
Accelerating Topic-Sensitive PageRank by
Exploiting the Query History

Shufeng Gong, Zhixin Zhang, Jing Lu, Yanfeng Zhang(B), Cong Fu, and Ge Yu

School of Computer Science and Engineering, Northeastern University,
Shenyang, China

{gongsf, zhangyf, fuchong, yuge}@mail.neu.edu.cn
{yinshi, lujing}@stumail.neu.edu.cn

Abstract. Topic-Sensitive PageRank (TSPR) is a widely used algo-
rithm in recommender systems and machine learning. However, the TSPR
query is time-consuming as it requires multiple rounds of iterative com-
putation. To accelerate the TSPR query, we propose an efficient TSPR
query algorithm, FasTSPR, that accelerates the TSPR query by exploit-
ing the previous TSPR query. Specifically, FasTSPR borrows the compu-
tation result of the previous TSPR query when performing the current
TSPR query, avoiding redundant calculations and thus accelerating the
TSPR query.

Keywords: Topic-Sensitive PageRanak · Query History · Acceleration.

1 Introduction

In a graph, it is essential to compute the relevance or importance score of each
vertex with respect to a particular topic, which is often widely applied in rec-
ommender systems [5] and Graph Learning [6], where the vertex represents the
webpage in the networking, the author in the citation network, the person in the
social network, and so on. Topic-Sensitive PageRank (TSPR) [2] is a variant of
the PageRank algorithm that is specifically designed to compute the relevance
or importance score of each vertex with respect to a particular topic. The score
of each vertex for a particular topic is computed by calculating the similarities of
it to all vertices belonging to the topic. Different from PageRank, which results
in only one score vector, TSPR generates a score vector for each topic, where the
score Sij in the score vector

−→
Si is the score of j-th vertex for i-th topic. TSPR

enables users to receive search results that are more aligned with their specific
topic preferences, enhancing the personalization of search results.

To return the relevance score of a vertex to a specific topic efficiently, we
can precompute the score vector of each topic. However, as the amount of data
and data type diversity increase, the number of topics in graphs is also increas-
ing. For example, in citation networks, topics include computer vision, machine
translation, information retrieval, programming languages, graph computation,
graph matching, graph learning, etc. And with the continuous development of
new technologies, the number of topics is constantly increasing. It means that

a large number of score vectors need to be stored for enormous topics, and the
dimension of each vector is equal to the number of vertices, which is obviously
not feasible because it requires a large amount of storage space.

Based on the above discussion, it is necessary to compute the score vector
online for each query topic. However, similar to PageRank, the computation of
TSPR requires multiple rounds of iterative computation to update the score
of each vertex, which is time-consuming. TSPR can be accelerated by return-
ing an approximate result [4, 8, 7], but these methods can not be used in some
high-precision situations. We can also accelerate TSPR by constructing some in-
dexes in advance [7, 3], but the indexes will be invalid when the graph changes.
Therefore, it is necessary to find a method that accelerates TSPR without using
indexes and get high-precisions results.

To compute TSPR efficiently, we propose an efficient TSPR, FasTSPR, which
is accelerated by leveraging the previous TSPR query. The design of FasTSPR
is based on the observation that there is a large amount of overlap when com-
puting score vectors for two different topics. When we have obtained the score
vector with respect to one topic, we can use these overlap computations to ac-
celerate the computation of the TSPR query for another topic. However, it is
difficult to identify the overlapped computations, if the intermediate results are
not memoized in each round of iterative computation. While the memoized inter-
mediate results often bring the overhead of storing and updating, which reduces
the efficiency of TSPR.

In order to eliminate non-duplicated calculations, we use the forward push
method to perform TSPR. When a TSPR query is triggered, a message is sent
from each vertex belonging to the topic, and then these messages are propagated
on the graph, meanwhile, the value of the messages are decayed during the prop-
agation. The value of the accumulated received messages for each vertex refers
to the score of the vertex for the topic. Based on this computation method, when
performing another TSPR query with a new topic, a message is sent from each
vertex belonging to the topic, and a negative message is sent from the vertex
belonging to the previous topic. The positive message and the negative message
are propagated on the graph at the same time. For non-overlapped computa-
tions, negative messages will make them invalid for the current topic. For the
overlapped computations, the positive and negative messages will be offset and
will not continue to be propagated, thereby avoiding redundant computations.

The contributions of this paper can be summarized as follows,

– We propose an efficient TSPR algorithm, FasTSPR, that accelerates TSPR
queries by leveraging the previous TSPR query.

– We provide a formal proof to prove the correctness of FasTSPR.
– We evaluate the efficiency FasTSPR on five real graphs with comprehensive

experiments. The results show that FasTSPR can achieve up to 5.44× speed
up over the traditional TSPR algorithm and up to 1.37× speed up over the
state-of-the-art algorithm.

2 Preliminary

In this section, we will provide some fundamental definitions and background
knowledge regarding TSPR.

2.1 Topic-Sensitive PageRank

Let G = (V,E) be a directed graph with vertex set V and edge set E, t ∈ T
represent one specific topic of the topic set, where T is the topic set. There is a
set of vertices Vt ⊆ V belonging to the topic t. Note that, a vertex may belong
to more than one topic. Given a decay factor α < 1, the TSPR for t can be
interpreted as a random walk on G that starts from the vertices Vt belonging to
t and then iteratively jumps to a randomly chosen out-neighbor with probability
1 − α or teleports to Vt with probability α. The score value of each vertex vi
is the probability that such random walk starts from vertices Vt belonging to t

and stops at vi. TSPR query returns a score vector
−→
S for topic t, where the i-th

value Si in
−→
S is the relevance score of j-th vertex with respect to the topic t.

Note that, since we are not able to store all the score vector
−→
S =

−→
S1,

−→
S2, · · ·,

we only store on score vector
−→
S that is computed only when TSPR query is trig-

gered. Therefore, in this paper, we use
−→
S to represent the score vector returned

by the TSPR query of any topic t.

2.2 Power Iteration

We denote A as the adjacent matrix of G and D as the diagonal matrix, where
Aij = 1 if there is an edge between i-th and j-th vertex, otherwise Aij = 0,
and Dij = 1 if i = j, otherwise Dij = 0. Given the initial score vector

−→
S with

a random value in each dimension, the power iteration is an iterative algorithm
for solving the following Equation 1

−→
S = (1− α) ·

−→
S · P + α · −→e , (1)

where P = AT ·D−1 is the transition matrix of G, and −→e is the indicator topic
vector, i.e., ei = 1

|Vt| if the i-th vertex belongs to topic t, otherwise ei = 0. We

denote the score vector for topic ti as
−→
S ∗

i , the Equation 1 iteratively refines
−→
S

closer to
−→
S ∗, i.e., ||

−→
S ∗ −

−→
S ||1 decreases with iterations, where ||−→· ||1 is the l1

normal of vector −→· . Since it is impossible to obtain
−→
Si

∗ before the TSPR query,
the iterative computation terminates at ||

−→
S k−1 −

−→
S k||1 < ϵ, where

−→
S k is the

score vector after k rounds of iterative computation, ϵ is an extremely small
value.

Though Power Iteration can return TSPR query with high-precision results,
it performs less efficiently. From Equation 1, it can be seen that each iteration
involves the multiplication of a vector and a matrix, as well as the addition
between vectors. However, some computations within the multiplication of vector
and matrix make only minimal contributions to the convergence of the TSPR
query.

2.3 Forward Push

Forward Push [1] is an efficient method to perform TSPR queries. In Forward
Push, in addition to the score vector

−→
Si, there is another residual vector −→r to be

kept, ri means the sum of the probability of random walkers who are still alive
and staying at the j-th vertex.

Initially, each element in
−→
S is set as “0”, and ri =

1
|Vt| if the i-th vertex belongs

topic t, otherwise ri = 0. During the iterative computation process, the α portion
residual value of each vertex is added to its score Si, i.e., Si = Si + α · ri, then
the 1−α portion of the residual is evenly pushed to its every outgoing neighbor
vl ∈ OUT (vi), i.e., rl = rl+

(1−α)·ri
|OUT (vi)| , where |OUT (vi)| is the outdegree of the i-

th vertex. After that, the residual value is reset as “0”. The iterative computation
terminates at ||−→ri ||1 < ϵ. It has been proven that the Forward Push and the
Power Iteration can return the same high-precision results [9] within the time
complexity O(m · log 1

ϵ), where m is the number of edges in G.
However, there are some inefficient computations during the iterations. For

example, when the residual value rij of j-th vertex is very small, its impact on
the score S is also very small. Both the addition and push operation contribute
very little to the convergence of the iterative computation. To avoid inefficient
computations, we skip vertices with very small residual values when performing
the current iteration. The forward push operation is triggered when the residual
value accumulates enough. However, inefficient computations occur during the
iterations. For instance, when the residual value rij of the j-th vertex is exceed-
ingly small, its influence on the score Sij is minimal. Both addition and push
operations contribute minimally to the convergence of the iterative computation.
To avoid inefficient computations, we skip the vertices with very small residual
values during the current iteration. In the next iterations, the forward push on
vj may be activated once its residual value accumulates sufficiently. The specific
details of Push Forward are shown in Algorithm 1.

From Algorithm 1, it can be seen when rij is very small, the score of j is not
been updated (line 6), so some inefficient computations are avoided to improve
compute efficiency. The proposed FasTSPR algorithm in this paper is also built
on top of the forward push calculation method.

3 FasTSPR

In this section, we will propose an efficient TSPR algorithm, FasTSPR, by ex-
ploiting the previous TSPR query. Before introducing it, we first provide the
intuition behind the FasTSPR.

3.1 Inutition behind FasTSPR

From the process of Forward Push, it can be seen that Forward Push is an accu-
mulative iterative algorithm, i.e., the score value of each vertex is accumulated
from the received residuals. When a new TSPR query is triggered for another

Algorithm 1 Forward Push
Input: Graph G, damping factor α, topic t, l1 error ϵ;
Output:

−→
S

1: for each vertex vi ∈ Vt do
2: ri = 1

|Vt| ;
3: Si = 0;
4: end for
5: while True do
6: for each vertex vi with ri >

ϵ
|V | do

7: Si = Si + ri ∗ α;
8: for each vl ∈ OUT (vi) do
9: rl = rl +

ri·(1−α)
|OUT (vi)|

;
10: end for
11: ri = 0;
12: end for
13: if

∑|V |
i=1 ri ≤ ϵ then

14: break;
15: end if
16: end while
17: return

−→
S ;

topic, we have to perform Forward Push from scratch by resetting the score
vector to “

−→
0 ” and residual vector −→r .

We found that while the residuals originate from different vertices in the
previous TSPR query and the current one, there exists a considerable of resid-
uals, bearing the same values, propagating along the same edges, i.e., lots of
the computations between two TSPR queries are overlapped. If we borrow the
computations from the previous TSPR query, the current TSPR query can re-
duce some unnecessary recomputation, then the current TSPR query will be
accelerated significantly.
Example 1. Consider the following scenario, given a vertex vi, and it receives
two residuals with the same value in both TSPR queries, denotes r′i and r′′i , and
r′i = r′′i . Since we have processed r′i (including Si = Si + r′i and push r′i to vi’s
outgoing neighbors) in the previous TSPR query, it is unnecessary to reprocess
r′′i in the current TSPR query if we borrow the same process from the previous
TSPR query. Because these two residuals have the same values and the same
effect on the score.

During the iterative computation for two different TSPR queries, even if the
residual values passing through the same edge are similar but not identical. It
would be exciting if we can accelerate iterative computation by exploring their
similarities.

However, it is difficult to determine which computations from the previous
TSPR query can be utilized by the current one. This complexity arises from
the fact that, in the previous TSPR query, all received residuals at each vertex
have been aggregated into the score. Consequently, identifying which segment

of the score can be shared by two TSPR queries-specifically, the portion of the
score computed through overlapping computations in the two queries-poses a
significant difficulty.

To overcome this difficulty, we think about the problem from another angle,
i.e., from "identifying the overlapped computations" to "eliminating the non-
overlapped computations". Continue to consider the vertex vi in Example 1,
in addition to the residual with the same values received in both two TSPR
queries, vi also received some distinct residuals from the previous query. To
eliminate these distinct residuals, we can use the same residuals with “negative”
values to eliminate their effect on the score. In this way, the score of each vertex
from the previous TSPR query can be reused in the current one since we have
eliminated the effect of non-overlapped computations on the score.

3.2 Details of FasTSPR

From the above discussion, we propose the FasTSPR. When a new TSPR query
is triggered, we take the score computed by the previous TSPR query as the
initial score vector of the current one. For the residual vector −→r , we use the
following two steps to set it,

– ri = ri − 1
|Vtp |

if vi ∈ Vtp belongs to the previous topic t1,

– ri = ri +
1

|Vtc |
if vi ∈ Vtc belongs to the current topic tc.

where tp is the topic of the previous TSPR query, and tc is the topic of the
current one. The details of FasTSPR are described in Algorithm 2.

Note that compared with Algorithm 1, Algorithm 2 is not only different
in the initialization of the score vector and residual vector but also different
in filtering the residuals with small values. Since residuals may be positive or
negative in FasTSPR, the absolute values of residuals are used to filter inefficient
computations.

During the iterative computation of Algorithm 2, there are both positive and
negative residuals propagating on G. When the positive and negative residuals
meet, they will be canceled or cut significantly due to the aggregation operation
(line 11), and the absolute values of the residuals will quickly become smaller
after aggregation, thereby accelerating the convergence of the TSPR query.

3.3 Correctness of FasTSPR

It can be seen from the above analysis that the Algorithm 2 convergence is
accelerated by the aggregation of positive and negative residuals. But is the
final result correct? Next, we are going to answer this question.

From the Algorithm 1, it can be seen that the essential of residual propagation
is the multiplication of the residual and the transfer matrix, i.e., (1−α)·−→r ·P , and
accumulating it into S. Then, without considering the inefficient computation

Algorithm 2 FasTSPR

Input: Graph G, damping factor α, topic tc, l1 error ϵ, score vector
−→
S and the residual

vector −→r obtained from TSPR query for tp.
Output:

−→
S

1: for each vertex vi ∈ Vtp do
2: ri = ri +

1
|Vtp | ;

3: end for
4: for each vertex vi ∈ Vtc do
5: ri = ri +

1
|Vtc |

;
6: end for
7: while True do
8: for each vertex vi with |ri| > ϵ

|V | do
9: Si = Si + ri ∗ α;

10: for each vl ∈ OUT (vi) do
11: rl = rl +

ri∗(1−α)
|OUT (vi)|

;
12: end for
13: ri = 0
14: end for
15: if

∑|V |
i=1 ri ≤ ϵ then

16: break;
17: end if
18: end while
19: return

−→
S ;

filterations, the Forward Push can be formalized into the following equation.
−→
S k =

−→
S k−1 + α · −→r k (2)

−→r k = (1− α)−→r k−1 · P . (3)

Combine the Equation 2 and the Equation 3, then we have
−→
S k =

−→
S k−1 + α · (1− α) · −→r k−1 · P

=
−→
S k−2 + α · −→r k−2 · P + α · (1− α)2 · −→r k−2 · P 2

=
−→
S k−3 + · · ·
· · ·

=
−→
S 0 + α · −→r + α · (1− α) · −→r · P + · · ·
+ α · (1− α)k−1 · −→r · P k−1

(4)

For the previous topic tp, the TSPR returns score vector
−→
S k

p after k round
of iterative computations. For the current topic tc, the initial score vector and
residual vector are set as

−→
S 0

c =
−→
Sp

k and −→rc 0 = −→rc 0 + −→rpk − −→rp0 respectively
according to Algorithm 2. After the first iteration of FasTSPR, we have

−→
Sc

1 =
−→
Sp

k + α · −→rc (5)

After the k-th iteration, according to the Equation 4, we have

−→
Sc

k =
−→
Sp

k + α · −→rc + α · (1− α) · −→rc · P + · · ·
+ α · (1− α)k−1 · −→rc · P k−1

(6)

Unfold the
−→
Sp

k according to Equation 4, then we have

−→
Sc

k =
−→
S 0 + α · −→rp + α · (1− α) · −→rp · P + · · ·
+ α · (1− α)k−1 · −→rp · P k−1

+ α · −→rc + α · (1− α) · −→rc · P + · · ·
+ α · (1− α)k−1 · −→rc · P k−1

(7)

Replace −→rc with −→rc = −→rc +−→rpk −−→rp , then we have

−→
Sc

k =
−→
S 0 + α · −→rp + α · (1− α) · −→rp · P + · · ·
+ α · (1− α)k−1−→rp · P k−1

+ α · −→rc + α · −→rpk − α · −→rp
+ α · (1− α) · −→rc · P + α · (1− α) · −→rpk · P
− α · (1− α) · −→rp · P + · · ·
+ α · (1− α)k−1 · −→rc · P k−1 + α · (1− α)k−1−→rpk · P k−1

− α · (1− α)k−1−→rp · P k−1

=
−→
S 0 + α · −→rc + α · −→rpk

+ α · (1− α) · −→rc · P + α · (1− α)−→rpk · P + · · ·
+ α · (1− α)k−1 · −→rc · P k−1 + α · (1− α)k−1−→rpk · P k−1

(8)

Since the α · −→rpk is too small to be ignored, then we have

−→
Sc

k =
−→
S 0 + α · −→rc
+ α · (1− α) · −→rc · P + · · ·
+ α · (1− α)k−1 · −→rc · P k−1

(9)

Otherwise, the iterative computation will be performed continuously and gener-
ate −α · −→rpk to eliminate α · −→rpk. It means that after k iterations, FasTSPR and
Forward Push return the same result with high precision. Note that equation 9 is
a high-precision approximation of equation 8. In practice, during the execution
of the FasTSPR, α · −→rpl, (l ≥ k) are not be removed and will be eliminated by
−α · −→rpl, (l ≥ k) generated in the subsequent iterative computations of subse-
quent iterations. Therefore, even if the topics are changed multiple times, we
can still get high-precision results.

4 Experiment

4.1 Experimental Setup

In this section, we present the experimental evaluation of FasTSPR. By default,
the experiments are performed on a commodity PC with 5.4GHz Intel Core i9
CPU, 32GB memory, and it runs on 64-bit Ubuntu 22.04 with compiler GCC
11.3.

Dataset Our experiments involve five real graphs, DBLP, Catster, Wiki-Talk,
cit-Patents, and Google. Table 1 shows the detailed information of these graphs.
Since the vertex belonging to the same topic is similar, thus the vertices in each
topic come from the same cluster of the graph. In our experiments, each topic
contains about 50 vertices by default.

Table 1: Datasets
Graph # of vertex # of edge

Catster (CT) 149684 10896394
DBLP (DL) 317080 2099732
Google (GL) 916428 12156500

Wiki-Talk (WT) 2394385 8505513
cit-Patents (CP) 3774768 16518948

Competitors We compare FasTSPR with traditional Power Iteration (PowItr),
Forward Push (FwdPush), and a hybrid method PowerPush [9] that incorpo-
rated the strengths of both PowItr and FwdPush. In our experiment, we use the
same l1-error threshold ϵ = 10−9 for all competitors and FasTSPR.

4.2 Overall Performance

We first compare FasTSPR with competitors in terms of the average runtime
on different graphs in Table 1. Figure 1 reports the normalized runtime of each
algorithm, where FasTSPR is treated as the baseline. It can be seen that the
FasTSPR outperforms other algorithms in all cases. Specifically, FasTSPR can
achieve 2.42× speed up on average (up to 2.65×) over PowerIter, 3.22× speed
up on average (up to 5.44×) over FwdPush, and 1.21× speed up on average
(up to 1.37×) over PowerPush. It is notable that both PowerPush and FasTSPR
outperform PowerItr and FwdPush because of some optimizations equipped in
PowerPush, e.g., asynchronous pushes, hybrid global sequential scan and local
random access, dynamic l1-error threshold. Our FasTSPR outperforms Power-
Push because of the utilization of query history, which reduces some redundant
computations.

 0

 1

 2

 3

 4

 5

 6

CT DL GL WT CP

N
or

m
al

iz
ed

 R
un

tim
e

Datasets

FasTSPR
PowerPush

PowerItr
FwdPush

Fig. 1: The comparison of runtime

4.3 Convergence comparison

To evaluate the effectiveness of FasTSPR on accelerating the convergence of
TSPR queries, we compare the convergence rates of FasTSPR and the competi-
tors. We use the sum of residual values as the metric to measure the distance to
convergence, i.e., |

∑|V |
i=1 ri. Fig. 2 shows the trend of the sum of residual values

over time. It can be seen that the residual in the FasTSPR algorithm decreases
fastest and achieves to convergence state first. Note that the sum of the initial
residual values of FasTSPR is 2 since there are positive and negative residuals in
the current and previous topic vertices.

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

 0 100 200 300 400 500 600 700

re
s
id

u
a

l

runtime (ms)

FasTSPR
PowerPush

PowerItr
FwdPush

(a) CT

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

 0 500 1000 1500 2000 2500

re
s
id

u
a

l

runtime (ms)

FasTSPR
PowerPush

PowerItr
FwdPush

(b) GL

Fig. 2: The comparison of convergence speed

4.4 The impact of different TSPR queries

In order to test the impact of different TSPR queries on FasTSPR, we randomly
performed 10 TSPR queries continuously and recorded the runtime of each query.

 0

 200

 400

 600

 800

 1000

1 2 3 4 5 6 7 8 9 10

ru
n

ti
m

e
 (

m
s
)

query

FasTSPR
PowerPush

PowerItr
FwdPush

(a) CT

 0

 500

 1000

 1500

 2000

 2500

 3000

1 2 3 4 5 6 7 8 9 10

ru
n

ti
m

e
 (

m
s
)

query

FasTSPR
PowerPush

PowerItr
FwdPush

(b) GL

Fig. 3: The runtime when varying the topics

Fig. 3 shows the runtime of FasTSPR and competitors when performing different
TSPR queries on Catster (CT) and Google (GL) graphs. It can be seen that the
FasTSPR outperforms other algorithms in all queries, except for the first query.
This is because there is no previous query to be used for the first query, so its
runtime is the same as that of PowerPush.

 0

 200

 400

 600

 800

 1000

50 100 200 500 800

ru
n

ti
m

e
 (

m
s
)

topic size

FasTSPR
PowerItr

PowerPush
FwdPush

(a) CT

 0

 500

 1000

 1500

 2000

 2500

 3000

50 100 200 500 800

ru
n

ti
m

e
 (

m
s
)

topic size

FasTSPR
PowerItr

PowerPush
FwdPush

(b) GL

Fig. 4: The runtime when varying the size of topics

4.5 The impact of topic size

To test the impact of the size of the topic, i.e., the number of vertices within the
topic for TSPR, on the efficiency of FasTSPR, we performed TSPR queries on
topics containing 50, 100, 200, 500 and 800 vertices and recorded their execution
times. Fig. 4 shows the runtime of FasTSPR and others when varying the size of
topics on Catster (CT) and Google (GL) graphs. It can be seen that the execution
time of FasTSPR is smaller than others when varying the topic sizes, and the
running time of FasTSPR slowly decreases with the increase of the number of
vertices in the topic. This is because the more vertices in the topic, the higher

the possibility of the positive residuals and negative residuals meeting, which
results in better acceleration.

5 Conclusion

In this paper, we propose FasTSPR, an efficient Topic-sensitive PageRank (TSPR)
algorithm. FasTSPR accelerates the TSPR query by reusing the computation of
the previous TSPR query, which can reduce some redundant computation since
there are enormous overlapped computations between the current TSPR query
and the previous one.

Acknowledgments. This paper is supported by the 111 Project (B16009), the
National Natural Science Foundation of China (U2241212, 62072082, 62202088,
62137001, 62272093), Joint Funds of Natural Science Foundation of Liaoning
Province (2023-MSBA-078), and Fundamental Research Funds for the Central
Universities (N2416011).

References

1. Andersen, R., Chung, F., Lang, K.: Local graph partitioning using pagerank vectors.
In: Proceedings of the 47th FOCS. pp. 475–486. IEEE (2006)

2. Haveliwala, T.H.: Topic-sensitive pagerank. In: Proceedings of the 11th WWW. pp.
517–526 (2002)

3. Jung, J., Park, N., Lee, S., Kang, U.: Bepi: Fast and memory-efficient method for
billion-scale random walk with restart. In: Proceedings of the 2017 ACM Interna-
tional Conference on Management of Data. pp. 789–804 (2017)

4. Lofgren, P.A., Banerjee, S., Goel, A., Seshadhri, C.: Fast-ppr: Scaling personalized
pagerank estimation for large graphs. In: Proceedings of the 20th SIGKDD. pp.
1436–1445 (2014)

5. Lü, L., Medo, M., Yeung, C.H., Zhang, Y.C., Zhang, Z.K., Zhou, T.: Recommender
systems. Physics reports 519(1), 1–49 (2012)

6. Wang, H., Yang, R., Huang, K., Xiao, X.: Efficient and effective edge-wise graph
representation learning. In: Proceedings of the 29th SIGKDD. pp. 2326–2336 (2023)

7. Wang, S., Tang, Y., Xiao, X., Yang, Y., Li, Z.: Hubppr: Effective indexing for
approximate personalized pagerank. Proceedings of the VLDB Endowment 10(3)
(2016)

8. Wang, S., Yang, R., Xiao, X., Wei, Z., Yang, Y.: Fora: simple and effective approx-
imate single-source personalized pagerank. In: Proceedings of the 23rd SIGKDD.
pp. 505–514 (2017)

9. Wu, H., Gan, J., Wei, Z., Zhang, R.: Unifying the global and local approaches: an
efficient power iteration with forward push. In: Proceedings of the 2021 International
Conference on Management of Data. pp. 1996–2008 (2021)

