
Hammer: A General Blockchain Evaluation
Framework

Gang Wang†, Yanfeng Zhang∗†, Chenhao Ying‡, Xiaohua Li†, Ge Yu†
†School of Computer Science and Engineering, Northeastern University, Shenyang, China

‡Department of Computer Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
{1910636@stu, zhangyf@mail, lixiaohua@cse, yuge@mail}.neu.edu.cn, yingchenhao@sjtu.edu.cn

Abstract—With the rising proliferation of blockchain systems
and applications, choosing the appropriate blockchains to deploy
applications is critical to achieving optimal performance. Eval-
uation frameworks provide a systematic approach to assessing
and comparing different blockchain systems, guiding application
developers to choose the most suitable one. However, existing
evaluation frameworks still have limitations that affect their
accuracy. First, most frameworks utilize workloads initially de-
signed for traditional databases, which fail to capture the unique
characteristics and requirements of blockchain systems. Second,
these frameworks fail to generate correct results under heavy
workloads due to their imbalanced task processing algorithms.
Third, existing frameworks are tailored only for non-sharding
blockchain architectures, limiting their ability to evaluate diverse
blockchains.

This paper introduces Hammer, a general blockchain evalua-
tion framework that addresses the above limitations. It consists of
two key components: workload prediction and asynchronous task
processing. Workload prediction accurately predicts real-world
workload trends by expanding the scope of temporal control
sequences, providing a more realistic evaluation of blockchain
performance. Asynchronous task processing handles heavy-load
situations, enabling accurate evaluation of blockchain perfor-
mance. Extensive experiments on various blockchains under
Smallbank workload empower application developers to make
informed decisions about blockchain selection and optimization.

Index Terms—Evaluation framework, asynchronous task pro-
cessing, Hammer

I. INTRODUCTION

With the dramatic development of blockchain technology,
more and more new blockchain architectures [1], [2] have
been proposed. The diversity in architectures has prompted
evaluation and comparison of the performance and function-
ality across different types of blockchains [3]. Evaluation
plays a crucial role in building blockchain frameworks since
it provides valuable insights from various perspectives of
blockchain, such as security [4], scalability [5], and availability
[6]. Moreover, just like other evaluation tools, precision, speed,
and scalability are three crucial requirements in the design of
blockchain evaluation [7]. However, the existing evaluation
cannot own these desirable capabilities together.

First, the workload in real-world blockchain applications
varies at different times. In blockchain, time series are used
to represent the number of concurrent transactions within a
specific time interval, which often exhibit bursty and periodic

features. For example, we select the recent 300 hours trans-
action information of Non-Fungible Tokens (NFTs) [8], De-
centralized Finance (DeFi) [9], and Gaming [10] from the last
300 hours, and show the temporal distribution result in Fig.1. It
reveals that the actual workloads exhibit rapid variations and
bursts across different durations. Furthermore, the temporal
features of different applications are different. For instance,
compared to the distributions of Sandbox Games, DeFi and
NFTs are more stable. However, the current blockchain eval-
uation frameworks fail to capture the temporal characteristics
when generating workloads. In contrast, they simply generate
an equal number of workloads during the evaluation of the
blockchain’s performance. Therefore, it is challenging for the
evaluation frameworks to accurately show the actual perfor-
mance of blockchain across different time periods, including
processing speed, response time, and resource utilization.

Second, blockchain performance is usually evaluated by em-
ploying batch testing or interactive testing. In fact, batch test-
ing periodically listens, intercepts, and retrieves new blocks,
which are parsed to extract transaction IDs for matching
transactions in the local queue. The corresponding ID will
be removed from the queue once the match is correct. The
testing requires a time complexity of O(mn), where n is
the length of the queue and m is the number of transaction
IDs detected within the new blocks. Therefore, it suffers a
serious delay with the increase in the number of transactions.
In contrast to batch testing, interactive testing keeps listening
and processes each new block once it appears. Although the
blocks can be processed in time, it consumes a lot of resources
for continuous listening.

Third, the existing blockchains are built based on sharded
or non-sharded architectures. In fact, compared with the non-
sharded blockchains, such as Fabric [11], Ethereum [12], and
Neuchain [1], the sharded blockchains like Meepo [2] are
attracting more and more attention since they offer higher
throughput and less confirmation time. However, the exist-
ing evaluation cannot adapt to the non-sharded blockchain.
Moreover, to leverage the strengths of different programming
languages, existing blockchains are built employing various
languages. For instance, Ethereum and Fabric employ Go,
while Neuchain and Meepo are developed with C++ and Rust,
respectively. Nevertheless, the previous evaluations can only
accommodate a subset of them. For example, Blockbench only
supports Rust and Go, while apart from Go, Caliper also∗Corresponding Author: Yanfeng Zhang

391

2024 IEEE 44th International Conference on Distributed Computing Systems (ICDCS)

2575-8411/24/$31.00 ©2024 IEEE
DOI 10.1109/ICDCS60910.2024.00044

20
24

 IE
EE

 4
4t

h 
In

te
rn

at
io

na
l C

on
fe

re
nc

e 
on

 D
ist

rib
ut

ed
 C

om
pu

tin
g 

Sy
st

em
s (

IC
DC

S)
 |

 9
79

-8
-3

50
3-

86
05

-9
/2

4/
$3

1.
00

 ©
20

24
 IE

EE
 |

 D
O

I: 
10

.1
10

9/
IC

DC
S6

09
10

.2
02

4.
00

04
4

Authorized licensed use limited to: Northeastern University. Downloaded on April 06,2025 at 07:04:04 UTC from IEEE Xplore.  Restrictions apply. 



0 50 100 150 200 250 300
Time(hour)

0

5

10

15

20

Tr
an

sa
ct

io
n 

C
ou

nt
s

NFTs

(a) NFTs

0 50 100 150 200 250 300
Time(hour)

0

1

2

3

4

5

6

7

Tr
an

sa
ct

io
n 

C
ou

nt
s

DeFi

(b) DeFi

0 50 100 150 200 250 300
Time(hour)

50

100

150

200

Tr
an

sa
ct

io
n 

C
ou

nt
s

Sandbox Games

(c) Sandbox Games

Fig. 1: Temporal distribution of real workload

supports Java and C++. The limited scalability in adapted
architecture and supported language restricts the applicability
of different evaluation frameworks.

To overcome the limitations of existing works, we design
a novel evaluation framework, namely, Hammer, comprising
two key components. Workload temporal prediction that is
employed to enhance evaluation accuracy, and asynchronous
task processing utilized to reduce processing time in batch
testing. In fact, the workload temporal prediction is a learning-
based algorithm meticulously trained with actual workload
data extracted from NFTs, DeFi, and Sandbox Games so that
it can grasp the temporal intricacies of blockchain workloads
and predict their future trends. Furthermore, to adeptly handle
scenarios with substantial workloads, transaction processing
optimizes the matching process by establishing a hash index,
which can effectively reduce the time complexity to O(1).
In fact, it polls and parses the transaction IDs in the last
block, after which, a bloom filter is utilized to sift out non-
existent transactions. For potentially existing transactions, hash
indexing is deployed to determine their exact locations. In
handling hash collisions, it further expands the length of the
hash table. Finally, to ensure broad applicability and scalabil-
ity, Hammer also offers a set of generic remote procedure
call (RPC) interfaces to accommodate different blockchain
architectures.

In summary, our contributions are as follows.
1) We develop a general blockchain evaluation framework,

namely, Hammer. It contains two key components. The
first one is workload prediction aiming to effectively
predict real workload trends by expanding the scope
of temporal control sequences. The second is the asyn-
chronous transaction processing that is applied to handle
heavy-load situations. Offering a set of generic remote
procedure call (RPC) interfaces, Hammer is able to
adapt to both sharded and non-sharded blockchains
constructed by various programming languages, such as
C++, Rust, Go, and Java 1. To the best of our knowledge,
this is the first generic blockchain evaluation framework.

2) The workload prediction lays a solid foundation for
integrating time sequences into standard benchmark

1The system is also compatible with all mainstream programming lan-
guages, including Solidity and JavaScript.

testing. In fact, it is a learning-based algorithm meticu-
lously trained with actual workload data extracted from
NFTs, DeFi, and Sandbox Games. Compared with the
traditional transformer and revolution neural networks
(RNN), the experiments on DeFi, NFTs and Sandbox
Games show that the mean absolute error (MAE) of
workload prediction is decreased by more than 56%.

3) The asynchronous task processing enables accurate and
efficient evaluation of blockchain performance and re-
sponsiveness. In fact, it optimizes the matching process
by establishing a hash index, which can effectively
reduce the time complexity to O(1). Compared with
the traditional batch testing, the experiment results show
that the execution time of asynchronous task processing
is decreased by more than 50% when the number of
transaction is 100, 000.

The rest of the paper is organized as follows: Section II
provides the necessary background. Section III presents the
system design. Section IV presents a learning-based time series
model. Section V shows the evaluation results and analysis of
them. Section VI reviews related work, and we conclude in
Section VII.

II. BACKGROUND

In this section, to promote understanding of our evalua-
tion frameworks, we first briefly introduce several types of
blockchain architectures. Then, we highlight the workload
limitations of existing evaluation frameworks and then outline
the interactive methods of blockchain evaluation.

A. Blockchain Architectures

1) Non-Sharded Architecture: Bitcoin [13] introduces the
concept of blockchain and categorizes blockchains into per-
missioned and permissionless based on the permission mech-
anism of blockchain nodes. In permissionless blockchains,
nodes can join or leave the network at any time, while in
permissioned chains, nodes must be authorized when joining
the network. Furthermore, according to the scope of node
partitioning, blockchain can be further classified into non-
sharded and sharded architectures. In the Non-Sharded, every
node in the blockchain is required to maintain and process all
the data of the entire network. Therefore, it imposes higher

392

Authorized licensed use limited to: Northeastern University. Downloaded on April 06,2025 at 07:04:04 UTC from IEEE Xplore.  Restrictions apply. 



requirements on data processing and storage capabilities. Cur-
rently, the most widely-recognized blockchain systems, includ-
ing Bitcoin [13], Ethereum [12], Fabric [14], and Neuchain [1]
are based on the non-sharded architecture.

2) Sharded Architecture: The core concept of sharding
involves a ’divide and conquer’ strategy, where all nodes are
segmented into distinct groups, each referred to as a shard.
Subsequently, tasks are allocated across these shards for simul-
taneous processing, aiming to enhance the overall performance
of the blockchain. The sharded blockchain works as follows.
i) Divide the blockchain network into several shards, where
each shard contains a subset of nodes and the corresponding
ledger. ii) Perform actions in each shard, including transaction
validation, status updates, and so on. iii) To adapt to various
workloads and network scales, the network dynamically forms
new shards to optimize performance and meet requirements.
In fact, the sharded architecture is an optimization method to
accelerate the execution and verification processes. However,
the sharded architecture brings new challenges to the eval-
uation framework, including the impact of unbalanced loads
within and between partitions on the overall performance of
the blockchain.

B. Benchmark Workloads

BlockBench [4] is the pioneering blockchain benchmarking
framework that focuses on evaluating micro/macro metrics for
permissioned blockchains. BlockBench evaluates blockchains
based on database benchmarks, which in fact cannot adapt
to the complicated blockchain applications and workloads.
Similarly, [11] applies the classic TPC-C benchmark to Hy-
perledger Fabric, and presents a structured approach for trans-
forming the original database scheme into a smart contract
based data model. The Diablo Benchmark Suite [6] offers
various workloads, such as FIFA and YouTube. However,
these workloads do not have the characteristics of blockchain
applications. Blockbench V3 [7] provides four kinds of real-
world blockchain workloads, such as token exchange, and NFT
minting. Although Blockbench V3 captures the characteristics
of some real blockchain workloads, it fails to follow the
temporal features of workloads. In fact, apart from the real
workloads, the evaluations such as YCSB [15] and SmallBank
[16] also utilizes the synthetic workloads. The real workloads
are extracted from the real applications while lacking control-
lability and flexibility. In contrast, the synthetic workloads are
more flexible and controllable but can not reflect the actual
application characteristics.

Therefore, we apply self-defined workloads, which are
generated by a learning-based algorithm trained by the real
application data. Compared with the real and synthetic data,
they can reflect the characteristics of real workloads while
maintaining controllability and flexibility, making the evalua-
tion of blockchain systems more comprehensive and adaptable.

C. Blockchain Benchmarking Tools

Performance benchmark frameworks such as TPC-C [17],
YCSB [15] and SmallBank [16] are well-established and

have essentially formed the industrial standards. However,
these frameworks cannot be directly applied to benchmark
distributed ledger systems due to their specific architecture and
APIs [3]. With the proliferation of an increasing number of
blockchain systems, it is crucial to design a standardized and
generic evaluation framework to ensure a fair and accurate per-
formance evaluation. There are several popular performance
benchmarks dedicated to evaluating blockchain systems, as
listed in Table I. We will focus on thoroughly understanding
the interaction-based blockchain evaluation frameworks.

1) Batch Testing: Blockbench and its extended version
Blockbench V3 utilizes the batch testing method. It works
as follows. i) When the client submits a transaction to the
blockchain system, it returns a transaction ID to check trans-
action status later. ii) The driver maintains an unconfirmed and
incomplete transaction queue. New transaction IDs are added
to the queue by worker threads. The polling thread periodically
calls the API to get the confirmed blocks as well as the
height H . The driver then extracts the transaction list from
the contents of the acknowledgment block and removes the
matching transaction list from the local queue. iii) Calculate
the throughput of successfully committed transactions.

However, the batch testing method brings two challenges.
ξ1) Choosing an appropriate polling thread time interval is cru-
cial for both system performance and accuracy. If the interval
is too large, the calculated transaction latency will be skewed
since the method relies on the time to poll for a new block
as the transaction’s completion time. A large time interval
leads to missing block generation time and thus results in
overestimating transaction latency. Conversely, if the interval is
too small, the polling thread over-polls and wastes computing
resources. ξ2) When facing a large volume of test transactions
and a significant queue length, it consumes more time for the
extraction of transaction lists from confirmed blocks and the
subsequent deletion of matching transaction lists in the local
queue. This leads to an increase in the operation time, while
cannot accurately reflect the instantaneous performance of the
system.

To formally prove the increase in time complexity when
facing a large volume of test transactions and a significant
queue length, we can define the time complexity of the
operation as a function of the input size. Let’s denote: n as
the size of the queue, and m is the number of transactions in
the confirmation block, and T (n,m) as the time complexity
of the operation. Now, let’s assume that the time of extracting
transaction lists from confirmed blocks and deleting matching
transaction lists in the local queue are proportional to n and
m, and is denoted as

f(n,m) = k · n ·m (1)

where k is a constant. The time complexity of the overall
operation can then be defined as the sum of this function over
all possible inputs:

T (n,m) =
n∑

i=1

m∑
j=1

f(i, j) (2)

393

Authorized licensed use limited to: Northeastern University. Downloaded on April 06,2025 at 07:04:04 UTC from IEEE Xplore.  Restrictions apply. 



TABLE I: Summary of blockchain benchmarking tools

Frameworks Supported Type Supported Language Supported Architectures Workloads Testing Methods
Blockbench [4] Permissioned Rust, Go Non-Sharding Synthetic workload Batch
Blockbench v3 [7] Permissioned Rust, Go Non-Sharding Real workload Batch
Caliper [18] Permissioned Java, C++, Go Non-Sharding Self-defined Interactive
Bctmark [19] Permissioned Go Non-Sharding Synthetic workload Interactive
Diablo-v2 [6] Permissioned Move, Go Non-Sharding Real workload Interactive
HyperledgerLab [20] Permissioned Go Non-Sharding Real workload Interactive
Gromit [21] Permissioned Go, C++, Rust, Move Non-Sharding Synthetic workload Interactive
BlockCompass [5] Permissioned Go, Python Non-Sharding Self-defined Interactive
DLPS [22] Permissioned Go, Python, Rust Non-Sharding Synthetic workload Interactive

Hammer (ours) Permissioned and Go, C++, Rust, Java Non-Sharding Self-defined Batch+Task
Permissionless and Python and Sharding processing algorithm

which increases with the growth of n and m.
2) Interactive Testing: This method is commonly utilized

by most blockchain benchmarking frameworks. It works as
follows: i) The client sends transactions to the blockchain
system, and waits for processing by blockchain nodes. ii) The
evaluation driver thread is responsible for receiving responses
from the blockchain network, parsing the responses, determin-
ing the success or failure of each transaction, and recording
the results for subsequent performance analysis. iii) Based on
the recorded data, the evaluation framework calculates overall
throughput and transaction latency. Obtaining real-time re-
sponses for each transaction can provide real-time performance
metrics for the system, this method requires monitoring and
parsing responses for each transaction, potentially resulting in
significant resource wastage.

III. FRAMEWORK DESIGN

In this section, we present a blockchain evaluation frame-
work that is compatible with both permissionless and permis-
sioned blockchains. We first provide an overview of the system
design and introduce the key components in Section III-A.
Then, we describe the execution flow details in Section III-B.
The task processing algorithm is presented in Section III-C,
after which, we provide two key techniques in Section III-D.

System Under Test

Client A
Generate

Client N

…
…

Client a

Client n

…
…

Control Sequence

Control Sequence

① 

① 

① 

① 

①  

① 

③ 

③ 

③ 

③ 

Signature

④ 

④ 

Redis MySql

S
er

v
er

S
er

v
er

Blockchain 1
…
…

 ⑤   

 ⑤   

⑦ 

Blockchain N

Data Visualization

Pull

Testing

Commit

P
u
sh

 ⑥    

Sync

Workload

Fig. 2: Overall system architecture.

A. Overview and Key Components

This section provides an overview of our evaluation frame-
work, Hammer. The overall architecture is shown in Fig.
2. The client parses the workload configuration files and
generates executable workloads according to her offline work-
load generation strategy. All workloads are stored in the
configuration files, and the server processes and signs them
asynchronously through a pipeline. We replaced the queue
with a vector list for storing transaction IDs, due to the high
overhead associated with enqueue and dequeue operations in
queues. The local vector list is updated only upon obtaining
a new block. To efficiently handle the state of vector lists,
we utilized Redis [23]. As a memory-based key-value storage
system, it offers higher data processing speed and efficiency
compared to MySQL [24]. Redis periodically polls, fetches,
and merges the statuses of all vector lists. Subsequently,
the records of Redis are committed to MySQL to meet the
customization of the visualization layer for different analysis
requirements. Some key components are described as follows.

Client SUTServer Visualization

① Deploy SUT and generate workload

① Pull control sequence

③ Signature transactions

④ Push vector list to Redis

⑤ Execute the test

⑥ Commit data to MySql

⑦ Push data to visualization

 ①

 ①

 ① 

 ③

Redis

 ④

 ⑤

MySql

⑥ 

⑦ 

Fig. 3: Execution flow of hammer.

1) Client: In our framework, the client has two functionali-
ties. i) The client is required to deploy the testing environment.
In existing blockchain systems, deployment and configuration
are complex and often suffer from building failures due to
mismatched dependencies. To address this issue, we utilize
the Ansible [25] component to develop automated deploy-
ment scripts, simplifying the deployment and configuration

394

Authorized licensed use limited to: Northeastern University. Downloaded on April 06,2025 at 07:04:04 UTC from IEEE Xplore.  Restrictions apply. 



processes of the blockchain environment. ii) After building
System Under Test (SUT), the client is required to generate
workloads as follows. First, the workload profile is parsed to
obtain information such as workload read/write ratio, distribu-
tion, and so on. Secondly, the payload is generated based on
custom application actions.

2) Server: The server is a key component that serves as
the bridge between the client and SUT. Since SUTs have two
kinds of architecture, the sharded and the non-sharded, the
driver requires to address the following two issues. i) There
is no unified communication mechanism. ii) Differences in
the design language and architecture. To tackle this problem,
we design a generic interface, which integrates SDKs of
various blockchain platforms and introduces JSON-RPC. This
innovation not only enhances the interoperability of the system
but also addresses compatibility issues among different codes
by applying standard formats. The server has two additional
crucial functionalities: new block monitoring and transaction
status updating. Since our system is based on the batch testing
method, the monitoring is indispensable. Once the server
detects a new block, it records the corresponding block time.
Subsequently, the server extracts the list of transactions from
the content of the confirmed block and updates the status of
these transactions in the local vector list.

3) Visualization: The data visualization layer adopts an
OLAP-like schema to enable users to perform in-depth analy-
sis of blockchain performance based on temporal states. This
layer is developed according to Grafana [26], which supports
multiple table types, such as histograms and line charts. The
SQL engine is employed to provide complex queries, pull data
from MySQL, and display it. This comprehensive design aims
to provide a powerful and intuitive set of tools to meet their
diverse needs for system performance and data state analysis.

B. Exection Flow

Fig. 3 shows the execution flow, which consists of three
phases: preparation, execution, and visualization. In the prepa-
ration phase, we deploy the SUT and generate workloads that
match real-world applications to ensure the test environment is
ready. The execution phase involves executing the workload
on the blockchain and monitoring its completion, including
collecting performance metrics such as throughput and latency.
In the visualization phase, we process the collected data for
visualization and analyze the SUT’s performance.

1) Preparation Phase: Before starting a test, it is necessary
to make adequate preparations. First, we deploy the SUT and
provide automated deployment scripts to replace the manual
deployment process. Currently, automated deployment scripts
are available for four typical blockchain systems. Clients
can automatically deploy SUTs using Ansible’s playbook
feature. After deploying SUT, the client reads the local JSON
configuration file to parse information about the SUT and
workload. As shown in step 1⃝ in Fig. 3, the client executes
the corresponding commands to generate workload, which are
persisted to a file and sent to the server via secure copy
(SCP). Second, the server (step 1⃝) pulls the control sequence,

which is a time sequence to control the number of concurrent
transactions within a time period. It simulates the timing
features of real-world blockchain applications. The details of
the control sequence will be further presented in Section IV.
Note that steps 1⃝ and 1⃝ can be executed simultaneously.
Finally, the workload file is read and signed by the server
(step 3⃝). We optimize the signature process by applying
an asynchronous signature method, which will be further
presented in Section III-D1.

TABLE II: Description of throughput and latency

Metrics SQL Statement

TPS
SELECT COUNT(*) AS TPS

FROM Performance WHERE STATUS = ’1’ AND
TIMESTAMPDIFF(SECOND, start time, end time) ≤ 1

Latnecy
SELECT tx id, start time,end time,

TIMESTAMPDIFF(MILLISECOND, start time,end time)
AS Latency FROM Performance

2) Execution Phase: In the execution phase, we propose
pipelined preparation and execution strategies to eliminate the
bottleneck of long transaction waiting times. The pipelining
preparation and execution method will be presented in III-D2.
In step 4⃝ the server pushes the initialized vector list to the
Redis cluster. Then, during the testing process, the driver will
regularly update the vector list on the Redis cluster. In step 5⃝
we perform tests by sending transactions to SUT and polling
to retrieve the latest block. Next, we parse the block and
update the transaction status in the vector list. If the transaction
is successfully committed, the status of the corresponding
transaction is set to 1. To optimize the performance of vector
lists and improve the overall response time of the system, we
propose an algorithm for dynamic indexing and fast query and
update. The details can be found in Section III-C. In step 6⃝,
the Redis cluster periodically transfers data to the MySQL
database to facilitate data processing during the visualization
phase.

3) Visualization Phase: In the visualization phase, we em-
ploy the Prometheus middleware. Prometheus (a state moni-
toring system) [27] is used as a benchmark suite for collecting
information. It pulls the internal metrics of each node during
or after our evaluation, including CPU, memory, and network
input and output consumption. In our system, we use the node-
exporter (a Prometheus plugin) to monitor Docker containers
or Ethereum Virtual Machine (EVM). The collected data will
be inserted into a MySQL table named Performance. To create
a chart in Grafana, we can choose the appropriate chart type
and metrics, write SQL query logic, and set the refresh rate
for data retrieval from the database. Additionally, data can be
periodically pushed to Grafana for visualization. In step 7⃝,
data is periodically pushed to Grafana for visualization. For
example, if we want to measure the throughput and latency of
the blockchain, we need to write SQL statements to determine
the calculation logic of transactions per second (TPS) and
latency. Table II shows the calculations for throughput and
latency. We retrieve the transaction start time and end time
from the table using a SQL statement, and the latency is

395

Authorized licensed use limited to: Northeastern University. Downloaded on April 06,2025 at 07:04:04 UTC from IEEE Xplore.  Restrictions apply. 



calculated as the difference between the two values. Therefore,
if the transaction latency is less than one second, the counter
will be incremented.

C. Task Processing Algorithm

The workload is sent from the client to the local server
and is processed in parallel on the local server. We refer
to the process from sending the workload to its complete
processing as a task. Algorithm 1 describes the task processing
logic. First, it initializes the start and end times for each
transaction. For each transaction in set T , the algorithm
extracts the client id (c id) and server id (s id) (Lines 1-
3). In transaction processing, c id and s id play two roles.
One is for security (e.g., preventing flooding attacks), and the
other is for monitoring the load on each client and server.
When sending a transaction, the server obtains the start time
and transaction id (t id, Line 4). Then, a transaction structure
is created, including the start time, end time, and transaction
status. The structure is inserted into the vector list and indexed
with the transaction id (Lines 5-7). To ensure concurrent
transaction execution without sacrificing system performance,
we propose the method of dynamic index creation. Transaction
ids are unordered, so it is impractical to use data structures
like B-tree or B+-tree. Our approach utilizes a hash table
and leverages its efficient updating capabilities. However, this
approach also presents new challenges. For example, how
to address the hash collisions? In our strategy, we attempt
to minimize the occurrence of hash collisions by expanding
the length of the hash table to improve the efficiency of
the index (Lines 8-9). When a new block is generated, we
first record the time of block creation, which is considered
as the time when transactions are successfully committed
(a.k.a, end time). Subsequently, we initiate the block fetching
operation. This operational approach mitigates the impact of
network bandwidth on latency. Finally, the block is parsed to
extract transaction information (Lines 10-13). In the querying
process, we initially utilize a Bloom filter for rapid exclusion
of transactions not in the index. Such process can significantly
save time and bring some other benefits in distributed testing.
If the query result is present in the Bloom filter, we proceed
to locate it using a hash table. When the hash table query
yields no conflicts, we directly modify the transaction’s status
to 1 and append the corresponding end time. However, in
case of a collision in the hash table, we meticulously search
each element in the bucket sequentially (Lines 14-19). This
approach ensures logical consistency when handling conflicts.

D. Optimization Techniques

In Hammer, we present two key techniques as follows.
1) Asynchronous Signature Method: Unlike database work-

load, each blockchain workload contains some client signa-
tures. The preparation phase in the existing system generates
and loads the workloads into a message queue, where the
system requires to wait for the completion of loading pro-
cess before moving to the execution phase. After extensive

Algorithm 1 Task Processing Algorithm

Input: A set of transactions T
Output: Return success or false
1: Initialize the start time (St) and end time (Et) of the

transaction;
2: for all t in T do
3: Extract the transaction generation client id (c id) and

the sending server id (s id);
4: St, t id← Send transaction t ;
5: transaction info ← Create a structure that in-

cludes St, c id, s id, t id, Et, chainname, and
contractname;

6: Store the transaction info in a vector list.
7: index← Dynamically create the index for the t id
8: Update the index table with the new index
9: end for

10: while New blocks are being generated do
11: Et ← Set Et to the current time
12: block ← Get the newly generated block;
13: transactions ← Extract all transactions from the

block;
14: for all transaction in transactions do
15: if t id does not satisfy Bloom filter criteria then
16: return false
17: end if
18: index← Find the index in the index table by t id;
19: Update the status and E t of the transaction in the

index table;
20: end for
21: end while
22: return success

research, the workload generating process is serialized. As
illustrated in the example, the Caliper implementation is
depicted in Fig. 4a. The signature of a transaction does not

Generation Signature Execution

T1

T2

T3

Time

Time

Time

(a)   Caliper implementation

(b)   Asynchronous signature

(c)   Pipelining and task execution

T1

T2

T3

T1

T2

T3

Fig. 4: Asynchronous signature and pipelining.

depend on any previous result. Therefore, we optimize it with
an asynchronous signatures method. This process is illustrated

396

Authorized licensed use limited to: Northeastern University. Downloaded on April 06,2025 at 07:04:04 UTC from IEEE Xplore.  Restrictions apply. 



in Fig. 4. It reduces the time of signing process but requires
to wait for all transactions to be ready for execution.

2) Pipelining Preparation and Execution: As mentioned in
the previous subsection, tasks require to wait until the prepara-
tion phase is completed before execution. For the first arriving
task, it suffers a long waiting time, which seriously affects the
efficiency of the evaluation. Therefore, we optimize it with
pipelining preparation and execution. Specifically, as shown in
Fig. 4c, tasks T1, T2, and T3 can be executed simultaneously,
which decreases wait time and improves response time to
better meet user needs. In other words, the preparation phase
and the execution phase can be overlapped.

IV. LEARNING-BASED SOLUTION

In the previous section, we have emphasized the importance
of control sequences. However, the length of the control
sequence for real workloads is limited, which cannot meet the
requirements of large-scale testing. In this section, we propose
a learning-based solution. It requires to address the following
questions. 1) how to capture long-term dependencies? 2) how
to capture short-term dependencies? 3) how to capture sudden
burst?

0 X1 X2 XtXt-1Xt-2 …… 

0

INPUT

H0

Multi-Head Attention

BiGRU

31 24 87 …… 148 36Time Series

 ……  …… 

 …
…

 

 …
…

 TCN 

H1 H2 H15 Ht

Kt-1 Kt-2 Kt-15 k1

…… 

h1 h2 h15 ht

…… 

…… 

k0

…… 

…… 

m1 m2 …… mp…… m5

Output

Yt+1

Fig. 5: Model Architecture

We propose a learning-based time control sequence model.
It consists of two key models: i) The TCN [28] model, which is
able to effectively capture long-distance dependencies. ii) The
BiGRU [29] model, which focuses on capturing short-distance
dependencies. Fig. 5 illustrates the overall architecture of time
series model. The working procedure of model is as follows.
First, we determine a time threshold in the real workload,
count the concurrent transactions within the time threshold,
and eventually generate a control sequence that increases over
time. By leveraging the time series control sequence as training
data, the TCN model is able to learn the long-term dependency
information within the control sequence (e.g. periodicity). This
permits the model to better understand and capture long-term
dependencies in the sequence data. Second, the TCN model’s
output is fed into the BiGRU model, which comprehensively

captures the features in the sequence data by simultaneously
capturing both previous and forward information. Finally, the
multi-head attention mechanism captures sudden bursts in the
temporal control sequence. We next present the model design.

A. Algorithm Illustration

Our target is to predict time control sequences, which can
be formally defined as: x = {x1, x2, x3, . . . , xt}, where x is
a set of control sequences for xi ∈ R, i ∈ (1, 2, 3, . . . , t). t
with the size t of control sequence. We predict xh+t based on
x = {x1, x2, x3, . . . , xt}, where h is the prediction horizon.

We first describe the TCN module. TCN has a convolu-
tion structure that controls the length of the sequence mem-
ory, which is a sequence modeling structure including one-
dimensional convolution, causal convolution, and dilated con-
volution. Causal convolution ensures that the model can only
use past information for prediction and cannot rely on future
information. This allows the model to more effectively capture
the causal relationships in time series data so that it is more
suitable for time series modeling tasks. Dilated convolution
addresses the issue of feature extraction limitations imposed
by the size of the convolutional kernel in causal convolution.
It can capture a larger receptive field. The formalization of
feeding the input from the embedding layer into the TCN
model can be represented as,

F (xt) = (F ∗ x)(xt) =
k∑

i=1

f(xt) · xt−k·d (3)

where F = {f1, f2, f3, . . . , fk} is the filter, ∗ is the convolu-
tional operation, d is the expansion convolution and t− k · d
is the direction of the past. When d = 1, a dilated convolution
reduces to a regular convolution. Larger dilations expand the
convolutional network’s receptive field, allowing the output
of top layer to represent a wider range of inputs. Next, the
TCN model’s output is fed into the BiGRU model. GRU
is a practical variant of the LSTM network. Compared to
LSTM, GRU is easier to train and can significantly improve
training efficiency [30]. The GRU has two gates: one is a reset
gate rt and the other is an update gate zt. The update gate
regulates the information preserved from the previous state
ht−1 and the information received from the candidate state h̃t

at the current time step. The reset gate determines whether the
computation of the candidate state is dependent on the state
of the previous time step. The specific calculation process of
GRU is illustrated by

rt = σ (Wr · [ht−1, x̃t])

zt = σ (Wz · [ht−1, x̃t])

h̃t = tanh
(
Wh̃ · [rt · ht−1, x̃t]

)
ht = (1− zt) · ht−1 + zt · h̃t

(4)

where x̃t = F (xt), σ is a decay factor, x̃t is the input vector
and ht is the hidden state vector at time t. BiGRU consists
of GRUs in two directions. This allows each output unit to

397

Authorized licensed use limited to: Northeastern University. Downloaded on April 06,2025 at 07:04:04 UTC from IEEE Xplore.  Restrictions apply. 



combine previous and current states to determine the value of
the current state as

h⃗t = GRU
(
x̃t, h⃗t−1

)
←−
h t = GRU

(
x̃t,
←−
h t+1

)
ht = h⃗t ⊕

←−
h t

(5)

Considering the potential sudden bursts in the dataset, we also
employ a multi-head attention mechanism. The single-head
attention mechanism is formulated as

Attention(Q,K, V ) = softmax

(
QKT

√
dk

)
(6)

where Q, K, and V are the query vector matrix, key vector
matrix, and value vector matrix, respectively. Multi-Head
Attention utilizes multiple queries to perform parallel compu-
tations to select multiple pieces of information from the input.
Each attention focuses on a different part of the input, which
is then concatenated as

MultiHead(Q,K, V ) =

Concat (head1, head2, . . . , headh)W
O

headi = Attention (Qi,Ki, Vi)

(7)

where WO is the weight matrix of the output.
Model Training and Inference. The loss function for this

model is the mean absolute error (MAE). Equation is as
follows.

MAE =
1

n

n∑
i=1

|Yi − Ŷi| (8)

where Yi is the real control sequence, and Ŷi is the estimated
control sequence. The training process concludes when the
model’s loss converges. In the inference phase, the model
preprocesses the original transaction logs by selecting a time
slice length and counting the concurrency for each time slice.
This statistical data is then added to the embedding vector list
for evaluation.

V. EXPERIMENTAL RESULTS

In this section, we evaluate Hammer from different aspects.
The experiment setup is briefly described as follows.

Environment. We conduct the evaluation on an Aliyun
ECS cluster with 5 nodes. Each node is an “ecs.e-c1m2.large”
instance that has 2 vCPUs and 4GB memory with Ubuntu
22.04 LTS OS. The network bandwidth between nodes is about
100Mbps. For Fabric, one node is dedicated as the orderer
and the others are configured as peer nodes. For Ethereum, all
nodes are workers. For Neuchain, one node works as an epoch
server, another works as a client proxy, and other nodes as
block servers. These blockchains all belong to the non-sharded
architecture.

Sharding. Our evaluation framework also supports sharded
architecture. In the Meepo, a sharded blockchain, we deploy
two shards, where three nodes are configured to participate in
both consensus and transaction processing for both shards. The
experiments are based on static sharding, as the shard scale and

Et
he

re
um

Fa
br

ic

M
ee

po

Ne
uc

ha
in

Blockchain Systems

0

5000

10000

Th
ro

ug
hp

ut
 (T

PS
)

18.6 239.0

2356.0

8688.0

Et
he

re
um

Fa
br

ic

M
ee

po

Ne
uc

ha
in

Blockchain Systems

0

2000

4000

La
te

nc
y 

(m
s)

4800.0

100.0

1430.0

0.78

Fig. 6: Throughput and latency of different blockchains.

Hammer BlockBench Caliper
0

50

100

150

200

250

Th
ro

ug
hp

ut
 (T

PS
)

Ethereum Throughput
Fabric Throughput

Hammer BlockBench Caliper
0

2000

4000

6000

8000

La
te

nc
y 

(m
s)

Ethereum Latency
Fabric Latency

Fig. 7: Comparing the peak performance of the blockchains.

account distribution are static. We set 5,000 accounts in each
shard. Then, let one account in each shard generate random
transfers. In this paper, we do not specifically distinguish
between intra-shard and inter-shard transactions, aiming to
demonstrate the versatility of our evaluation framework.

Workload. SmallBank is employed to simulate a basic
banking system and offers several fundamental banking oper-
ations. Its primary operations typically include deposit, with-
draw, transfer, and amalgamate. The access patterns of these
four operations follows a uniform distribution.

A. Overall Performance

To validate the versatility of our evaluation framework,
we conduct tests on the peak throughput and latency of
various types of blockchain systems. All the experiments are
performed three times. As illustrated in Fig. 6, Ethereum’s
throughput is the lowest at 18.6 TPS and it has the highest
latency at 4.8 seconds due to the large overhead of the proof
of work (PoW) consensus mechanism during the ordering
phase. Meepo, employing sharding technology to improve
throughput, also exhibit high latency. In contrast, Neuchain,
leveraging a deterministic consensus mechanism and omitting
the ordering phase, achieves a high throughput of 8688 TPS
while maintaining low latency.

We compare Blockbench and Caliper, and conduct peak per-
formance tests on Ethereum and Fabric, as these frameworks
do not support testing for sharded architectures. The results
of all three evaluation frameworks in Fig. 7 show that the
performance Ethereum is the worst. This is primarily due to
the time-consuming process of solving mathematical problems
in the PoW mechanism, which leads to congestion in the
Ethereum network and prolongs transaction confirmation times
under heavy request loads. Since all evaluation frameworks

398

Authorized licensed use limited to: Northeastern University. Downloaded on April 06,2025 at 07:04:04 UTC from IEEE Xplore.  Restrictions apply. 



monitor transactions at the millisecond level, it is challenging
to significantly distinguish their differences. In the perfor-
mance evaluation of Fabric, Hammer reports a throughput
of 239 TPS, significantly higher than 176 TPS reported by
Caliper. This discrepancy may stem from two reasons: First,
under heavy load, network congestion may lead to the loss of
response information for transactions successfully submitted
on the blockchain. Second, the event listening process con-
sumes substantial computational resources, especially under
heavy load, so that the resource is unavailable for processing
transactions and blocks. The performance of Blockbench on
Fabric is worse than that of Hammer, since the task processing
algorithm of Blockbench is more complex. Compared to
Blockbench, Hammer demonstrates superior performance due
to its optimized algorithms.

B. Effect of Optimizations

In blockchain performance evaluation, generating workloads
is a time-consuming process. If clients only have lower com-
putational power, generating workload will require long time,
so that the blockchain is always in an inactive state, which
leads to a inaccurate measurement of the peak throughput. To
address this problem, we propose an asynchronous signature
to accelerate this process in Section III-D1. We also propose
the pipelining technique to overlap the preparation phase and
the execution phase in Section III-D2, which can further
decrease the processing time. In Fig. 8, the y-axis represents
the load generation time. The results show that by imple-
menting asynchronous pipelining techniques (Asynchronous
Pipeline) achieves approximately 6.88x acceleration compared
to naive synchronous serial execution (Serial). Blockbench
conducts tests using batch processing. However, during the
execution phase, it may encounter high complexity issues due
to matching and deletion operations, especially in a distributed
environment. If a transaction to be matched does not exist
locally, it is necessary to traverse the entire queue, thus in-
creasing processing time and complexity. To address this issue,
we present a task processing algorithm. The batch testing
algorithm periodically monitors and collects new blocks. It
then extracts transaction ids to match with a local queue and
removes the corresponding ids after the successful matching.
In Fig. 9, the x-axis represents the queue length (i.e., the
number of transactions), the three differently colored bars
indicate the number of transactions parsed from blocks, and
the y-axis denotes the algorithm’s execution time. We observe
that with varying block quantities, the execution time of our
algorithm remains stable and is reduced by 4x compared to
the batch testing algorithm. This is attributed to the index
hash tables utilized in our approach with increasing length
to minimize conflicts, bringing the time complexity close to
O(1), whereas the execution time of the original algorithm
exhibits linear growth.

C. Correctness

To verify the accuracy of our test results, we conduct
validation on the Fabric blockchain system. The Hammer tool

20 40 60 80 100
Number of transactions(K)

0

25

50

75

100

125

150

Ti
m

e(
s)

Asynchronous Pipeline
Serial

Fig. 8: Comparing asynchronous pipeline and serial workload
generation method.

60 80 100
Number of transactions(K)

0

200

400

600

800

Ti
m

e(
m

s)

(a) Transaction Processing Algorithm

100
1000
10000

60 80 100
Number of transactions(K)

0

1000

2000

3000

(b) Batch Testing Algorithm

100
1000
10000

Fig. 9: Comparing task processing algorithm with batch testing
algorithm.

is utilized to perform testing on Fabric. It is configured to
process a total of 100,000 transactions at a rate of 600 TPS.
After completing the tests, we use a Python script to analyze
the logs of peer nodes in Fabric and compare the outcomes.
The results demonstrate that our statistical data matches the
log analysis results, thereby confirming the correctness of our
system’s test results.

D. Usability

To verify the usability of Hammer, we measure the changes
in Hyperledger Fabric latency and throughput as the number
of concurrent clients or threads increases or decreases. The
experimental setup is the same as mentioned in V-C. Due
to Ethereum’s use of the Proof of Work (PoW) consensus
mechanism, a characteristic feature is the generation of a
new block every 15 seconds, leading to a relatively fixed
transaction processing rate. Therefore, these limitations of
Ethereum may affect the ability to validate the usability of
Hammer. Fig. 10 shows that when the number of threads
on the client is 2, throughput is highest and latency is
lowest. However, throughput begins to decrease and latency
increases as the number of threads increases. In fact, the
client has 2 vCPUs, and when the number of threads is
2, each CPU core processes one thread, permitting parallel
execution without resource contention. However, increasing
the number of threads results in competition for CPU cores
and increased scheduling overhead, which reduces throughput
and increases latency. Fig. 10 shows that as the number of
clients increases from 1 to 2, the throughput of the system
peaks. However, when the number of clients reaches 3 or

399

Authorized licensed use limited to: Northeastern University. Downloaded on April 06,2025 at 07:04:04 UTC from IEEE Xplore.  Restrictions apply. 



2 4 6 8 10
Client Threads

190

200

210

220

230

240

Th
ro

ug
hp

ut
 (T

PS
)

Throughput

1 2 3 4 5
Client Counts

150

200

250

300

350

400

Th
ro

ug
hp

ut
 (T

PS
)

100

120

140

160

180

200

La
te

nc
y 

(m
s)

0

2000

4000

6000

8000

La
te

nc
y 

(m
s)

Latency

Fig. 10: Comparing the impact of varying thread or client
counts on fabric throughput and latency.

4, the system latency increases significantly. Increasing the
number of clients further to 5 results in a decrease in system
throughput and a reduction in latency. To understand the
reasons behind this interesting phenomenon, we examine the
system logs and find that as the number of clients increases, the
probability of transaction conflicts also increases, leading to
a significant increase in latency. When the number of clients
exceeds a threshold that exceeds the processing capacity of
the nodes, the nodes reject some requests to prevent overload,
resulting in a decrease in throughput and a reduction in latency.
Our experimental results show that the blockchain system
performs best with two clients and two threads per client under
Smallbank workload, providing key guidance for developers
in selecting and optimizing blockchain platforms.

E. Model Evaluation

TABLE III: Comparison of different methods on three datasets

Dataset Method MAE MSE RMSE R2

DeFi

Linear 1.224 2.392 1.547 0.0001
RNN 1.058 1.574 1.255 -0.1861
TCN 1.008 1.786 1.336 0.0042

Transformer 1.395 3.187 1.785 -1.3029
Ours 0.378 0.259 0.508 0.8928

Sandbox

Linear 0.311 6.959 2.638 0.7779
RNN 0.255 12.530 3.549 0.6763
TCN 0.233 5.609 2.368 0.7896

Transformer 1.319 38.710 6.222 -3.304
Ours 0.136 1.417 1.191 0.9548

NFTs

Linear 2.391 34.297 5.856 0.4988
RNN 2.034 24.639 4.963 0.5357
TCN 3.124 64.330 8.021 0.1458

Transformer 3.834 66.141 8.133 -0.0002
Ours 0.7267 3.087 1.757 0.9548

In our research, we construct three datasets in differ-
ent applications: a decentralized finance dataset comprising
1,791 transactions, a sandbox game dataset containing 22,674
records, and an NFT dataset consisting of 233,014 NFT
transactions. We pre-process the datasets by dividing them into
hourly intervals and counting the number of transactions in
each interval to form time series sequences based on hourly
units. Subsequently, we employ the time series model to learn
the temporal characteristics of these datasets. After comparing
with existing advanced models such as TCN and Transformer,
as shown in table III, our method significantly outperforms
these models in metrics like MSE, MAE, and RMSE. An R-

squared value close to 1 indicates that our model achieves a
good fit. Our model does not perform well on the dataset of
DeFi, possibly due to the limited amount of data. We use the
model to generate and visualize the learned sequences. Fig.
11 shows that our model effectively captures burst events,
long-term dependencies, and short-term dependencies, with
a particularly notable performance in learning sudden bursts
as plotted in Fig. 11b. The model can effectively predict
future trends in real loads and extend time series, which is
particularly suitable for addressing the issue of extending time
series in blockchain real loads with unclear periodicity.

VI. RELATED WORK

Blockchain-based Evaluation Framework. Besides the
works mentioned in Section II, there are other representative
works in this field. DAGBENCH [31] is the first performance
evaluation framework for the DAG distributed ledger. BBS
[32] leverage fuzzy set theory to identify important micro-
architecture events after their significance is quantified by a
machine learning based approach. BlockEmulator [33] is a tool
for evaluating blockchain sharding protocols and mechanisms.
Gromit [21] is a blockchain evaluation tool implemented in Go
language. It regards the abstract model of blockchain system as
a transaction structure, and evaluates seven famous blockchain
systems.

Time-Series Workload Prediction. Time series database
workload prediction has become a hot research area. It mainly
includes query arrival rate prediction and resource utilization
prediction. Yuan et al. [34] propose DBAugur, an adversarial-
based trend forecasting system designed to predict the trends
of diversified workloads. Antony et al. [35] utilize supervised
machine learning to identify traits such as reoccurring patterns,
shocks and trends that the workloads exhibit and account for
those traits in the forecast. Li et al. [36] propose a LSTM
model to predict practical storage workload. However, in the
field of blockchain, time series prediction is mainly used to
forecast cryptocurrency price trends, as shown in the paper
[37], [38].

However, existing research has not fully considered the
temporal characteristics of workload. To fill this research
gap, our work focuses on learning and simulating real-time
serial data loads to evaluate the performance of various
blockchain platforms, thereby guiding developers to choose
the blockchains that best suits their needs.

VII. CONCLUSION

In the paper, we present Hammer, a generic blockchain
evaluation framework. To the best of our knowledge, we are
the first evaluation framework that is able to support both
non-sharding and sharding architectures. Hammer focuses on
learning and simulating the time series of real workloads,
and then transferring these characteristics to flexible synthetic
workloads. Hammer leverages key techniques to accelerate its
performance, including pipelined preparation and execution
methods that combine asynchronous signature algorithms with

400

Authorized licensed use limited to: Northeastern University. Downloaded on April 06,2025 at 07:04:04 UTC from IEEE Xplore.  Restrictions apply. 



0 50 100 150 200 250 300
Time Index

0

2

4

6

Va
lu

e

True Values
Predicted Values

(a) DeFi

0 50 100 150 200 250 300
Time Index

0

50

100

150

200

250

Va
lu

e

True Values
Predicted Values

(b) SandboxGames

0 50 100 150 200 250 300
Time Index

0

5

10

15

20

Va
lu

e

True Values
Predicted Values

(c) NFTs

Fig. 11: Real sequence vs generated sequence.

pipelined execution to optimize computation and communica-
tion and a task processing algorithm that combines dynamic
creation of hash indexes and fast matching of vector lists to
achieve efficient task processing. Additionally, we are still
working to improve it by opening its source codes with
GPL licence on GitHub.2 However, this research has this
limitation, especially the dynamic hash table will lead to an
increase in storage consumption. When dealing with large-
scale transactions of long duration, the volume of the hash
table will continue to expand. Although this expansion has no
direct impact on performance evaluation, it does increase the
storage pressure. Aiming at this problem, we plan to explore
effective solutions in future work.

ACKNOWLEDGMENTS

This work is supported by the National Natural Sci-
ence Foundation of China (62372097), and the Fundamental
Research Funds for the Central Universities (N2416003).
This project is also supported by the 2023-2024 Open
Project of Key Laboratory Ministry of Industry and Infor-
mation Technology-Blockchain Technology and Data Security
20242216.

REFERENCES

[1] Z. Peng, Y. Zhang, Q. Xu, H. Liu, Y. Gao, X. Li, and G. Yu, “Neuchain:
a fast permissioned blockchain system with deterministic ordering,”
Proceedings of the VLDB Endowment, vol. 15, pp. 2585–2598, 2022.

[2] P. Zheng, Q. Xu, Z. Zheng, Z. Zhou, Y. Yan, and H. Zhang, “Meepo:
Sharded consortium blockchain,” in 2021 IEEE 37th International
Conference on Data Engineering, 2021, pp. 1847–1852.

[3] C. Fan, S. Ghaemi, H. Khazaei, and P. Musilek, “Performance evaluation
of blockchain systems: A systematic survey,” IEEE Access, vol. 8, pp.
126 927–126 950, 2020.

[4] T. T. A. Dinh, J. Wang, G. Chen, R. Liu, B. C. Ooi, and K.-L.
Tan, “Blockbench: A framework for analyzing private blockchains,” in
Proceedings of the 2017 ACM international conference on management
of data, 2017, pp. 1085–1100.

[5] M. Rasolroveicy, “Blockcompass: A benchmarking platform for
blockchain performance,” Authorea Preprints, 2023.

[6] V. Gramoli, R. Guerraoui, A. Lebedev, C. Natoli, and G. Voron, “Diablo-
v2: A benchmark for blockchain systems,” EPFL, Tech. Rep., 2022.

[7] K. Ren, J. F. Van Buskirk, Z. Y. Ang, S. Hou, N. R. Cable, M. Monares,
H. F. Korth, and D. Loghin, “Bbsf: Blockchain benchmarking stan-
dardized framework,” in Proceedings of the 1st Workshop on Verifiable
Database Systems, 2023, pp. 10–18.

2https://github.com/btcly/BlockBenchMark

[8] Q. Wang, R. Li, Q. Wang, and S. Chen, “Non-fungible token (nft):
Overview, evaluation, opportunities and challenges,” arXiv preprint
arXiv:2105.07447, 2021.

[9] C. R. Harvey, A. Ramachandran, and J. Santoro, DeFi and the Future
of Finance. John Wiley & Sons, 2021.

[10] T. Min, H. Wang, Y. Guo, and W. Cai, “Blockchain games: A survey,”
in 2019 IEEE conference on games, 2019, pp. 1–8.

[11] A. Klenik and I. Kocsis, “Porting a benchmark with a classic workload
to blockchain: Tpc-c on hyperledger fabric,” in Proceedings of the 37th
ACM/SIGAPP Symposium on Applied Computing, 2022, pp. 290–298.

[12] C. Dannen, Introducing Ethereum and solidity. Springer, 2017.
[13] S. Nakamoto, “A peer-to-peer electronic cash system,” Decentralized

business review, 2008.
[14] E. Androulaki, A. Barger, V. Bortnikov, Y. Cachin et al., “Hyperledger

fabric: a distributed operating system for permissioned blockchains,” in
Proceedings of the thirteenth EuroSys conference, 2018, pp. 1–15.

[15] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears,
“Benchmarking cloud serving systems with ycsb,” in Proceedings of the
1st ACM symposium on Cloud computing, 2010, pp. 143–154.

[16] D. E. Difallah, A. Pavlo, C. Curino, and P. Cudre-Mauroux, “Oltp-
bench: An extensible testbed for benchmarking relational databases,”
Proceedings of the VLDB Endowment, vol. 7, pp. 277–288, 2013.

[17] S. T. Leutenegger and D. Dias, “A modeling study of the tpc-c
benchmark,” ACM Sigmod Record, vol. 22, pp. 22–31, 1993.

[18] Huawei. (2021-05) Hyperledger caliper.
[19] D. Saingre and J.-M. Ledoux, “Bctmark: a framework for benchmarking

blockchain technologies,” in 2020 IEEE/ACS 17th International Confer-
ence on Computer Systems and Applications, 2020, pp. 1–8.

[20] J. A. Chacko, R. Mayer, and H.-A. Jacobsen, “Why do my blockchain
transactions fail? a study of hyperledger fabric,” in Proceedings of the
2021 international conference on management of data, 2021, pp. 221–
234.

[21] B. Nasrulin, M. De Vos, G. Ishmaev, and J. Pouwelse, “Gromit:
Benchmarking the performance and scalability of blockchain systems,”
in 2022 IEEE International Conference on Decentralized Applications
and Infrastructures, 2022, pp. 56–63.

[22] J. Sedlmeir, P. Ross, A. Luckow, J. Lockl, D. Miehle, and G. Fridgen,
“The dlps: a new framework for benchmarking blockchains,” Hawaii
International Conference on System Sciences, p. 10, 2021.

[23] J. L. Carlson, Redis in Action. USA: Manning Publications Co., 2013.
[24] M. Reichardt, M. Gundall, and H. D. Schotten, “Benchmarking the

operation times of nosql and mysql databases for python clients,” in
IECON 2021–47th Annual Conference of the IEEE Industrial Electronics
Society, 2021, pp. 1–8.

[25] L. Hochstein and R. Moser, Ansible: Up and Running: Automating
configuration management and deployment the easy way. ” O’Reilly
Media, Inc.”, 2017.

[26] M. Chakraborty and A. P. Kundan, “Grafana,” in Monitoring Cloud-
Native Applications: Lead Agile Operations Confidently Using Open
Source Software. Springer, 2021, pp. 187–240.

[27] J. Turnbull, Monitoring with Prometheus. Turnbull Press, 2018.
[28] S. Bai, J. Z. Kolter, and V. Koltun, “An empirical evaluation of generic

convolutional and recurrent networks for sequence modeling,” arXiv
preprint arXiv:1803.01271, 2018.

401

Authorized licensed use limited to: Northeastern University. Downloaded on April 06,2025 at 07:04:04 UTC from IEEE Xplore.  Restrictions apply. 



[29] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio, “Empirical evaluation of
gated recurrent neural networks on sequence modeling,” arXiv preprint
arXiv:1412.3555, 2014.

[30] R. Dey and F. M. Salem, “Gate-variants of gated recurrent unit (gru)
neural networks,” in 2017 IEEE 60th international midwest symposium
on circuits and systems, 2017, pp. 1597–1600.

[31] Z. Dong, E. Zheng, Y. Choon, and A. Y. Zomaya, “Dagbench: A
performance evaluation framework for dag distributed ledgers,” in 2019
IEEE 12th international conference on cloud computing, 2019, pp. 264–
271.

[32] L. Zhu, C. Chen, Z. Su, W. Chen, T. Li, and Z. Yu, “Bbs: Micro-
architecture benchmarking blockchain systems through machine learn-
ing and fuzzy set,” in 2020 IEEE International Symposium on High
Performance Computer Architecture, 2020, pp. 411–423.

[33] H. Huang, G. Ye, Q. Chen, Z. Yin, X. Luo, J. Lin, T. Li, Q. Yang,
and Z. Zheng, “Blockemulator: An emulator enabling to test blockchain
sharding protocols,” ArXiv, vol. abs/2311.03612, 2023.

[34] Y. Gao, X. Huang, X. Zhou, X. Gao, G. Li, and G. Chen, “Dbaugur: An
adversarial-based trend forecasting system for diversified workloads,” in
2023 IEEE 39th International Conference on Data Engineering, 2023,
pp. 27–39.

[35] A. S. Higginson, M. Dediu, O. Arsene, N. W. Paton, and S. M. Embury,
“Database workload capacity planning using time series analysis and
machine learning,” in Proceedings of the 2020 ACM SIGMOD Interna-
tional Conference on Management of Data, 2020, pp. 769–783.

[36] L. Ruan, Y. Bai, S. Li, S. He, and L. Xiao, “Workload time series
prediction in storage systems: a deep learning based approach,” Cluster
Computing, pp. 1–11, 2021.

[37] I. E. Livieris, E. Pintelas, S. Stavroyiannis, and P. Pintelas, “Ensemble
deep learning models for forecasting cryptocurrency time-series,” Algo-
rithms, vol. 13, p. 121, 2020.

[38] R. K. Malladi and P. L. Dheeriya, “Time series analysis of cryp-
tocurrency returns and volatilities,” Journal of Economics and Finance,
vol. 45, pp. 75–94, 2021.

402

Authorized licensed use limited to: Northeastern University. Downloaded on April 06,2025 at 07:04:04 UTC from IEEE Xplore.  Restrictions apply. 


