Thread (SIMT) [31] instructions so that mul-

tiple threads perform identical instructions simultaneously.

To optimize GPU processing, we separate transactions into

fine-grained sub-transactions and assign each group of sub-

transactions to a group of warps for concurrent execution using

data parallelism. During the processing of batch transaction

instances, the batch sub-transaction instances are distributed

to multiple CUDA warps for execution. In LTPG, we reduce

branch divergence by dividing warps and minimizing the

execution of different instructions within each warp. This

hardware-level approach reduces warp divergence and im-

proves system performance. LTPG exploits adaptive warp

division, by assigning collections of similar sub-transactions to

worker warps from predefined types during execution, conflict

checking, and commit. This strategy improves load balancing

and is especially efficient for smaller transaction batches.

Moreover, LTPG prevents branch divergence within warps

by reconstructing batch transactions into sub-transactions and

organizing them into sets. This ensures that each warp handles

only one type of sub-transaction.

Example 1. In Fig. 3, TX 1 and TX 2 are different kinds of
transactions. Both are split into fine-grained sub-transactions
that are processed concurrently by warps. The adaptive warp
division strategy ensures optimal resource allocation, which
takes advantage of the warp scheduling unit provided by the
GPU architecture. In the right part of Fig. 3, the system
allocates the appropriate number of warps to perform the task
based on the load. We strive to keep warps fully occupied with
up to 32 threads executing the same instructions. Moreover,
we organize the data storage efficiently by storing related data
contiguously in either global or shared memory, facilitating
merged accesses and minimizing conflicts.

C. Dynamic Hash Buckets for Conflict Detection

Considering their high query speeds, we employ hash tables

for conflict recording and detection purposes. Each operation

records its associated TID in the appropriate hash table ele-

ment along with the modified data. After all operations have

finished recording their TIDs, they later check their designated

elements to determine whether any collisions occurred.

Handling memory access contention is crucial in the exe-

cution phase of LTPG since numerous threads record TIDs

concurrently within batch transactions. Unlike databases like

����

����

�� �

����

	
��
		� 	��	��
� ��
��� ��
��� ��
��� ��

���������
�	� ����
� �
� �
�� �
�� �

� 	�
�����
�����
�����
������ �

�

�

�
�
�

�

��	�!�"
��	�!�"� �

#��� ��$!� %�� %��&��'
!(
)�'%!*)
*'"�*
���

��	�!�"
��	�!�"

�

#������$!��%���'����!�*
���

+
�����
����*'*�����	� ��,�)��)�'%!*)
��-��'���)��,*'"��	�

�� �� � �����

Fig. 4. Example of recording TIDs in the conflict log.

Aria [23], systems based on GPUs rely heavily on parallelism

to achieve efficiency. Serial memory update delays are un-

acceptable because they hinder parallelism. When multiple

threads attempt to access the same memory location simul-

taneously through atomic operations, their execution becomes

sequential, negating any potential speedup offered by paral-

lelism. As a result, collision handling mechanisms for hash

tables must be established to address instances where multiple

threads attempt to update the same hash table element.

To address this issue, we propose to use dynamic hash

buckets and to adjust their sizes based on the frequency

of data access. This approach helps alleviate the negative

effects of atomic operations on concurrent accesses, thereby

improving overall performance. It is important to note that

the use of atomic operations themselves does not decrease

the performance of LTPG. Rather, the issue arises when such

operations are serialized.

LTPG enables developers to pre-mark popular data tables

and also is able to identify such tables in real-time. Specifi-

cally, it evaluates the access frequency of a data table t using

the formula E = T
D , where T is the number of transactions

accessing t and D is the total number of rows in t. A data

table is considered popular if E > 1.

GPU threads dedicated to processing identical data are

associated with the same primary data, denoted as key. We

employ the hash function h(key) = key mod sh to map

a GPU thread to a hash bucket, where sh is the size of

the hash table. GPU threads processing distinct data may be

hashed to the same bucket, causing a collision. To resolve

this, we use open addressing with the linear probing function

h(key, i) = (key + i) mod sh, where i = 0, 1, · · · , sh − 1.

We denote the size of the hash bucket as su and implement

two types of hash tables, standard-sized and large-sized. In

each hash bucket of both types, we maintain two kinds of

TIDs for read and write operations and store the minimum

TIDs for both operations. A standard-sized hash table, with

each bucket uniformly sized at su = 1, is implemented when

the access frequency of the table E equals 1. If multiple GPU

threads are hashed to the same standard-sized bucket, they are

serialized. However, our settings for the hash bucket size and

the identification of popular data ensure that this is rare.

A large-sized hash table is implemented when E exceeds 1.

The size of each bucket is set to su = � E
WS� × WS, where WS

is the size of the corresponding warp. When multiple GPU
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threads are hashed to the same large-sized bucket, we re-

hash them by locating the sub-bucket within the large-sized

bucket. Each GPU thread is assigned a TID after being hashed

to the large-sized bucket, and we employ the hash function

h(key) = TID mod su for re-hashing. Any remaining con-

flicts after rehashing result in thread serialization.
Employing a large-sized hash table offers two advantages.

First, it mitigates the serialization of atomic operations. Sec-

ond, it enables threads to mark their TIDs in separate slots,

even when one is already in use, which reduces wait times

and prevents bottlenecks. This is particularly beneficial when

multiple threads access the same data rows concurrently. We

provide an example that compares the use of a standard-sized

hash table with that of a large-sized one.

Example 2. Fig. 4 illustrates a scenario in which four
transactions concurrently access both the Item table and the
Warehouse table. When the batch size is 214 and the number
of warehouses is 32, the warehouse hash table falls into the
state where E exceeds 1. At this time, a hash bucket of size
su is arranged for recording conflicting TID information. Our
hash bucket uses atomicMin to ensure data accuracy. Locking
is not used because it is a very inefficient form of data access
in CUDA. Locking is unnecessary to guarantee data accuracy
with great overhead when ordinary atomic operations can be
ensured. Both TX 2 and TX 3 in Fig. 4 need to be written to
Warehouse 13. These two transactions have a WAW conflict. In
the hash bucket, they use h(key) = TID mod su to determine
the write location of the hash bucket and then record their
TIDs. In the conflict detection phase, LTPG reads out all the
TIDs in the hash bucket and selects the transaction with the
smallest TID which is then allowed to update the row. The
remaining transactions are marked as having a WAW conflict.
On the left side of Fig. 4, both TX 2 and TX 3 need to read
the data of Item 419. However, because the entire Item does
not fall into the category of frequently accessed data items
described earlier, its hash bucket has only one record bit. At
this point, LTPG saves the smaller TID to the record.

We highlight that using a large-sized hash table has a

negligible impact on memory usage. This is because LTPG

only enlarges hash buckets for frequently accessed data, which

is typically limited in real-world scenarios. Our experiments

confirm that large hash tables use minimal memory—just

0.053% to 0.055% (see Table VIII in Section VID). Despite the

small size of popular data, it can lead to major performance

issues. A large hash table helps avoid these bottlenecks by

reducing the need to serialize atomic operations. The results

are clear: large hash tables cut atomic operation latency by up

to five times compared to standard tables (see Table VIII in

Section VID). Overall, our hash table design greatly enhances

transaction efficiency with very small memory usage.

D. Optimization for High-contention Transactions
This section considers the detailed optimization scheme

for highly contentious transactions. Our strategy involves

implementing a reordering technique for deterministic op-

timistic concurrency control, which has already proven its
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Fig. 5. Optimization of high-contention transactions.

effectiveness and accuracy according to the Aria [23], called

logical reordering. By applying this method, we enable logical

reordering through regular commits even when only RAW or

WAR conflicts exist. As a result, the executed transactions

follow a serializable execution sequence that deviates from

the globally assigned monotonic timestamps, thus minimizing

the risk of write skew and reducing contention.

Next, we introduce a method for splitting row-level times-

tamps into separate fields, called row-level conflict flag split-

ting. This allows us to manage conflicting operations indepen-

dently by using different conflict logging tables for attributes

that are updated frequently. By doing so, we ensure that

operations related to specific tables and attributes are not

impacted by changes made by others. For instance assume that

operations involving A table in a certain type of transaction

require frequent updates to attribute a, whereas the operations

in other transactions do not require to read or write attribute

a. With our timestamp splitting approach, we can reduce un-

necessary transaction aborts resulting from overlapping write

transactions affecting the same rows in the table.

Having enabled the splitting of row-level timestamps, we

provide a concurrent execution strategy for frequent WAW

conflicting attribute operations, called delayed update strategy.

In this strategy, the execution of frequently conflicting data is

delayed until the write-back phase, avoiding its participation in

the conflict detection phase, thus preventing other transactions

from being aborted prematurely. Specifically, the delayed up-

date strategy is primarily used to handle the frequently updated

attributes mentioned earlier. If the update operation involves

addition or subtraction calculations on attributes, the prefix

sum algorithm can be applied to efficiently process them in

parallel on the GPU. If the update operation involves complex

calculations, the efficient calculation can still be carried out

on the GPU using the intra-warp communication mechanism.

After execution, LTPG writes the result of the last committed

operation back to the database to ensure correctness. We pro-

ceed to give an example that incorporates all the optimizations

mentioned in this section.

Example 3. Transactions Tx 1, Tx 3, and Tx 5 need to read the
row with wid=4, and they need to read the value of attribute
W ZIP. Transactions Tx 2, Tx 4, and Tx 6 need to write to
wid=4, and they need to modify the value of attribute W YTD.
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Without using all the optimizations in Section V-D, only Tx
1 and Tx 2 can be committed due to dependencies between
the transactions. However, when we use logical reordering
optimization, the transactions that can be committed become
Tx 1, Tx 2, Tx 3, and Tx 5. In this case, the logical order of
these four transactions becomes Tx 1, Tx 3, Tx 5, and Tx 2,
while still maintaining their original TIDs.

When we use the row-level conflict splitting strategy and
delayed update strategy, all transactions can be committed. In
this case, LTPG uses the same warp to process transactions
that operate on the same data row, such as Tx 2, Tx 4, and Tx
6 in this example. Within the warp, each thread broadcasts its
modifications to the data row to other threads and merges
modifications from threads with smaller thread IDs (thID).
Then the original data of the data row is read by all threads
within the warp, and each thread completes its modifications
to the original data. Finally, the thread with the largest thID
writes its modifications back to the database to complete the
entire delayed update processing.

E. Other Optimization to LTPG

We proceed to present additional optimizations that are

incorporated into LTPG.

Selective memory mode adjustments. LTPG leverages selec-

tive memory mode adjustments to optimize memory allocation

between zero-copy memory and unified memory according

to the database size and the transaction batch size. Storing

data in zero-copy memory provides quicker data exchanges

between the CPU and GPU memories within the limits of the

GPU memory availability. When dealing with large databases

that exceed the capacity of the GPU memory, unified memory

enabled via CUDA programming permits flexible, automated

scheduling that surpasses the GPU memory threshold. This

memory management strategy eliminates the need for manual

memory manipulation, thereby improving overall efficiency.

Batch-based pipeline model. Another opportunity for op-

timization lies in the possibility of overlapping batch-to-

batch transaction execution to achieve batch-to-batch pipeline

execution. In LTPG, with inter-batch pipeline execution, we

achieve concurrent execution of data transfer and transaction

processing. While the nth batch of transactions is being

executed, LTPG transfers the information of the (n+1)st batch

of transactions to the GPU in preparation for execution, while

the results of the (n− 1)st batch of transactions are returned

to CPU memory, and the aborted transactions of the (n− 1)st

batch are scheduled for re-execution in the (n + 2)nd batch.

This design takes advantage of the GPU’s in-stream concur-

rency to achieve concurrent executions of computations and

data transfers. The only drawback is that aborted transactions

are not scheduled for direct execution in the next batch, but

need to be scheduled for execution only two batches later.

This may lead to an increase in latency for uncommitted

transactions. However, in experiments, the overall latency of

a batch of transactions is between 1ms and 100ms from the

start of the transfer to the GPU to the end of the return of

the transaction result to the CPUs. This latency increases with

the increase of the database size and transaction batch. After

the above optimization for high contention transactions, the

transactions that cannot be committed in a single batch can

be committed in fewer batches, and the latency is acceptable.

Therefore, we achieve an overall performance improvement of

10%–20% at the cost of a few extra milliseconds of latency.

VI. EXPERIMENTS

A. Experimental Settings

Benchmarks. We use two benchmarks TPC-C [1] and

YCSB [7]. TPC-C aims to assess the performance of OLTP

systems. It simulates complex workloads resembling an online

retail environment with concurrent users performing various

transactions. YCSB is to assess the performance of NoSQL

and cloud-based databases. YCSB generates a workload that

simulates typical operations in real-world applications, such

as read, write, update, and delete operations.

Comparison systems. We compare with six CPU-based trans-

action processing systems, BOHM [10], PWV [9], Calvin [33],

Aria [23], DBx1000 [37] and Bamboo [13], and two GPU-

based transaction processing systems, GPUTx [14], and

GaccO [4].

• BOHM [10] employs a two-step transaction execution

process. In the first phase, primary key placeholders of the

write set are inserted into a multi-version storage layer. In

the second phase, each transaction reads a specific version

for each key in its read set.

• PWV [9] decomposes each input transaction into frag-

ments. A dependency graph is then computed to ensure

data dependency and commit dependency requirements.

• Calvin [33] uses lock managers to grant read/write locks

based on per-declared read/write-sets. Worker threads

execute transactions when the lock manager acquires all

locks for them.

• Aria [23] employs a two-step transaction execution pro-

cess. In a read-write phase, it reads transactions from the

current database snapshot and saves writes locally in a

write set. In a commit phase, non-conflicting transactions

are committed, while conflicting ones are rescheduled for

the next batch based on their arrival time and TIDs.

• DBx1000 [37] is designed for multi-core environments

and focuses on providing high-performance, scalable, and

concurrent transaction processing. It aims to optimize

database performance on modern hardware architectures

with multiple CPU cores and supports both OLTP and

OLAP workloads.

• Bamboo [13] is designed for multi-core environments

and focuses on providing high-performance transaction

processing on hotspots. Specifically, it modifies con-

ventional two-phase locking while providing the same

correctness guarantees.

• GPUTx [14] is a main memory DBMS that enables GPU-

accelerated OLTP. When executing OLTP workloads,

GPUTx computes a T-dependency graph and it manages
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TABLE II
COMPARISON ON PART TPC-C (106TXS/S)

System 50-8a 50-16 50-32 50-64 100-8 100-16 100-32 100-64 0-8 0-16 0-32 0-64

DBx1000 [37] 2.64 2.62 2.24 1.73 1.81 1.66 1.39 1.15 3.87 7.14 10.04 8.35
Bamboo [13] 4.30 8.47 8.46 4.38 5.89 4.86 3.48 2.57 27.27 56.65 76.14 66.35
BOHM [10] 0.02 0.03 0.05 0.07 0.05 0.07 0.09 0.12 0.01 0.02 0.03 0.05

PWV [9] 1.27 1.51 1.64 1.53 0.93 1.13 1.23 1.16 3.09 3.51 3.66 3.37
Calvin [33] 0.39 0.40 0.39 0.31 0.32 0.29 0.27 0.21 0.88 1.01 1.06 0.91
Aria [23] 0.60 0.78 0.99 1.23 0.74 1.01 1.09 1.13 0.19 0.44 0.78 1.20

GPUTx [14] 0.02 0.01 0.10 0.09 0.17 0.10 0.07 0.05 0.68 0.54 0.42 0.26
GaccO [4] 16.06 15.80 15.55 15.29 13.72 13.12 12.75 12.65 134.92 134.47 135.21 135.04

LTPG 18.41 18.65 18.25 17.62 19.31 20.23 23.81 19.82 17.26 17.43 16.76 15.65

a We use the percentage of Neworder in a batch and the warehouse size as the experiment title.

a rank for each transaction in the batch. Transactions with

the same rank can be executed simultaneously.

• GaccO [4] is a main memory DBMS for GPU-

accelerated OLTP. For executing OLTP workloads,

GaccO implements a novel scheme that splits the execu-

tion across the CPU and GPU. It constructs a dependency

graph before transaction execution.

Both GaccO [4] and GPUTx [14] are not open-source. We

obtained the source code of GaccO [4] from the authors and

reproduced GPUTx [14]. For the other systems, we conduct

experiments using their open-source codes.

Permanence metrics. We use Transactions Per Second (TPS),

commit rate, and latency as performance metrics. TPS rep-

resents the number of completed transactions handled by the

system in one second. Commit rate assesses the number of

transactions successfully committed to the database. Latency

measures the time taken for this batch of transactions to

execute and return results. Both higher TPS and lower latency

indicate higher transaction processing speed, while a higher

commit rate refers to a higher success rate. For measuring

TPS, we run 5,000 transaction batches back-to-back and report

the total committed transactions and their execution times to

eliminate randomness.

Additional settings. We implement pre-compiled, stored pro-

cedures using CUDA C++ to handle one-time and short

transactions. A client interacts with the system by setting

different parameters. Each table in the system has a primary

key and attributes, using primary and secondary hash tables for

indexing. Support for range queries is required for OrderSta-

tus, StockLevel, and Delivery transactions in TPC-C. However,

we can only predefine the primary key values of query items

for the range queries in TPC-C, due to the nature of hash

tables. LTPG can be readily extended to support range queries,

by integrating indexing, such as B-trees and bitmap indexes.

We aim to explore this in our future work. The experiments

focus on combinations of Neworder and Payment transactions.

This is because they make up almost 90% of the full TPC-

C and because most of the systems we compare with only

offer support for these two transaction types. 100% Neworder

transactions have more operations and fewer conflicts. 100%

Payment transactions have fewer operations and much more

conflicts. The combination of 50% Neworder and 50% Pay-

ment transactions represents a moderate-contention load. All

attributes in tables are set to integer type because CUDA does

not support strings at present. We use a server with Ubuntu

22.04.1, CUDA-12.0, 8 Nvidia RTX A6000 GPUs, 2 Intel(R)

Xeon(R) Gold 6326 CPUs @ 2.90 GHz and 768 GB RAM.

We only use one A6000 GPU for the GPU-based systems.

We schedule 30 CPU cores for the CPU-based systems. The

memory we use is located in the same NUMA region. The

source code of LTPG is available1.

B. Comparison on TPC-C

For the mix of Neworder and Payment transactions pro-

cessed exclusively on the GPU, as shown in Table II, LTPG

exhibits a higher transaction throughput of approximately 18

million TPS. In comparison to other state-of-the-art systems,

GaccO [4]–the most recent transaction processing system op-

erating on GPUs–is capable of a throughput of approximately

15.5 million TPS. Moreover, it displays good performance for

100% Payment transactions with high conflicts. It is because

the exchange operation optimization tailed for high-contention

transactions in GaccO [4] greatly enhances parallel execution

in heavy contention environments. GPUTx [14] achieves its

best performance at about 10 thousand TPS. Aria [23], the

latest deterministic database, achieves its highest throughput

of about 0.8 million TPS on a standalone system. Meanwhile,

DBx1000 [37], utilizing the TicToc [38] concurrency control

mechanism, yields a throughput of approximately 5 million

TPS. Bamboo [13] achieves 8 million TPS. BOHM [10],

PWV [9], and Calvin [33] achieve 50 thousand, 1.5 mil-

lion, and 40 thousand TPS. LTPG increases throughput by

about 1.2× over GaccO for mixed workloads and 1.5×–

1.9× for 100% Neworder workloads. The higher TPS on

mixed workloads and 100% Neworder workloads of LTPG

are due to its use of deterministic optimistic concurrency

control and its use of optimization strategies tailored for

concurrent execution on GPUs. The deterministic optimistic

concurrency control eliminates the need for LTPG to spend

time constructing read and write sets and dependency graphs.

The optimizations allow LTPG to complete the execution of a

single batch transaction with lower time consumption. Overall,

1https://github.com/Kevin-W34/LTPG
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TABLE III
PROCESSING CAPABILITY OF LTPG (106TXS/S)

Batch size 50-8a 50-16 50-32 50-64 100-8 100-16 100-32 100-64 0-8 0-16 0-32 0-64

28 1.62 1.22 0.82 0.47 3.64 1.99 1.11 0.59 1.34 1.02 0.76 0.47
210 5.33 4.10 2.71 1.74 11.40 7.07 4.05 2.23 3.90 3.27 2.32 1.58
212 13.00 11.04 8.24 5.16 17.98 17.66 11.41 7.57 10.12 8.43 6.07 3.78
214 18.21 17.83 15.90 10.51 14.92 17.26 23.81 17.78 16.51 15.02 12.29 9.50
216 14.56 16.66 18.15 17.42 5.71 9.39 13.44 16.12 16.64 17.35 16.76 14.20

a We use the percentage of Neworder in a batch and the warehouse size as the experiment title.

TABLE IV
EVALUATION OF AVERAGE PER-BATCH TRANSACTION LATENCY (μS)

System 8/8,192a 8/65,536 64/8,192 64/65,536

LTPG 357, 43b 1,794, 293 725, 46 2,621, 304
GaccO 1,270, 375 7,772, 2,627 1,292, 376 14,672, 3,076

a Warehouse size and batch size.
b per-batch transaction latency and data transmission latency.

in real-world applications, where low-to-moderate conflicts are

common, LTPG achieves better performance.

C. Processing Capability on GPUs

We study the batch processing capability on the GPU

side using a balanced 50/50 workload combination. We use

two main workloads from TPC-C: Neworder and Payment.

Table III reports the results. All results include the CPU-

to-GPU data transfer overhead. Moreover, we increase the

database size from 8 to 64. We scale up the batch size from 28

to 216 and use all optimizations in LTPG. We report transaction

throughput in Table III and latency in Table IV.

We see that LTPG provides an aggregated throughput of

over 17 million transactions per second in the 8-warehouse

scenario. When the number of warehouses is less than 32, the

throughput of LTPG increases as the number of warehouses

grows. This is because the increase in normally committed

transactions per batch outweighs the extra system overhead

caused by the increase in the number of warehouses. The

decrease in throughput from 32 to 64 warehouses shows that

the additional overhead from GPU memory at this point no

longer can be outweighed by the rise in transaction commits

within a single batch, hence we see a decreasing trend in the

aggregate transaction aggregation throughput. Overall, LTPG

executes different transaction types with high throughput.

Second, our adaptation to GPU execution conditions, where

we partition transactions into classes of transactions, allows

different kinds of transactions to be executed simultaneously

within the GPU without branching divergence. Next, LTPG

does not suffer from severe aborts of Payment transactions in

the 8-warehouse case. This is attributed to the effectiveness

of LTPG’s optimization scheme in handling high-contention

transactions. Finally, LTPG has significant advantages in terms

of latency in Table IV. Regardless of the database size or

transaction batch size, LTPG has distinct advantages over

GaccO. This allows LTPG to re-execute aborted transactions

more quickly. In terms of data transfer costs, LTPG has

significantly lower overhead than GaccO. This allows LTPG

TABLE V
EVALUATION OF OVERHEAD OF TRANSACTION READ/WRITE-SET.

batch size (Txns) 1,024 16,384 65,536

time cost (μs) 25–30 108–118 295–305

to have relatively more time for GPU computing, thereby

improving GPU utilization.

We study the performance of all methods on 100%

Neworder and 100% Payment transactions. Table III reports

the results. LTPG achieves a maximum transaction throughput

of 24 million on 100% Neworder transactions. Next, the

maximum transaction throughput of LTPG is only 17 million

on 100% Payment transactions. This indicates the strength

of the deterministic optimistic concurrency control utilized

by LTPG and the acceleration provided by GPUs, on low-

contention workloads and on high load with more contention

(transactions that contain many operations). However, with

more contention, the transaction performance exhibited by

LTPG is increasingly affected by inter-transaction conflicts,

even with low load (transactions that contain few operations).

We also report the overhead of copying transaction

read/write-set in Table V. When using the transmission method

of transaction read/write-set, LTPG introduces additional la-

tency ranging from 25μs to 300μs, where the latency is propor-

tional to the transaction batch size. Compared to CPU-based

systems, LTPG only introduces the latency of transferring data

from the GPU to the CPU. As the CPU can asynchronously

merge snapshots, it does not impact the transaction processing

efficiency on the GPU.

D. Effectiveness of LTPG

Latency and commit rate. We report the latency and the

commit rate with a 50/50 workload of Neworder and Payment

transactions. We report the end-to-end latency for all trans-

actions in a batch, i.e., the time from when parameters are

transferred to the time when the batch results are available to

the CPU. We report the percentage of committed transactions

in a batch. In Fig. 6(a), the latency of a batch of transactions

is between 300μs and 8ms when the transaction throughput

is stable at 10 million transactions per second. Fig. 6(a) also

shows the commit rate of a single batch of transactions is

stable between 50% and 75% when the transaction throughput

is stable at 10 million transactions per second. It can be

seen that the LTPG system performs well in terms of both

latency and commit rate. There is no deterioration in either

metric, which is due to the large batch of transactions, the
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(a) Commit rate and Latency of
LTPG at different batch sizes.
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(b) Transaction throughput at differ-
ent optimization scenarios.

Fig. 6. Other indicators and optimization effect.

deterministic optimistic concurrency control, and the GPU

computing capabilities.

High-contention transaction optimization. We assess the im-

pact of optimizing for high-contention transactions on batch

transaction commits, using a configuration of 32 warehouses

and a batch size of 16,384. Table VI shows the results.“commit

transactions” denotes the total number of committed trans-

actions and the numbers of committed transactions of types:

Neworder and Payment, within a batch. “commit rate” denotes

the percentage of successful transactions, again showing the

split between Neworder and Payment transactions. The results

indicate clearly that the optimization improves the success rate

and quantity of high-contention transactions. When a batch is

treated as a whole, the overall success rate of transactions rises

by 20%–30% compared to scenarios without high-concurrency

transaction optimization.

The positive impact of the high-contention optimizations

becomes even more significant when examining specific sce-

narios. As shown in Table VI, introducing high-concurrency

optimizations enhances the batch commit rate from a mere

0.41% to an impressive 52.9%. This leap in performance is

attributed to the row-level timestamp splitting. It ensures that

access to non-popular attributes in rows with popular data is

unaffected by the popular attributes, enhancing the transac-

tion commit rate. Furthermore, the proposed delayed update

strategy for transactions permits popular attribute accesses in

popular data rows to be committed successfully within a batch,

given that there are no conflicts with other data items.

The impact of optimizations. We consider experiments using

a 50/50 workload of Neworder and Payment transactions to

evaluate the impact of the different optimizations of the GPU-

based transactional batch processing. We report the overall

performance achieved when introducing the different enhance-

ments one by one into an initial, unenhanced version of LTPG.

The effect of inter-transaction pipeline execution on the

cost of overlapping data transfers is considered first. Fig. 6(b)

shows pipeline execution of different batches of transactions

improves the overall transaction throughput between 10% and

15%. The benefit is lower than expected, which is mainly due

to the time consumption structure of LTPG executions. The

effect of memory transfer hiding is not obvious in data transfer

time. The optimization of high-contention transactions impacts

LTPG significantly, resulting in an impressive speedup of

1.75×. This is an indication that the traditional OCC scheme

faces more severe transaction aborts when exposed to high-

TABLE VI
EVALUATION OF COMMIT RATE (%) AND COMMIT TRANSACTIONS (TXS/S)

Database scale/ Has Commit Commit
batch size optimization transactions rate

32a/16,384 yes 11,566, 7,232, 4,334 70.6, 88.3, 52.9
32/16,384 no 7,265, 7,233, 32 44.3, 88.3, 0.41

32/4,096 yes 3,294, 1,983, 1,311 80.4, 96.8, 64.0
32/4,096 no 2,017, 1,985, 32 49.2, 96.9, 1.56

8/16,384 yes 9,244, 5,192, 4,052 56.4, 63.4, 49.4
8/16,384 no 5,199, 5,191, 8 31.7, 63.4, 0.10

8/4,096 yes 2,892, 1,806, 1,085 70.6, 88.2, 53.0
8/4,096 no 1,817, 1,809, 8 44.4, 88.3, 3.91

a We use warehouse size to represent the scale of the database.

contention. LTPG’s combination of deterministic OCC and

transaction batch processing exacerbates the issues in such

cases. Our optimization scheme for high-contention transac-

tion scenarios exploits numerous opportunities for GPUs to

address these challenges effectively.

Hash table optimization. In the case of hash table optimiza-

tion, we see a notable 5%–10% improvement in overall perfor-

mance. This enhancement is primarily attributed to reducing

the serial wait time between CUDA atomic operations, which

contributes significantly to overall performance. However,

these serial waits occur only during the transaction execution

phase and not throughout the entire phase of GPU-accelerated

transaction processing. We believe further optimizations in this

area may result in additional improvements.

We study the impact of the hash bucket size on the efficiency

of executing atomic operations — see Table VII. Each cell has

two triplets corresponding to the case of su = 1 and su = 32.

Each triplet represents the combined latency for marking and

reading the TID, the latency for only marking the TID, and the

latency for only reading the TID, respectively. For example,

with a thread scale of 512×512 and a hash table size of 32, a

bucket size of 1 results in a total latency of 83μs for marking

and reading the TID. Out of this, marking takes up 76μs, and

reading takes 7μs.

As observed, although the reading times between the two

bucket sizes do not vary substantially, marking times (and

consequently total times) are notably longer with a standard-

sized bucket (su = 1) compared with a large-sized one

(su = 32). This is because (i) data writes to global memory

in GPUs are inherently time-consuming, and the presence of

serialized atomic operations during writing further increases

the time needed; and (ii) in contrast, large-sized buckets

distribute serialized atomic operations across multiple slots

within a bucket, which reduces serialization time substantially,

leads to a noticeable improvement in performance. We also

report the conditions of standard-sized buckets and large-sized

buckets in memory, as shown in Table VIII. It is evident

that with the growth of the warehouse size, the occupancy

of large-sized buckets in the memory of the hash table used

for marking conflicts remains extremely low. This confirms

that our dynamic hash bucket optimization strategy provides
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TABLE VII
COMPARISON OF LATENCY (μS) BETWEEN STANDARD-SIZED HASH BUCKET (su = 1) AND LARGE-SIZED HASH BUCKET (su = 32).

Grid×Block hash table = 1 hash table = 32 hash table = 512

1,024×1,024 (652,638,14), (117,105,12) (685,653,32), (128,112,16) (675,660,15), (123,108,15)
512×512 (175,167,8), (38,31,7) (83,76,7), (44,37,7) (67,60,7), (37,30,7)

TABLE VIII
MEMORY OCCUPANCY RATIO OF STANDARD HASH

TABLES AND LARGE HASH TABLES (%)

Bucket size 8a 16 32 64

large 0.053 0.054 0.054 0.055
standard 99.947 99.946 99.946 99.945

a Warehouse size.

TABLE IX
UNIFIED MEMORY TIME CONSUMPTION (μS)

database execution check conflicts writeback
scale phase phase phase

32a 589 37 69
512a 508 62 119

1,024b 494 53 113

2,048b 3,211 618 4,450

a Zero-copy memory mode.
b Unified memory mode.

advantages in terms of batch transaction execution latency at

a low memory cost.

Unified memory optimization. To accommodate oversized

databases, LTPG employs selective memory mode adjustments

to execute transactions efficiently. While unified memory per-

forms automatic memory transfers implicitly, these processes

contribute substantially to the total transaction processing

time, thereby causing a notable reduction in LTPG’s overall

transaction throughput. Enhancing data transfer efficiency to

address the requirements of oversized databases is a promising

research direction. We evaluate the unified memory time con-

sumption and report the findings in Table IX. We use a batch

size of 16,384. With zero-copy memory, the time spent on the

three stages is relatively small. However, when using unified

memory, there is a significant increase in the time consumption

of the three stages. This is primarily due to the frequent

occurrence of page faults in the system. As mentioned before,

the system triggers frequent data page swaps, increasing the

time required for each stage considerably.

E. Performance on YCSB

We conduct experiments to evaluate the performance of

LTPG with different settings on YCSB. We use a Zipfian

data distribution with α = 2.5 to represent a high-contention

scenario and set each transaction to contain 10 operations. The

data cardinality varies from 104 to 107.

Fig. 7 shows the performance of LTPG when using the full

set of workloads of YCSB [7], including Update heavy (A),

Read heavy (B), Read only (C), Read latest (D), and Scan in

short ranges (E). We see that the workload involving scanning

(E) performs the worst and that the read-only workload (C)

performs the best among the five workloads. The reason is that
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Fig. 7. Transaction throughput of different batch sizes and different data sizes
with full YCSB.

range scans on GPUs necessitate specialized index and data

structures, which impacts the overall performance adversely

compared to read-only workloads.

F. Discussion

The experiments covered here show that the sweet spot

for LTPG is scenarios with medium to high loads and less

frequent access to popular data. In such cases, LTPG achieves

high throughput. The adaptive warp division optimization and

dynamic hash table optimization of LTPG are effective at

improving the transaction processing performance. However,

when there is a higher frequency of popular data accesses in

a transaction batch, LTPG may experience more transaction

aborts. In such situations, the high-contention transaction

optimization scheme of LTPG is effective at reducing the

transaction abort rate.

VII. CONCLUSION

We presented LTPG, a novel GPU-based transaction pro-

cessing system tailored for vectorized execution. Unlike exist-

ing systems, LTPG leverages parallelization within warps to

exploit the parallelism of GPUs. Conflict log utilizes dynamic

hash buckets to reduce serialized executions of CUDA atomic

operations. Moreover, we introduce a set of optimizations

designed for high contention scenarios. We report on an

experimental study showing that LTPG is able to outperform

contemporary multi-core CPU OLTP systems by up to 7×
and to achieve improvements up to 1.9× over leading GPU-

based OLTP systems on the TPC-C benchmark in terms of

throughput. In terms of single-batch latency, LTPG reduces

latency by 44% to 72% compared with the state-of-the-art

GPU-based system.
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scheduling for transactional multithreaded replicas. In SRDS, pages 164–
173, 2000.

[17] R. Kallman, H. Kimura, J. Natkins, A. Pavlo, A. Rasin, S. B. Zdonik,
E. P. C. Jones, S. Madden, M. Stonebraker, Y. Zhang, J. Hugg, and
D. J. Abadi. H-store: a high-performance, distributed main memory
transaction processing system. Proc. VLDB Endow., 1(2):1496–1499,
2008.

[18] K. Kim, T. Wang, R. Johnson, and I. Pandis. ERMIA: fast memory-
optimized database system for heterogeneous workloads. In SIGMOD,
pages 1675–1687, 2016.

[19] C. Li, Y. Gu, J. Qi, J. He, Q. Deng, and G. Yu. A GPU accelerated
update efficient index for knn queries in road networks. In ICDE, pages
881–892. IEEE Computer Society, 2018.

[20] C. Li, Y. Gu, J. Qi, and G. Yu. Parallel skyline processing using space
pruning on GPU. In CIKM, pages 1074–1083. ACM, 2022.

[21] T. Li, L. Chen, C. S. Jensen, and T. B. Pedersen. TRACE: real-time
compression of streaming trajectories in road networks. Proc. VLDB
Endow., 14(7):1175–1187, 2021.

[22] H. Lim, M. Kaminsky, and D. G. Andersen. Cicada: Dependably fast
multi-core in-memory transactions. In SIGMOD, pages 21–35, 2017.

[23] Y. Lu, X. Yu, L. Cao, and S. Madden. Aria: A fast and practical
deterministic OLTP database. Proc. VLDB Endow., 13(11):2047–2060,
2020.

[24] S. Mu, S. Angel, and D. E. Shasha. Deferred runtime pipelining for
contentious multicore software transactions. In EuroSys, pages 40:1–
40:16, 2019.

[25] P. Narasimhan, L. E. Moser, and P. M. Melliar-Smith. Enforcing
determinism for the consistent replication of multithreaded CORBA
applications. In SRDS, pages 263–273, 1999.

[26] N. Narula, C. Cutler, E. Kohler, and R. T. Morris. Phase reconciliation
for contended in-memory transactions. In OSDI, pages 511–524, 2014.

[27] D. P. Reed. Naming and synchronization in a decentralized computer
system. PhD thesis, Massachusetts Institute of Technology, Cambridge,
MA, USA, 1978.

[28] K. Ren, A. Thomson, and D. J. Abadi. Lightweight locking for main
memory database systems. Proc. VLDB Endow., 6(2):145–156, 2012.

[29] K. Ren, A. Thomson, and D. J. Abadi. An evaluation of the advantages
and disadvantages of deterministic database systems. Proc. VLDB
Endow., 7(10):821–832, 2014.

[30] K. Ren, A. Thomson, and D. J. Abadi. VLL: a lock manager redesign
for main memory database systems. VLDB J., 24(5):681–705, 2015.

[31] V. Rosenfeld, S. Breß, and V. Markl. Query processing on heterogeneous
CPU/GPU systems. ACM Comput. Surv., 55(2):11:1–11:38, 2023.

[32] P. Sioulas, P. Chrysogelos, M. Karpathiotakis, R. Appuswamy, and
A. Ailamaki. Hardware-conscious hash-joins on gpus. In ICDE, pages
698–709, 2019.

[33] A. Thomson, T. Diamond, S. Weng, K. Ren, P. Shao, and D. J. Abadi.
Calvin: fast distributed transactions for partitioned database systems. In
SIGMOD, pages 1–12, 2012.

[34] S. Tu, W. Zheng, E. Kohler, B. Liskov, and S. Madden. Speedy
transactions in multicore in-memory databases. In SOSP, pages 18–32.
ACM, 2013.

[35] T. Wang and H. Kimura. Mostly-optimistic concurrency control for
highly contended dynamic workloads on a thousand cores. Proc. VLDB
Endow., 10(2):49–60, 2016.

[36] Z. Wang, S. Mu, Y. Cui, H. Yi, H. Chen, and J. Li. Scaling multicore
databases via constrained parallel execution. In SIGMOD, pages 1643–
1658. ACM, 2016.

[37] X. Yu, G. Bezerra, A. Pavlo, S. Devadas, and M. Stonebraker. Staring
into the abyss: An evaluation of concurrency control with one thousand
cores. Proc. VLDB Endow., 8(3):209–220, 2014.

[38] X. Yu, A. Pavlo, D. Sánchez, and S. Devadas. TicToc: Time Traveling
Optimistic Concurrency Control. In SIGMOD, pages 1629–1642, 2016.

[39] W. Zheng, S. Tu, E. Kohler, and B. Liskov. Fast databases with fast
durability and recovery through multicore parallelism. In OSDI, pages
465–477, 2014.

3877

Authorized licensed use limited to: Northeastern University. Downloaded on April 06,2025 at 07:22:11 UTC from IEEE Xplore.  Restrictions apply. 


