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Multinational enterprises conduct global business that has a demand for geo-distributed transactional databases.

Existing state-of-the-art databases adopt a sharded master-follower replication architecture. However, the

single-master serving mode incurs massive cross-region writes from clients, and the sharded architecture

requires multiple round-trip acknowledgments (e.g., 2PC) to ensure atomicity for cross-shard transactions.

These limitations drive us to seek yet another design choice. In this paper, we propose a strongly consistent

OLTP database GeoGauss with full replica multi-master architecture. To efficiently merge the updates from

different master nodes, we propose a multi-master OCC that unifies data replication and concurrent transaction

processing. By leveraging an epoch-based delta state merge rule and the optimistic asynchronous execution,

GeoGauss ensures strong consistency with light-coordinated protocol and allows more concurrency with

weak isolation, which are sufficient to meet our needs. Our geo-distributed experimental results show that

GeoGauss achieves 7.06X higher throughput and 17.41X lower latency than the state-of-the-art geo-distributed

database CockroachDB on the TPC-C benchmark.
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1 INTRODUCTION
Global companies have built their data centers located in many countries worldwide. To support

their global business, it is desired to develop a geo-distributed transactional SQL database spread

across multiple geographically distinct locations, e.g.,many telecom service providers have deployed

their ICT databases under a geo-distributed setting. The design goals are towards high availability,

strong consistency, and high performance.
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Fig. 1. Sharded master-follower replication vs. full replica multi-master replication.

High availability is usually achieved by redundant data replication, which is the process of

storing the same data copies in multiple geographic zones. Data replication facilitates not only

high availability but also geographic locality and read scalability, making data copies close to users

at different regions to reduce read latency and to further improve overall data access throughput.

Existing state-of-the-art geo-distributed transactional databases, e.g., Google Spanner [41], F1 [59],
CockroachDB [67], YugabyteDB [22], TiDB [55], SLOG [61] and ConfluxDB [38] adopt a sharded
master-follower replication architecture as shown in Figure 1a. Data are partitioned into multiple

shards according to the key range. Each shard is assigned to a single master node serving all

write/read requests, and it is replicated and placed to multiple geo-distributed follower nodes

serving only read requests. Due to its single-master architecture, write-write conflicts are gathered

in the same worker to be easily coped with. In addition, sharding can disperse write requests to

increase write throughput.

The sharded master-follower replication architecture is widely adopted [22, 41, 55, 61, 67], but it

suffers from two major drawbacks. 1) The single-master serving mode requires to route the write

requests from all clients to the single master node, which leads to cross-region writes and as a result

increases transaction latency. Though this drawback can be alleviated by geo-aware partitioning

and regional shard placement [67], it still hurts performance, especially for applications without

locality property. 2) The sharded architecture relies on the two-phase commit (2PC) protocol to

ensure atomicity. This requires multiple round-trip acknowledgments between the coordinator and

the globally distributed workers, which further hurts performance.

Yet another choice for data replication is full replica multi-master architecture as shown in Figure

1b, where each server maintains a full copy of data and all server nodes serve both read and write

requests. By placing a full replica in each region, it can serve users with local writes/reads. With a

full replica, 2PC is unnecessary to ensure atomicity. A number of multi-master systems emerge

in recent years, e.g., Aurora [71], Riak [19], Calvin [70], FaunaDB [9], Anna [73], Aria [51] and

Q-store [57]. However, to employ multi-master architecture, there are three key challenges to be

addressed.

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 62. Publication date: May 2023.



GeoGauss: Strongly Consistent and Light-Coordinated OLTP for Geo-Replicated SQL Database 62:3

Challenge 1: Cross-Node Write-Write Conflicts. Different from the master-follower architec-

ture where all writes to the same data are routed to the same node, with multi-master replication,

concurrent updates to multiple replicas of the same data can result in cross-node write-write

conflicts. Though this could be resolved with distributed two-phase locking protocol, it is too

heavy in a geo-distributed setting. We address this challenge by employing Conflict-Free Replicated
Datatypes (CRDT) [65, 73]. Specifically, we adopt an optimized state-based CRDT, delta-state CRDT
[27, 28], where only recently applied updates to a database state are disseminated instead of the

entire database state. The state updates along with its local timestamp information are exchanged

among all replicas. At the receiver side, the write-write conflicts are automatically merged by a

function that joins any pair of replica updates and must be associative, commutative, and idempotent
(i.e., ACI property) [65]. The database state at any node is monotonically increased by merging

the state updates according to the same merge function, so that these replicas are updated inde-

pendently without a global coordinator. The ACI property of the merge function guarantees that

the consistency of replicas can be eventually established after merging of all updates. However,

eventual consistency is not acceptable in most transactional applications.

Challenge 2: Strong Consistency. It is desirable to respond a committed/aborted status to the user

as fast as possible, but this is not allowed before all replicas reach consistency. Linearizability, as one

of the strongest single-object consistency (i.e., all replicas reach the same state after every operation

with real-time constraints), requires expensive coordination, while eventual consistency (i.e.,, all
replicas reach the same state with no time constraint) which can be achieved by CRDT prompts

performance without coordination but may incur various anomalies. We address this challenge by

introducing epoch-based merge, a compromise proposal (between real-time synchronous merge

and asynchronous merge) that guarantees consistency at the granularity of epochs. Unlike 2PC,
where each transaction has a coordinator, we only coordinate at the granularity of epochs, so the

coordination is amortized for a set of transactions. After collecting the updates of an epoch from all

nodes, the identical set of updates are merged on each node according to the same function with

ACI property, and then applied to the previously consistent local replica state. Thus, a globally

consistent snapshot can be reached among all nodes on a per-epoch basis.

Challenge 3: Performance. However, by employing the epoch-based merge, the synchronization

barriers that require to receive updates from all peers are introduced (the only coordination),

which hurts performance a lot. To address this limitation, we employ optimistic execution under a

multi-master setting. The master nodes optimistically execute their local SQL requests of epoch

𝑖 based on the current database state, which is not necessarily the most recent epoch snapshot

(𝑖 − 1). The resulting write sets (a.k.a. updates) are exchanged among nodes for epoch-based

conflict merge. The merge results are used for generating a new snapshot 𝑖 . Only those successfully

validated transactions are allowed for commitment. In other words, the transaction execution

phase is performed asynchronously among nodes regardless of epoch concept, while the validation

phase has to be performed synchronously among nodes based on the most recent snapshot. On the

other hand, considering that the mainstream sharded master-follower systems [22, 41, 67] support

serializability (which executes a transaction’s logic as a single unit), the optimistic execution allows

for overlapping the read and write sets across transactions with weak isolation and as a result

brings more concurrency and performance. This greatly meets the requirements of ICT databases

for telecom providers on strong replica consistency and high throughput where weak isolation is

sufficient in most scenarios.

By integrating the above techniques, we propose multi-master OCC, an epoch-based optimistic

transaction processing scheme under a multi-master setting. It unifies data replication with op-

timistic concurrency control, supporting multiple isolation levels with high concurrency while
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Table 1. Summary of replicated systems

System Model Replication Rep. Unit Ordering Consistency CC Isolation
openGauss [15] SQL master-follower redo log TSO semi-sync. (eventual) MV2PL SI

openGauss MOT [34] SQL master-follower redo log TSO semi-sync. (eventual) OCC RR

TiDB [55] SQL master-follower binary log TSO quorum (linearizability) MV2PL SER

Spanner [41] SQL master-follower redo log TrueTime quorum (linearizability) MV2PL SER

CockroachDB [67] SQL master-follower binary log HLC quorum (linearizability) MVTO SER

HBase [2] KV master-follower HFile local time semi-sync. (eventual) MV2PL RC

DynamoDB [43] KV masterless KV vector clock quorum (sequential) last write wins None

Cassandra [50] KV masterless KV local time quorum (sequential) last write wins None

Bitcoin [54] ledger multi-master block of txs PoW quorum (sequential) serial SER

Fabric [33] ledger multi-master block of txs ordering service quorum (sequential) MVOCC SER

Anna [72] KV multi-master KV commutative CALM/CRDT (eventual) conflict free RC

Redis CRDT [18] KV multi-master KV commutative CRDT (eventual) conflict free None

Calvin [70] SQL* multi-master batch of SQLs local time deterministic (sequential) ordered locks SER

Aria [51] SQL* multi-master batch of SQLs local time deterministic (sequential) dep. graph SER

GeoGauss (ours) SQL multi-master batch of write sets local time epoch CRDT (sequential) multi-master OCC SI

guaranteeing strong replica consistency at the granularity of epochs. Furthermore, we build a

multi-master geo-replicated OLTP database GeoGauss by modifying openGauss MOT [34], an

in-memory storage engine that is highly optimized for multi-core processors. GeoGauss supports a

full-featured SQL engine with delta-state CRDT merge. To the best of our knowledge, GeoGauss is

the first to integrate CRDT technique into commercial SQL databases with full SQL support.

To sum up, we make the following three key contributions.

• Epoch-based Multi-Master OCC. By relying on delta-state CRDT and epoch-based replication,

we propose a multi-master OCC protocol that supports light-coordinated high throughput

transactions with strong consistency and supports multiple isolation levels.

• GeoGaussDatabase.We develop a geo-replicated OLTP database GeoGausswith full SQL support
and rich optimizations (e.g., high concurrency, efficient communication, pipelining, and fault

tolerance) to adapt to a geo-distributed environment.

• Extensive Experiments. We conduct extensive experiments under a geo-distributed environ-

ment with YCSB and TPC-C benchmarks. We compare GeoGauss with CockroachDB (CRDB)

[67], Calvin [70], Aria [51], CalvinFS [69], Q-Store [57], SLOG [61], and a coordination-free KV

database Anna [72]. Our results show that GeoGauss achieves 1.11X-7.06X higher throughput

and 2.28X-17.41X lower latency than these competitor systems on the TPC-C benchmark and

0.44X-87.36X higher throughput and 0.27X-30.94X lower latency on a medium-contention YCSB

benchmark.

2 BACKGROUND
Geo-replicated systems exhibit three key advantages, high availability, geographic locality, and

read scalability. This section reviews existing replicated systems from different dimensions.

2.1 Replicated Data Systems
Table 1 summarizes multiple replicated systems with their key features. We next study the key

techniques used for data replication.

2.1.1 Replication Architectures. There are three main replication architectures, master-follower,
multi-master, and quorum-based masterless architecture. A number of production systems (e.g.,
openGauss [15]) employ master-follower replication mainly for redundant backup support, while

another set of systems employ master-follower replication for scaling read throughput (e.g., Cock-
roachDB [67], ConfluxDB [38]) by allowing follower replica to serve read requests. However, it

is required to route all users’ write requests to the single master server, which is unsuited for
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geo-distributed databases where users are spread across regions. With masterless (or leaderless)

replication, a user’s write/read operation is sent to all replicas, and a quorum protocol is used to

avoid stale read by comparing the monotonic version number (e.g., DynamoDB [43], Cassandra

[50]). However, all users’ write requests are required to be sent to multiple geo-remote servers,

which is costly in geo-distributed scenarios. With multi-master replication [1, 3, 7, 8, 10, 44, 53],

all nodes can serve both read and write requests for their local users. It is naturally adapted to

geo-distributed requirements.

In addition, supporting distributed transaction processing on Byzantine Fault Tolerant (BFT)

and Crash Fault Tolerant (CFT) clusters has been studied in blockchain systems. For example,

ResilientDB [47] proposes a hierarchical multi-master architecture for geo-scale deployments.

And there also exist many sharding blockchains which provide scalability by grouping nodes into

clusters and partitioning data among several independently-run clusters, e.g., AHL [42], Caper

[31], SharPer [32], RingBFT [60] and ByShard [49]. Most of these works focus on optimizing the

performance of cross-shard transactions which is also a bottleneck in distributed DBMSs [48]. As

an alternative, dynamically transferring the mastership of data to avoid expensive multi-shard

coordination can improve the performance, e.g., DynaMast [25] and MorphoSys [26].

2.1.2 Ordering and Consistency of Replicas. With master-follower architecture, some databases use

replication only for backup (e.g., MySQL [14], HBase [2], and openGauss [15]). These systems use

different ordering techniques due to different requirements, e.g., openGauss relies on a centralized

timestamp oracle (TSO) service to achieve snapshot isolation, HBase uses local time for identifying

the version of a value. To maximize performance, they are configured with asynchronous repli-

cation or semi-synchronous replication [20] (using synchronous replication for a subset of the

followers). This means that the consistency of all replicas may be not guaranteed at a certain time

point (eventual consistency). Another set of sharded databases with master-follower replication

provide serializability and linearizability. For example, Google Spanner [41] relies on TrueTime ,
CockroachDB [67] relies on hybrid logical clock (HLC), and OceanBase [46] and TiDB [55] rely on

a centralized timestamp oracle (TSO) service. The replica consistency is guaranteed with leader-

based protocols, e.g., Paxos and Raft. ISS [66] was recently proposed to improve these leader-based

consensus protocols by efficiently multiplexing consensus instances for scalability.

Many NoSQL KV databases adopt masterless replication without stable master and use quorum

protocol to ensure consistency, such as DynamoDB [43] detects updated conflicts by vector clock

and Cassandra [50] uses the local time to identify the version of a value. However, this quorum-
based approach without a stable master pays for it in performance. Hence, masterless databases are

developed either for use cases that can tolerate eventual consistency or pays for strong consistency

in performance, e.g., DynamoDB [43], Riak [19], and Cassandra [50].

For multi-master architecture, MySQL and PostgreSQL both provide tools for cross-site multi-

master replication, e.g.,MySQL Tungsten [13] and PostgreSQL BDR [16], but they use asynchronous

replication and fail to guarantee strong consistency. The blockchain system is a particular multi-

master replication system with Byzantine-fault tolerance. The key to ensuring consistency is

to reach a consensus on the order of transactions under a trustless environment. For example,

permissionless blockchain Bitcoin [54] employs Proof-of-Work (PoW), permissioned blockchain

Fabric [33] leverages an ordering service to determine a global order of transactions. In this way,

these blockchains can achieve sequential consistency and serializable isolation.

Different from others, coordination-free replication, e.g., Berkeley Anna [72] and Redis CRDT

[18], utilizes mathematical properties of operations (i.e., associative, commutative, and idempotent)
to reach replica consistency with the out-of-order transactions as input on different replicas. Typical

works include Consistency As Logical Monotonicity (CALM) [29, 30, 35, 36, 39] and Conflict-free

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 62. Publication date: May 2023.



62:6 Weixing Zhou et al.

Replicated Data Type (CRDT) [28, 56, 64]. Another consistency guarantee approach is adopted

by deterministic databases. Multiple master nodes accept transaction requests independently and

exchange them between each other with batches to achieve replication. On each replica, the identical

received set of transactions are executed in batches in a deterministic order. Before execution,

all nodes have made an agreement on the ordering rule, e.g., according to the globally unique ID

(local time + server ID). Essentially, it guarantees sequential consistency and supports serializable

isolation, e.g., Calvin [70], Aria [51], CalvinFS [69] and Q-Store [57].

2.1.3 Replication with Transaction Processing. Traditional concurrency control techniques, such as

multi-version two-phase locking (MV2PL) and multi-version timestamp ordering (MVTO), can be

directly applied in single master architecture since all concurrent writes are processed locally. In

sharded databases, 2PC is required for cross-shard transactions to ensure atomicity and consistency.

For KV stores that base on masterless replication, they follow the last-write-win rule to resolve

write-write conflicts.

For multi-master replication, there exist various conflict resolution approaches for concurrent

updates. The most special one is Anna [72] which is naturally conflict-free since the update

operations are required to be insensitive to the execution order, e.g., set union and counter. In

Bitcoin [54], the single node that first solves a PoW puzzle executes transactions serially without

concurrency. In Fabric [33], all peer nodes use multi-version optimistic concurrency control (MVOCC)
to execute their local transactions parallelly, then based on the order consensus they validate

their executions and abort conflict transactions. Deterministic databases execute transactions

according to a predefined serial order, which have limitation on concurrency since the operating

system schedules concurrently running threads in a fundamentally non-deterministic way. Existing

deterministic databases rely on dependency graphs (Aria [51]) or ordered locks (Calvin [70]) to

provide more parallelism while ensuring determinism.

2.2 Requirements
Despite many distributed databases having been proposed, the demand of top telecom customers

drives us to propose a new OLTP database that fulfills the following requirements.

• Multi-Master Architecture. As motivated in Section 1, multi-master architecture is more suited

for a geo-distributed setting, which offers low latency service.

• Full-Featured SQL Engine. High SQL coverage and interoperability are essential for a commer-

cial database and can meet the needs of various users, e.g., OLTP, OLAP, and stored procedures.

• Strong Consistency. As a geo-replicated data system, strong consistency of replicas is desired.

However, linearizability is too expensive and unnecessary. A little real-time property can be

compensated for performance, because sequential consistency is sufficient in most scenarios, e.g.,
online retail and global trading.

• High Performance with Weak Isolation. Many ICT databases used by telecom service

providers are deployed under geo-replicated settings, such as Operation Support Systems (OSS),

Customer Relationship Management (CRM), and Enterprise Resource Planning (ERP). They

demand high throughput and low latency but do not require strong isolation. It is sufficient to

support weaker isolation rather than serializability.

Existing geo-distributed transactional databases pay too much for linearizability and serializabil-

ity, which cannot satisfy our requirements. Next, we will present GeoGauss.
3 SYSTEM OVERVIEW
This section provides system overview of GeoGauss. The overall architecture is shown in Figure 2.

GeoGauss is developed based on a relational database openGauss [15]. We rely on its SQL engine
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to parse SQL statements and generate physical execution plans and use its row-based memory-

optimized storage engine openGauss MOT [34] to store data (other in-memory row-stores with

concurrency support are possible alternatives). The local SQL requests are optimistically executed

based on the local current database state. Only the write sets (a.k.a. updates) obtained after local

SQL execution are exchanged between nodes, which will be merged with local updates at the

receiver side. The merged updates are then applied to each local replica. Some key features are

described as follows.

optimistic 
read

Storage

Exchange of 
Updates

Exchange of 
Updates

Exchange of 
Updates

CRDT Merge

Storage Storage

Local SQL requests Local SQL requests Local SQL requests

Replica 1 Replica 2 Replica 3

write sets

ExecuteExecuteExecute
ExecuteExecuteExecute ExecuteExecuteExecute

CRDT MergeCRDT Merge
& Validate

CRDT MergeCRDT MergeCRDT Merge 
& Validate

CRDT MergeCRDT MergeCRDT Merge 
& Validate

Fig. 2. Overall structure.

Multi-Master Architecture with Full SQL Engine. GeoGauss provides a full SQL engine,

supporting standard SQL, application programming interfaces, interoperability, etc. GeoGauss is
deployed on multiple regional servers, each accepting local users’ SQL requests and converting

high-level SQL statements to low-level read and write requests through the parser, optimizer, and

execution engine. Each regional server processes its local SQL requests independently based on its

local replica.

Optimistic Read on Local Replica. Read-only transactions are directly served with a snapshot

read result for low latency. For transactions that contain both read and write operations, we

perform optimistic read on the most recent consistent local replica. If the read set of a transaction

becomes stale which is discovered before data replication, the transaction is aborted according to

different isolation levels. The optimistic read on local replica helps improve performance under

weak isolation levels.

Epoch-based Replication of Updates. All master nodes exchange their local updates periodically

(every epoch). The epoch is a short period of time (e.g., 10ms), and the epoch number ismonotonically

increased according to local physical time. Different from deterministic databases that perform

replication of the SQL statements, GeoGauss exchanges the write sets between masters, which can

be considered as the delta state in state-based CRDT merge. We provide an illustrative example

in Figure 3 showing how it works under two replicas setting. Suppose a consistent snapshot 𝑆0
among two replicas in the beginning, replica 𝑎 and replica 𝑏 independently execute their local

transactions and independently generate their local write sets. For the transactions that finish

execution, their write sets (a.k.a. updates) are exchanged between replicas at the end of every

epoch. After a node receives all remote updates committed at the first epoch, these updates are

merged with local write sets to resolve write-write conflicts based on a CRDT merge rule, which
guarantees the same merge result given the identical set of updates regardless of arriving order. On
each node, the identical merge outcome is applied to the original snapshot 𝑆0 to generate a new

snapshot, i.e., 𝑆1 = 𝑆0 ⊕ {𝑊𝑎1 (𝑥),𝑊𝑏1 (𝑥)}, where ⊕ represents the merge operation. Only when the

local snapshot for epoch 𝑖 is generated (after merge and validation), can the local transactions with
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Fig. 3. An illustrative example of update merge with two replicas. Each replica 𝑎 independently accepts local
transactions, e.g., 𝑇𝑎1 and 𝑇𝑎2. 𝑅𝑎1 (𝑥) and𝑊𝑎1 (𝑥) represent the read and write operations on data item 𝑥 of
replica 𝑎, respectively. A local transaction with commit epoch number cen cannot be confirmed until snapshot
cen is generated, so there exists a period for receiving remote updates, merge, and validation. Red bars are
epoch boundaries determined by the local clocks, which are not necessarily synchronized across replicas.
Green 𝑆𝑖 is the globally consistent snapshot. The blue dotted/solid box is the sent/received write set.

commit epoch number 𝑖 be returned by the host master with committed/aborted notification, e.g.,
𝑇𝑎2 which is committed at epoch 3 will not return until 𝑆3 is generated on replica 𝑎, at which time

replica 𝑎 has received and merged the remote updates that are committed at epoch 3,𝑊𝑏3 (𝑦).

CRDT Merge with Transaction Processing. By only exchanging write sets (a.k.a. updates), the
merge of updates and concurrent transaction processing can be unified by our multi-master OCC
algorithm, which is performed on a per-epoch basis. From each replica’s perspective, a globally

consistent snapshot 𝑖 will be achieved once it has merged the updates of epoch 𝑖 and all previous

epochs (collected from local and all other remote nodes), at which time the local transactions of

epoch 𝑖 can be returned with committed/aborted response. We rely on delta-CRDT to efficiently

resolve cross-region conflicts and achieve a globally consistent state. With a merge operation

that has ACI properties, these writes from different replicas can be partially merged to improve

efficiency (Associative), can arrive in different orders (Commutative), and even can be retransmitted

(Idempotent). The replica state after merging local/remote updates is guaranteed to be consistent
among all nodes.

Asynchronous Execution and Synchronous Validation. A node is allowed to execute transac-

tions of epoch 𝑖 even though snapshot (𝑖 − 1) has not been generated. In other words, the execution

is not necessarily synchronized across epochs, but the validation has to be synchronized. The

validation of epoch 𝑖’s transactions is performed based on the globally consistent snapshot (𝑖 − 1),
where the previously executed transactions that have write-write conflicts with others should be

aborted (by checking whether a transaction’s pre-write is overwritten by others). As a conventional

way, data replication and transaction processing are designed separately, losing the opportunity for

achieving high concurrency. We support high-throughput transaction processing by coupling the

merge of updates and the optimistic transaction processing, which will be discussed in Section 4.
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Algorithm 1: Local Transaction Process (a Thread per Transaction)

Input: a transaction 𝑇
Output: return commit or abort

1 {𝑇 .sen,𝑇 .lsn} ← get current epoch no. and latest snapshot no.;

2 Execute transaction 𝑇 based on latest snapshot;

3 𝑇 .𝑅𝑆 ← 𝑇 ’s read set; 𝑇 .𝑊𝑆 ← 𝑇 ’s write set;

4 {𝑇 .csn,𝑇 .cen} ← get current timestamp and epoch no.;

5 if 𝐼𝑠𝑜𝑙𝑎𝑡𝑖𝑜𝑛 == RC then
6 Add 𝑇 .{sen, csn, cen,𝑊 𝑆} to send buffer;

7 else if 𝐼𝑠𝑜𝑙𝑎𝑡𝑖𝑜𝑛 == RR or SI then
8 //Read set validation

9 for each 𝑟𝑒𝑐𝑜𝑟𝑑 in 𝑇 .𝑅𝑆 do
10 𝑟𝑜𝑤 = 𝐹𝑖𝑛𝑑𝑅𝑜𝑤 (𝑟𝑒𝑐𝑜𝑟𝑑.𝑘𝑒𝑦);
11 if 𝑟𝑜𝑤 == 𝑛𝑢𝑙𝑙 then
12 Abort 𝑇 ; //read row is deleted

13 else if RR and 𝑟𝑒𝑐𝑜𝑟𝑑.csn ≠ 𝑟𝑜𝑤.csn then
14 Abort 𝑇 ; //read row is updated

15 else if SI and 𝑟𝑜𝑤.cen − 1 > 𝑇 .lsn then
16 Abort 𝑇 ; //snapshot is updated

17 else
18 //Not support

19 if 𝑇 .𝑊𝑆 == ∅ then
20 return COMMIT; //read-only transaction

21 Add 𝑇 .{sen, csn, cen,𝑊 𝑆} to send buffer;

22 wait till snapshot 𝑇 .cen − 1 is generated;
23 DeltaCRDTMerge(T.{sen,csn,cen,WS}); //Algorithm2, based on the consistent snapshot (𝑇 .cen − 1)
24 wait till all updates of remote/local TXs with 𝑇 .cen are applied on rowheaders;

25 //Validation:

26 for each 𝑟𝑒𝑐𝑜𝑟𝑑 in 𝑇 .𝑊𝑆 do
27 𝑟𝑜𝑤 = 𝐹𝑖𝑛𝑑𝑅𝑜𝑤 (𝑟𝑒𝑐𝑜𝑟𝑑.𝑘𝑒𝑦);
28 if 𝑟𝑜𝑤.csn ≠ 𝑇 .csn then
29 Abort 𝑇 ; //write-write conflict occurred

30 //Write-back:

31 for each 𝑟𝑒𝑐𝑜𝑟𝑑 in 𝑇 .𝑊𝑆 do
32 𝑟𝑜𝑤 = 𝐹𝑖𝑛𝑑𝑅𝑜𝑤 (𝑟𝑒𝑐𝑜𝑟𝑑.𝑘𝑒𝑦);
33 𝑟𝑜𝑤.𝑤𝑟𝑖𝑡𝑒_𝑑𝑎𝑡𝑎(𝑟𝑒𝑐𝑜𝑟𝑑.𝑑𝑎𝑡𝑎);
34 return COMMIT;

4 EPOCH-BASED MULTI-MASTER OCC
4.1 Lifecycle of a Local Transaction
A transaction is submitted from the client to the local server, where a thread is assigned for the

transaction. Algorithm 1 describes the per-thread transaction processing logic. A transaction is

first assigned with a start epoch number (sen) and a latest snapshot number (lsn) (Line 1). The lsn is

the latest globally consistent snapshot number maintained by the server at the current time, which

is used for read set validation in snapshot isolation. The transaction is then executed and generates

read set 𝑅𝑆 and write set𝑊𝑆 (Line 2-3). The SQL constraints are checked during the transaction

execution. If a constraint violation occurs, the transaction will abort before generating the write
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set. In the case of a read-only transaction, it reads data on the most recent snapshot and returns

after read validation(Line 19-20).

For the transactions that contain write operations, our multi-master OCC requires each trans-

action to record a few meta information for CRDT merge. Specifically, a transaction is assigned

with a commit epoch number (cen) and a commit sequence number (csn) (Line 4). The cen is the

current physical epoch number used to determine the batch of transactions that attempt to commit

together, including both the local and remote transactions with the same cen. The timestamp along

with its local server ID is used to generate a globally unique csn, which is used to determine the

execution order within the same epoch. In addition, the transaction’s write set𝑊𝑆 along with its

{sen, csn, cen} is sent to remote peers. GeoGauss supports several ANSI isolation levels, e.g., Read
Committed (RC), Repeatable Read (RR), and Snapshot Isolation (SI). They are different in processing

logic (Line 5-18).

For a transaction with 𝑇 .cen, a synchronization point is placed to wait for snapshot (𝑇 .cen − 1)
to be generated (Line 22). The snapshot (𝑇 .cen − 1) is generated by merging all local and remote

transactions of epoch (𝑇 .cen − 1). This warrants that operations are applied on the most recent

consistent snapshot, otherwise it could impact correctness and consistency (Section 4.4).

The DeltaCRDTMerge function is then launched (Line 23), which defines the rule for merging a

new update (a.k.a. delta state) into the current database state (see Section 4.2 and Algorithm 2).

A row header stores each row’s meta information {sen, lsn, csn, cen} indicating the row’s update
history by an arbitrary transaction thread, which is used for OCC’s pre-write. For example, suppose

a row header is firstly updated by a transaction 𝑇 , i.e., update row header by 𝑟𝑜𝑤.csn = 𝑇 .csn,
is then overwritten by other threads leading to 𝑟𝑜𝑤.csn ≠ 𝑇 .csn, 𝑇 will be aborted during the

validation phase (Line 26-29). This implies that there exists a write-write conflict on the same row.

According to the merge rule, only one write wins and is committed, and the others are aborted.

The validation phase of transaction 𝑇 cannot start until all local/remote transactions of epoch

𝑇 .cen are collected and applied on the row headers (Line 24). This is essential to the correctness by

ensuring none of the updates are missing. If the transaction does not meet a write-write conflict or

wins in conflict merge, it is allowed to commit. This transaction’s write data are used to update the

involved rows (Line 31-33). After all transactions with the same commit epoch number cen are

validated and applied on the table, a new snapshot for epoch cen is generated.

4.2 Merge of Updates
4.2.1 Epoch-Aware Delta CRDTMerge. CRDTs [63, 65] are distributed datatypes that allow different

replicas of a distributed CRDT instance to diverge and ensure that, eventually, all replicas converge

to the same state. State-based CRDTs achieve this by propagating updates of the local state by

disseminating the entire state across replicas. The received states are then merged to remote states,

leading to convergence (i.e., consistent states on all replicas). In delta CRDT [28], only the updates

are disseminated instead of the entire state. A received delta-state (i.e., update) is incorporated with
the local full state (i.e., database) via a merge function that deterministically reconciles both states.

The delta-states can be shipped using an unreliable dissemination layer that may drop, reorder,

or duplicate messages, i.e., delta-states can always be out of order, re-transmitted, and re-joined.

Furthermore, it is desired to handle concurrent updates for high performance. Therefore, the key

is the design of the merge function which must be associative, commutative, idempotent, and

parallel-friendly, and most importantly be aware of epoch information.

Our merge function, DeltaCRDTMerge, is depicted in Algorithm 2. It defines the conflict merge

rule to determine the successful updates and may be concurrently invoked by multiple local

transactions and remote transactions. It relies on a data structure, row header, to support epoch-
based delta-state merge, which stores each updated row’s {sen, lsn, csn, cen}. For ease of illustration,
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Algorithm 2: DeltaCRDTMerge

Input: a transaction’s 𝑇 .{sen, csn, cen,𝑊 𝑆}, current row headers

Output: updated row headers

1 for each 𝑟𝑒𝑐𝑜𝑟𝑑 in 𝑇 .𝑊𝑆 do
2 𝑟𝑜𝑤 = 𝐹𝑖𝑛𝑑𝑅𝑜𝑤 (𝑟𝑒𝑐𝑜𝑟𝑑.𝑘𝑒𝑦);
3 if 𝑟𝑜𝑤 == 𝑛𝑢𝑙𝑙 then
4 Abort 𝑇 ; //row is deleted by other threads

5 if 𝑟𝑜𝑤.cen < 𝑇 .cen then
6 𝑟𝑜𝑤.{sen, csn, cen} = 𝑇 .{sen, csn, cen}; //row is not pre-written in current epoch

7 else if 𝑟𝑜𝑤.cen == 𝑇 .cen then
8 if 𝑟𝑜𝑤.sen == 𝑇 .sen then
9 if 𝑟𝑜𝑤.csn > 𝑇 .csn then

10 𝑟𝑜𝑤.{sen, csn, cen} = 𝑇 .{sen, csn, cen}; //first write wins

11 else
12 Abort 𝑇 ;

13 else if 𝑟𝑜𝑤.sen < 𝑇 .sen then
14 𝑟𝑜𝑤.{sen, csn, cen} = 𝑇 .{sen, csn, cen}; //shorter transaction wins

15 else
16 Abort 𝑇 ;

17 else
18 //𝑟𝑜𝑤.cen > 𝑇 .cen will never happen

we focus on the update transactions. 1) If a write row is null, which means that it was deleted

by other threads in past few epochs, we abort this transaction (Line 3-4). 2) If the write row is

not pre-written in the current epoch (𝑇 .cen) yet, i.e., 𝑟𝑜𝑤.cen < 𝑇 .cen, we update its row header

for a candidate commit (Line 5-6). Otherwise, this row has been updated in the current epoch by

other threads, i.e., 𝑟𝑜𝑤.cen == 𝑇 .cen. Note that, since the DeltaCRDTMerge will never be invoked
to merge updates of epoch (𝑖 + 1) before completing the merge of all updates of epoch 𝑖 (the

synchronous point at Line 22 in Algorithm 1), 𝑟𝑜𝑤.cen > 𝑇 .cen will never happen. 3) We let shorter

transactions win by comparing their 𝑇 .sen, i.e., 𝑟𝑜𝑤.sen < 𝑇 .sen. A transaction with larger 𝑇 .sen
means that it is closer to the current epoch𝑇 .cen (because𝑇 .cen −𝑇 .sen is smaller) and is likely to

commit (Line 13-14). 4) Suppose the same sen, we use csn to determine the order and follow the

first-write-win rule (Line 8-12). Note that, for an insert request, the FindRow function cannot locate

the row. In addition, multiple concurrent insert transactions may insert into the same row. We use

a temporary table to store the inserted rows to deal with the insertion conflicts within the same

epoch. Instead of invoking FindRow which relies on the table index, we use a temporary table for

the inserted rows.

The DeltaCRDTMerge operation defined in Algorithm 2 is similar to the first-write-win conflict

resolution in OCC, but they have different design goals. Our merge function that has ACI property

is designed for merging the local/remote updates on separate nodes to achieve a globally consistent

state (i.e., replicating states), even though these updates arrive at each node in different orders

(Commutative property), are merged partially (Associative property), are retransmitted (Idempotent

property). But the first-write-win rule in OCC is for deciding the committed and aborted transactions

in concurrent transaction processing on a single replica.

4.2.2 Handling Remote Updates. The merge of remote updates and the local transaction processing

are running concurrently and interacting with each other. On each master node, multiple receive

threads and merge threads are continuously running as shown in Algorithm 3. The receive thread
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Algorithm 3: Epoch-based Multi-Master OCC

Input: the continuously received batches of remote updates 𝑇𝑆 = {𝑇 .{sen, csn, cen,𝑊 𝑆}}, the set of
local transaction processing threads 𝐿𝑇 [𝑖] for epoch 𝑖 , and the number of replicas 𝑛

Output: continuously updated table

1 Receive thread:
2 while true do
3 𝑇𝑆 ← receive a batch of updates with epoch 𝑇𝑆.cen;
4 𝐵𝑈 𝐹 [𝑇𝑆.𝑐𝑒𝑛].add(𝑇𝑆); //add TS to buffer 𝐵𝑈 𝐹 indexed by cen

5 Merge thread:
6 while true do
7 lsn← get latest consistent snapshot no.;

8 𝑇𝑆 = 𝐵𝑈 𝐹 [lsn + 1].get(); //blocking get

9 foreach 𝑇 in 𝑇𝑆 do
10 DeltaCRDTMerge(𝑇 .{sen, csn, cen,𝑊 𝑆});
11 if 𝑇 is not aborted then
12 𝑄 [lsn + 1].push(𝑇 ); //add 𝑇 to commit queue 𝑄

13 𝑁 [lsn + 1] ← 𝑁 [lsn + 1] + 1; //counts the executed remote 𝑇𝑆

14 if 𝑁 [lsn + 1] == 𝑛 − 1 then
15 //all remote updates have been processed

16 NotifyAll({𝑇ℎ𝑟𝑒𝑎𝑑 [𝑇 ] | 𝑇 .cen = lsn + 1}); //notify all threads blocked at Line 24 (Alg. 1)

17 foreach 𝑇 in 𝑄 [lsn + 1] do
18 Execute Line 26-33 of Alg. 1 for 𝑇 ; //validate and write

19 wait till all local threads(𝑇ℎ𝑟𝑒𝑎𝑑.𝑇 .𝑐𝑒𝑛 == lsn + 1) are finished;
20 NotifyAll({𝑇ℎ𝑟𝑒𝑎𝑑 [𝑇 ] | 𝑇 .cen = lsn + 2}); //notify all threads blocked at Line 22 (Alg. 1)

21 lsn← lsn + 1; //a new snapshot is generated

22 Local transaction processing primary thread:
23 while true do
24 Fork a new thread 𝑇ℎ𝑟𝑒𝑎𝑑 [𝑇 ] for a local transaction 𝑇 ;
25 𝑇ℎ𝑟𝑒𝑎𝑑 [𝑇 ].start(); //Algorithm 1

keeps receiving updates 𝑇𝑆 from remote peers and temporarily stores them in the receive buffer

with their commit epoch number 𝑇 .cen information (Line 3-4). Suppose lsn is the number of the

most recent globally consistent snapshot (Line 7). The merge thread merges updates of epoch

(lsn + 1) based on the most up-to-date table state (i.e., snapshot lsn) and will produce consistent

snapshot one by one. Specifically, if there exist remote updates of epoch (lsn + 1) in the buffer, it

processes them by invoking the DeltaCRDTMerge function (Line 8-10). The transactions that are

not aborted are pushed into a commit queue𝑄 [lsn+ 1] (Line 11-12). If the updates of epoch (lsn+ 1)
from all remote peers have been applied on row headers, it notifies all the local transaction threads

for epoch (lsn + 1) and triggers the validation and write-back for each update in the commit queue

(Line 16-18). Once all the local threads of epoch (lsn+ 1) are finished, it means that a new consistent

snapshot is achieved. The merge thread immediately notifies all the local transaction threads of

the next epoch that are waiting for this up-to-date snapshot (Line 19-21). We also have a primary

thread for assigning a new thread for each new local transaction (Line 23-25).

4.2.3 Case Study. 1) Long running Transactions. Only when a transaction commits at epoch

𝑖 can we send its write sets at the end of epoch 𝑖 . For example in Figure 3, 𝑇𝑎2 is a long running

transaction that crosses three epochs and ends at epoch 3. If the transaction is not aborted in the
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read validation phase, its write sets {𝑊𝑎2 (𝑥),𝑊𝑎2 (𝑦)} are sent out together at the end of epoch 3.

Note that, the transactions that start at the same epoch are not necessarily completed synchronously

before the next epoch can start. They may finish execution and commit at different epochs, so the

short transactions do not wait for the long transactions but can commit at earlier epochs. A long

transaction (spanning multiple epochs) is more likely to be aborted due to inconsistent read in RR
or stale read in SI, where the read data might be modified by early committed short transactions.

Nevertheless, if there are no updates for an epoch, e.g., epoch 2 on replica 𝑎, an empty message

is sent out to prevent endless wait at remote peers. 2) Network Delay. For example in Figure 3,

due to network latency, the two replicas probably may not reach a consistent snapshot exactly at

the same time point, but they will at a certain time. This will NOT block the system running and

will NOT impact sequential consistency (see Section 4.4). For example, snapshot 𝑆2 is generated

at epoch 3 on replica 𝑎 and at epoch 4 on replica 𝑏. The write set𝑊𝑏3 (𝑦) of 𝑇𝑏3 is routinely sent

out to replica 𝑎 at the end of epoch 3. However, the merge of updates of epoch 𝑖 cannot start until

snapshot (𝑖 − 1) is generated (Line 22 in Algorithm 1). For example, local update𝑊𝑏3 (𝑦) of epoch 3

cannot be merged with snapshot 𝑆1, but can only be merged with snapshot 𝑆2 and the updates of

epoch 3 (𝑊𝑎2 (𝑥) and𝑊𝑎2 (𝑦)) to generate 𝑆3.

4.3 Isolation
Weak isolation models cannot guarantee serializability, but their benefits to concurrency are

frequently considered by application developers to outweigh the costs of possible consistency

anomalies that might arise from their use. GeoGauss supports multiple weak ANSI isolation levels

as shown in Algorithm 1, allowing users to choose the optimal one for their specific application.

Read Committed (RC). For a transaction𝑇 of epoch𝑇 .cen, only the committed data as a snapshot

can be accessed in our system, so the support of RC isolation is straightforward. None of the local

transactions is aborted and all of them are used to generate write sets. Its write set 𝑇 .𝑊𝑆 along

with its metadata are immediately added to the send buffer (Line 21). Note that it cannot guarantee

to read the most up-to-date committed data since the most recent snapshot 𝑇 .cen − 1 might not be

generated yet. But it can guarantee that the latter read item is a more up-to-date one.

Repeatable Read (RR) and Snapshot Isolation (SI). As a single-version in-memory database,

we realize the RR and SI mainly through an optimistic approach, i.e., read set validation. 1) If the

previously read record is deleted, the transaction is aborted under these two isolation levels (Line

11-12). 2) During a transaction’s execution, each time it reads a record, the row’s csn is updated as

the record’s csn. If a row is updated by other threads after its first read (i.e., 𝑟𝑜𝑤.csn ≠ 𝑟𝑒𝑐𝑜𝑟𝑑.csn),
the transaction is aborted under RR isolation (Line 13-14). 3) If a transaction’s read row is updated

in a new snapshot (snapshot 𝑟𝑜𝑤.cen − 1 due to the synchronous point at Line 22) since it starts
execution (snapshot 𝑇 .lsn), the initial read snapshot is updated (i.e., 𝑟𝑜𝑤.cen − 1 > 𝑇 .lsn) which
violates SI. The transaction is aborted under SI (Line 15-16). Only the transactions that pass read

set validation will be sent out (Line 21). For example in Figure 3, 𝑇𝑏2 is aborted under RR because

its first read 𝑅𝑏2 (𝑥) is the 𝑥 in 𝑆0 while its second read 𝑅𝑏2 (𝑥) is the updated 𝑥 in 𝑆1. With SI, a
transaction is aborted if its read snapshot is stale. For example,𝑇𝑎2 will be aborted under SI because
its first read 𝑅𝑎2 (𝑥) is based on 𝑆0 while its second read 𝑅𝑎2 (𝑦) is based on 𝑆1.

Serializable Snapshot Isolation (SSI). We discuss the possibility to support SSI [37]. We need

to exchange each read record’s key for read-write dependency detection. Then we can prevent

snapshot isolation anomalies by aborting a transaction when a pair of consecutive conflict edges

are found. Currently, GeoGauss do not support SSI due to its high cost for transferring the read

keys.
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4.4 Consistency of Replicas
We show how GeoGauss guarantees the consistency of replicas.

Lemma 1. Following epoch-based multi-master OCC, the read operations will not affect the consis-
tency of replicas.

Proof. In our system, each master node performs a local read on snapshots and then generates

the write set. That is, the write set is generated by a single source worker and then sent out

for write-write conflict merge. No matter which snapshot (old or new) a transaction reads, the

write data by the transaction are deterministic before they are sent out. The consistency of read

operations will only affect isolation property. The transactions that read different versions of data

violate isolation constraints (e.g., RR and SI) and will be aborted without producing updates. Only

the updates can change the state of replicas. Therefore, the read operations will not affect the

consistency of replicas. □

Lemma 2. Suppose an initial database state 𝑆𝑖 and a set of updates𝑇𝑆 = {U(𝑇1),U(𝑇2), . . . ,U(𝑇𝑛)}
with the same cen, whereU(𝑇𝑖 ) = 𝑇𝑖 .{sen, csn, cen,𝑊 𝑆}. No matter what order these updates input
in, Algorithm 2 will produce the deterministic state 𝑆𝑖+1.

Proof. The merge rule (Algorithm 2) is defined by comparing tuples {sen, csn, cen}. We define

a strict total order ‘≺’ on the set of updates 𝑇𝑆 as follows. For any two updatesU(𝑇𝑖 ) andU(𝑇𝑗 )
with the same cen (i.e.,𝑇𝑖 .cen = 𝑇𝑗 .cen), we haveU(𝑇𝑖 ) ≺ U(𝑇𝑗 ) if one of the following conditions
is met.

• 𝑇𝑖 .sen > 𝑇𝑗 .sen;
• 𝑇𝑖 .sen = 𝑇𝑗 .sen and 𝑇𝑖 .csn < 𝑇𝑗 .csn.

Because 𝑇 .csn is generated based on 𝑇 ’s source worker id and its commit timestamp assigned

by the source worker, which is globally unique, there must be a strict order between any two

updates𝑇𝑖 and𝑇𝑗 . For conflict updates on a row 𝑥 , Algorithm 2 allows for the updates of transaction

𝑇 with the “smallest” (according to ‘≺’) to commit. That is, the collection of successful updates

always equals to

{
{𝑥 ∈ WS : 𝑇𝑖 ∈ C(𝑥)} | U(𝑇𝑖 ) ≺ U(𝑇𝑗 ),∀𝑇𝑗 ∈ C(𝑥)

}
, where 𝑥 is a table row,

WS = {𝑇1 .𝑊 𝑆 ∪ 𝑇2.𝑊 𝑆 ∪ . . . ∪ 𝑇𝑛 .𝑊 𝑆} is the union of the write sets of all transactions in an

epoch, and C(𝑥) indicates a set of transactions that write row 𝑥 . Therefore, with an initial state

𝑆𝑖 , no matter what order these updates input in (even for duplicated updates), the deterministic
order implicitly defined on the set of updates with unique tuples {sen, csn, cen} will guarantee the
deterministic output 𝑆𝑖+1. □

Theorem 3. The epoch-based multi-master OCC (Algorithm 1,2,3) enforces consistency of replicas
at the granularity of epochs.

Proof. Lemma 1 states that read operations will not affect the consistency of replicas, so we

only focus on studying the effects of write operations. Lemma 2 states that given a batch of updates

and an initial state, the output state is deterministic regardless of the non-deterministic input order

of these updates. To achieve consistency of replicas, it is crucial to guarantee 1) the identical initial

state and 2) the identical batch of updates on all replicas. First, the synchronization points at Line

24 in Algorithm 1 and at Line 19 in Algorithm 3 ensure that each replica runs an identical batch of

updates, i.e., having merged all local/remote updates of an epoch. Second, the synchronization point

at Line 22 in Algorithm 1 and the latest snapshot number verification at Line 7 in Algorithm 3 ensure

that the updates of epoch (𝑖 + 1) are applied on snapshot 𝑖 , which guarantees the identical initial
snapshot. Therefore, the consistency of replicas is guaranteed at the granularity of epochs. □
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The read operations on the local replica are not exchanged among replicas. The order of write

operations in an epoch is deterministic and consistent on each individual replica (Lemma 2). The

epoch snapshots on all replicas are generated one by one. Thus, the consistency enforced by our

algorithm is a kind of sequential consistency.

5 IMPLEMENTATION
We implement GeoGauss based on openGauss 2.0 MOT storage engine [15]. The data flow of

GeoGauss is depicted in Figure 4.

5.1 Parallelism and Communication

Thread Blocking and Notification. A large number of transaction threads might be blocked

waiting for a notification signal (Line 22 in Algorithm 1). It is possible that a thread entering into

the blocking phase and a signal notifying the thread concurrently occur. If the thread misses the

notification signal, it will be suspended permanently. To avoid the anomalies, we let each thread

sleep and actively check the condition periodically, which works well with a small number of

threads. On the other hand, we introduce a mutex lock to prevent concurrency anomalies. But these

threads that share the mutex lock have to be invoked one by one serially. To maximize parallelism,

we create multiple mutex locks and make each one only shared by a disjoint subset of threads. This

can effectively alleviate the burst of thread notifications.

Message Queue and Pipelining. We rely on Protocol Buffers [17] and Gzip [11] to compress

the buffered write sets. Instead of the heavyweight gRPC [12] used by openGauss, we prefer

the lightweight ZeroMQ [23] (with publish-subscribe mode) to realize efficient data transmission

between nodes. Furthermore, as depicted in Figure 3, the write sets in a send buffer are packaged

and sent out together at the end of each epoch. This could seize computation resources and

incur network bursts. To overlap the communication and computation, we introduce a pipelining

technique that sends write sets in mini-batches in a streamlined manner. Note that, an EOF message

is sent indicating the end of the epoch (according to physical time) in streamlined communication,

so the receiver can ensure the completeness of an epoch of transactions. Furthermore, we improve

the pipelining by zero-copy send and receive. Usually, when a user space process has to execute

system operations like reading or writing data from/to a network device, it has to perform one or

more system calls that are then executed in kernel space by the operating system. We copy the

write sets data through zero-copy and directly send them out through Protocol Buffers. This can

alleviate the serialization and deserialization costs.
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5.2 Fault Tolerance
Under a multi-master architecture, once a master node fails to provide service, its local transaction

requests can be routed to another master node. We employ Raft protocol [5] to make a consensus on

the status of live nodes, which can prevent permanent blocking (the whole system may be blocked

waiting for the write sets from a failed node). This is light weight since it is invoked only when

the status of alive nodes is changed. Under such an epoch-consistent replicated system, multiple

master nodes work as strongly consistent replicas, so there is little risk that all master nodes fail

simultaneously. We can also place more replicas for backup to increase robustness as existing

commercial databases do. However, there is a unique problem that should be tackled under such

architecture. That is, we should prevent the loss of updates problem, i.e., some updates successfully

commit on the local node but fails on remote nodes. To avoid such faults, GeoGauss provides three

fault tolerance options, from light to heavy-weighted.

Local WriteSet Backup Server. We place one (or more) writeset backup servers associated with

each replica in each region, caching the generated local write sets for backup. Each time a server

node sends local write sets to remote nodes, it also sends a copy to the local writeset backup server,

which will send back an ack message as a response. Only when all remote write sets with commit

epoch number cen have been collected and the local write sets with cen have been backed up, can

we return to users the committed/aborted states of the transactions with cen. Once a node failure
is detected and removed, the other remote nodes will ask the corresponding writeset backup server

to check whether there exists a loss of updates by comparing the monotonic cen. If so, the remote

nodes need to pull the lost write sets and merge them to advance to the consistent snapshot cen
before proceeding. Since the local backup occurs simultaneously with the sending of local updates

and the local network is much faster than the cross-region network, the cost of local backup is

hidden, which will not impact the performance.

Remote WriteSet Backup Server. In case a region fails, the local backup server will fail together,

and the above scheme may not work. Similarly, we can place one (or more) remote backup servers

in other regions for caching the write sets. In this case, it requires one cross-region round-trip-time

(RTT) for sending backup updates and receiving the ack message. This is more expensive than the

local backup method, which requires only 0.5 cross-region RTT for receiving the remote updates.

This solution can ensure fault tolerance when one or more regions fail.

Raft Replication of WriteSets. To maximize the fault tolerance, the write sets can be replicated

through Raft consensus protocol on a per-epoch basis. This is similar to the deterministic databases

which rely on Raft to replicate SQL inputs. Each node (as a Raft leader) sends the generated write

sets to other receiver master nodes (as Raft followers), who will send back ack messages. If the

leader collects more than half of the ack messages, it sends a commit request to the receivers

indicating that the write sets can be applied to the existing database state. Therefore, the receiver

requires ∼1.5 RTTs to receive the write sets from the sender node.

6 DISCUSSION

Transaction-based vs. Batch-based vs. Epoch-based. Traditional wisdom prefers to handle

transactions on a per-transaction basis [41, 67]. This is suboptimal under a high-contentionworkload

and geo-distributed environment due to the expensive coordination cost for each individual trans-

action. Our multi-master OCC algorithm can also be slightly changed to support transaction-based

conflict merge. However, this brings more complexity for ensuring the atomicity and consistency of

replicas. An alternative is batch-based processing (e.g., deterministic databases [51, 70]) that limits

the number of updates for each batch instead of a fixed time period. The batch-based approach

could have undesirable performance due to imbalanced workloads among transactions, especially
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for long-running transactions, due to the barriers across batches. Our epoch-based multi-master

OCC divides transactions into multiple individual subsets according to the local time and their

commit time (i.e., cen). The updates of long running transactions will be merged in later epochs

without blocking the merging process. In addition, the epoch-based and batch-based approaches

are less expensive for fault tolerance since the consensus and durability are established on a set of

transactions instead of an individual transaction.

Epoch Length. Intuitively, the epoch length should be set longer than the round trip time (RTT).

But it is not necessary due to the deterministic execution with the coordination-free property.

Unlike the coordination-based approach (e.g., 2PC) that relies on the remote server’s confirmation

on the validity of remote data (e.g., through locking), our multi-master OCC only verifies the

completeness of an epoch of updates (i.e., have collected updates from all peers from the receiver’s

point of view) and does not need to coordinate with remote peers (with one or more RTTs) before

proceeding. In our cross-region experiments, it is common that the latest snapshot that is used for

generating read/write sets lags behind the current physical time by 3-5 epochs (corresponding to

the single-trip delay 30-50ms). Despite the epoch length can be set regardless of network RTT, it

should be limited by our serving model. Our system reuses the serving model of openGauss, in

which a thread is allocated to serve a submitted transaction and will not release its resources until

the transaction is committed or aborted. Before that, these serving threads might be blocked. Setting

a short epoch length can increase the frequency of update exchanges and as a result shortens

the confirmation time, which not only reduces the blocking time to improve throughput but also

decreases the latency. However, too frequent communications and update merges will increase the

scheduling cost that outweighs the benefits (see Section 7.5.1).

Advantages over Deterministic Databases. Existing deterministic databases [9, 24, 51, 52, 57, 61,
62, 68–70] replicate batches of SQL transaction requests to multiple master nodes. After collecting

all transactions of the same batch, each replica is required to execute these transactions according

to a predefined serial order. This requirement is stricter than that required for an execution to be

serializable (which only requires that transactions execute according to some serial order) since
the operating system schedules threads in a fundamentally nondeterministic way [24]. This might

require a locking mechanism to achieve concurrency while ensuring deterministic serial order,

but this results in high scheduling overhead. A number of approaches are proposed to reduce the

scheduling overhead, e.g., Aria [51], QueCC [58], PWV [45], and LADS [74]. However, there exist

several disadvantages of deterministic databases, including 1) lack of support for interactive SQL

because it is required to disseminate the SQL statements before executing them, which limits their

application; 2) the additional scheduling overhead for determinism; 3) undesirable performance due

to imbalanced workloads among transactions, especially for long running transactions (because a

previous batch of transactions must finish executing before a new batch can begin). Compared with

deterministic databases which exchange SQL statements, GeoGauss which disseminates replica-

generated write sets has distinct advantages. 1) We support a full SQL engine (e.g., interoperability)
by disseminating the write sets when a transaction commits. 2) With our CRDT merge rule for write

sets (Algorithm 2), we do not need additional scheduling overhead for ensuring the determinism

for concurrent processing. 3) In GeoGauss, transactions are optimistically executed and arranged

into batches according to their commit time for synchronous validation. It is allowed to process new

transactions during the execution of long transactions, so the impact of long transactions is greatly

alleviated.

7 EVALUATION
This section evaluates GeoGauss through cross-region experiments.
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Cluster Setup. Our cross-region cluster contains 3 geo-distributed nodes (corresponding to 3

replicas), including a node in Zhangjiakou city (North China), a node in Chengdu city (Southwest

China), and a node in Shenzhen city (South China). Each node (Aliyun ecs.r6e.8clarge instance) is

equipped with 32 vCPUs, 256GB DRAM, running Centos 7.6 OS. The network bandwidth between

cross-region nodes is about 100 Mbps/s. A separate node (ecs.c6.8xlarge) is set in each region to

simulate the local client for sending SQLs.

Competitors and Configurations. We choose CockroachDB (CRDB) [67], Calvin [70], Aria
[72], CalvinFS [69], Q-Store [57], SLOG [61], and a coordination-free KV database Anna [72] for
comparison. To investigate the performance improvement by optimistic asynchronous execution and
synchronous validation, we also implement two variants GeoG-S and GeoG-A based on GeoGauss.

• CRDB: For fairness, CRDB is configured with in-memory store and configured with stale reads from
outside the read row’s home region. As suggested by CRDB documentation, we place 2 additional

nodes in each region for maximizing its performance. CRDB supports strong consistency and

serializable isolation.

• Calvin, Aria, CalvinFS, and Q-Store: Calvin and Aria are two typical deterministic databases

with multi-master replication. They replicate SQLs instead of write sets, and they do not provide

a full SQL engine, so they do not support interactive queries. They provide strong consistency

and serializable isolation. Calvin leverages ordered locks to achieve concurrency, and Aria
relies on dependency analysis and transaction reordering. For these two systems, we use the

implementations from [4] and follow their default configurations. CalvinFS is a distributed file

system that extends Calvin to achieve metadata management. We use the implementation from

[6] and follow its default configurations. Q-Store, which is implemented based on Calvin, uses a
queue-oriented transaction processing method instead of ordered locks to reduce the scheduling

overhead.

• SLOG: SLOG adopts the sharded master-follower architecture. The input SQLs are contained in

logs and are replicated to followers. For cross-shard transactions, they are sent to a single node

for deciding a global order, which is used for deterministic execution on each shard replica. The

shard replica replays the received logs through deterministic execution to achieve serializability.

• Anna: Anna achieves wait-free execution via the merge of lattice-based composite data structures

(similar to CRDT). It only supports causal consistency and eventual consistency (by default), so a

submitted SQL request is not returned with a committed or aborted response. It also supports a

variety of weak isolation levels, where RC isolation is configured by default.

• GeoGauss: Our system is configured with 10ms epoch length by default. It supports strong

consistency and multiple weak isolation levels (RC by default). CRDB and GeoGauss use a standard
benchmark interface, in which each connection only sends a single transaction once at a time. In

these two systems, each node is configured with 256 connections.

• GeoG-S: It adopts synchronous execution and synchronous validation, i.e., it does not start the
execution of epoch 𝑖’s transactions until the snapshot (𝑖 − 1) is generated.
• GeoG-A: It removes epoch concept and adopts asynchronous execution and asynchronous validation.
Similar to Anna, it provides eventual consistency and does not guarantee strong consistency at

the granularity of epochs.

Workloads. We use two popular benchmarks, YCSB [40] and TPC-C [21]. For YCSB, we use one

table with 10 columns and 1,000,000 rows, and we configure it with 256 connections. To make it a

transactional benchmark, we wrap operations within transactions and let each transaction contain

10 operations. We evaluate three different variations of YCSB workload: 1) YCSB-MC (medium

contention): 80% reads and 20% writes with a hotspot of 10% tuples that are accessed by ∼60% of all

queries (𝜃 = 0.8 in Zipfian distribution). 2) YCSB-HC (high contention): 50% reads and 50% writes
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Fig. 5. Comparison results on throughput and latency.

with a hotspot of 10% tuples that are accessed by ∼75% of all queries (𝜃 = 0.9). 3) YCSB-RO (read

only): all read queries and a uniform access distribution. For the TPC-C benchmark, we configure

it with 800 warehouses and 120 client connections for sending query requests. Since Calvin and
Aria do not provide SQL engine (do not support interactive queries and complex queries, e.g., join
and range scan), they can only support New-Order transactions and Payment transactions. We

follow [51] to make a TPC-C benchmark by mixing 50% New-Order and 50% Payment transactions.

CalvinFS, SLOG, and Anna do not support this TPC-C benchmark, so we do not run the TPC-C

benchmark on them.

7.1 Cross-Region Comparison Results
We run comparison experiments on our cross-region cluster. The throughput for successfully

committed and aborted transactions and the average latency are reported in Figure 5. GeoGauss
shows higher throughput over most of the other systems in the YCSB-MC workload, and achieves

the highest throughput in read-intensive workloads. GeoG-A is faster than GeoGauss, but it cannot
guarantee strong consistency. Both Anna and GeoG-A cannot respond to users with committed or

aborted notifications since the state is not known with a time constraint (they have no aborted

transactions). Strictly speaking, they are not transactional systems. GeoG-S is a highly synchronized
variant of GeoGauss, which guarantees strong consistency but at the expense of performance. CRDB
is slow due to its expensive coordination cost under a geo-distributed environment. Calvin and
Aria show much higher throughput than CRDB. CalvinFS, an extension of Calvin, uses Quorum
protocol to achieve replica consistency, resulting in reduced performance compared with Calvin.
Q-Store reduces the scheduling overhead of Calvin with limited performance improvement

because the main overhead in a geo-distributed environment is coordination rather than scheduling.

SLOG shows poorer performance than Calvin and Aria, because it requires to send cross-shard

transactions to a single node for determining the global order, which hurts performance a lot under

a cross-region scenario without a locality-aware sharding scheme. The writes and linearizable reads

of a data item in SLOG must be directed to its master replica, so the throughput on YCSB-RO is

similar to that on YCSB-MC. GeoGauss and Aria exhibit higher abort rates due to their optimistic

execution logic. GeoGauss leverages optimistic execution based on a stale snapshot and validates

its effects before committing, while Aria relies on dependency graph analysis to resolve conflicts.

These tend to have higher abort rates than pessimistic locking methods, e.g., Calvin. Note that,
deterministic databases and their extensions do not support the standard TPC-C benchmark. They

are limited in interoperability and need to know what data will be accessed in advance.

Regarding the latency, GeoGauss exhibits superiority over the other strongly consistent systems

on YCSB-MC, YCSB-HC, and TPC-C. Anna is a coordination-free KVS with eventual consistency.

GeoG-A only supports CRDTmerge without epoch-based consistency, which only supports eventual
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Table 2. Runtime breakdown of a transaction (TPC-C).

GeoG-S GeoG-A GeoGauss

SQL Parse 4.6 ms 4.6 ms 4.6 ms

Execute 5.8 ms 6.5 ms 4.8 ms

Wait 564.2 ms 0 ms 34.1 ms
Merge 4.0 ms 10.9 ms 9.4 ms

Log 0.8 ms 6.5 ms 4.7 ms

consistency. Both of them do not need coordination, so their latency results are lower than the

others. CRDB and GeoG-S are with high latency due to the long waiting time under a geo-distributed

environment. Calvin and Aria need additional time for scheduling these batched transactions to

achieve deterministic execution, so they result in higher latency than GeoGauss. On the YCSB-RO

workload, Calvin and its extensions (CalvinFS and Q-Store) show very low read latency because

they directly return local read data and do not have the input parsing overhead. Calvin does not
offer full SQL support, while the input query in GeoGauss needs to go through SQL parser and

optimizer, so the latency in GeoGauss is higher than Calvin and its extensions. Aria requires a

preprocessing step to perform dependency analysis for input queries, so Aria exhibits much higher

latency than Calvin and its extensions.

7.2 Performance Gain Analysis
In our system, the transaction processing mainly contains five phases, including SQL parsing,

transaction execution, waiting for the most recent snapshot being generated (Line 22 in Algorithm

1) or all remote/local transactions of the same cen being applied (Line 24 in Algorithm 1), merging

(Algorithm 2), and logging for duration. We study the cost of different phases to investigate the

bottleneck. Table 2 shows the average time spent in each phase of a successfully committed TPC-C

transaction. We can see that the waiting phase dominates the runtime in GeoG-S. By leveraging

optimistic asynchronous execution (still needing synchronous validation), GeoGauss reduces the
wait time dramatically. This is the key to improving the performance while at the same time

guaranteeing strong consistency on a per-epoch basis (by synchronous validation). On the contrary,

GeoG-A does not wait for synchronization, so it does not provide strong consistency. The merge

time and the logging time of GeoG-S are shorter because the processed transactions in GeoG-S are

much less than the other two.
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Fig. 6. Throughput and latency of each epoch (TPC-C).

As analyzed above, the synchronous execution in GeoG-S which requires processing the transac-

tions of epoch 𝑖 based on the snapshot (𝑖 − 1) can greatly impact the performance. To investigate

the impact of synchronous execution, we further measure the number of committed transactions

and the average latency of each epoch in GeoGauss and GeoG-S. Figure 6a shows the number of

committed transactions in a number of consecutive epochs. In GeoG-S, there is no commit transac-

tion in many epochs and there are commit transactions every other 2-4 epochs. This is because

the single-trip time is around 30 ms and GeoG-S stops serving when waiting for the remote write
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Fig. 7. Effect of long transactions (YCSB-MC).

sets of the previous epoch. While GeoGauss which exploits optimistic asynchronous execution can

continuously commit transactions. Figure 6b shows the average latency of the epochs that have

committed transactions. The latency is much longer than the single-trip delay (∼580 vs. ∼30 ms)

due to the ripple effect.

7.3 Long Running Transactions
As discussed in the distinctions from deterministic databases (see Section 6), GeoGauss should

exhibit superiority over deterministic databases when processing long running transactions, since

a barrier exists across batches in deterministic databases. In this experiment, we manually add a

fixed 20 ms/100 ms delay to a randomly selected YCSB-MC transaction to simulate long running

transactions. Figure 7 plots the system’s performance slowdown (with respect to throughput) when

varying the portion of long transactions. The throughput of Aria and Calvin both decrease a lot

when processing more long transactions. The performance slowdown of deterministic databases

is even more significant when processing longer transactions as shown in Figure 7b, say 80%

slowdown for 10% long transactions. GeoGauss is more robust to long transactions. This is because

that transactions in GeoGauss optimistically read data and write updates in their private cache,

and new transactions are processed concurrently with the execution of long transactions. It is

worth mentioning that the synchronization point in our algorithm is for ensuring the completeness

of remote updates but not a global barrier across batches of transactions. CRDB is robust to long

transactions though its latency is much longer than ours, because the (manually set) delay is hidden

in its parallel commit phase.

Table 3. Average WAN traffic per transaction (KB/txn)

YCSB-RO YCSB-MC YCSB-HC TPC-C

GeoGauss 0 0.28 0.5 0.6

Calvin 0.13 0.19 0.28 0.24

7.4 WAN Traffic
GeoGauss produces more WAN traffic than deterministic databases, because GeoGauss sends

outputs (i.e., write sets) instead of inputs (SQL statements). Table 3 reports the average WAN traffic

for each transaction in GeoGauss and in Calvin. The reported numbers are the average size of

each transaction after compression by Gzip [11] (see Section 5.1). As the write data size is bigger,

transferring the write set results in more network traffic than transferring the input SQLs. However,

we find that Calvin cannot fully utilize the WAN bandwidth (only about 25 Mbps on TPC-C, which

is less than 100 Mbps WAN bandwidth). The bottleneck of deterministic databases is the scheduling

for deterministic execution and the execution cost, especially for long transactions. In GeoGauss,
we rely on CRDT for merging write sets to achieve determinism (regardless of arrival order and

scheduling order), which is more efficient. Furthermore, we let each replica execute local SQLs first

and only exchange outputs, so the execution cost is disseminated.
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7.5 Varying Configurations
7.5.1 Epoch Length. As discussed in Section 5.1, GeoGauss uses one thread per transaction (i.e., per
connection) and will not release the connection until the transaction is committed or aborted. Thus,

a longer epoch could lead to a phenomenon that all the connections are occupied by transactions

waiting for confirmation and the system may stop serving for a period. On the other hand, it also

affects the latency since a submitted write request must wait for the epoch snapshot to be generated

before responding to users. A long epoch will result in long latency, while a short epoch may result

in too frequent conflicts merging and also degrades performance.
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Fig. 8. Effect of epoch length.

Figure 8 shows the throughput and latency results of YCSB-MC and TPC-C workloads with

different epoch lengths ranging from 1 ms to 200 ms. The throughput results are under expectation

as analyzed above. The latency is determined on one hand by the single-trip delay when the epoch

length is short; on the other hand by the epoch length setting when the epoch length is long.
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Fig. 9. Performance with different isolation levels.

7.5.2 Isolation. We study the performance when adopting different isolation levels in this experi-

ment. Figure 9 shows the results under YCSB-MC and TPC-C workloads. There is not too much

difference in the throughput and latency results under different isolation levels, except that the

abort rate is higher with higher isolation levels. This is under expectation since RR and SI require a
read set validation step that may increase the abort rate.

(a) YCSB-MC (b) YCSB-HC

Fig. 10. Performance with different contention levels.
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(a) YCSB-MC (China) (b) YCSB-MC (WorldWide)

Fig. 11. Scalability (YCSB-MC).

7.5.3 Contention Levels. To study the performance under different contention levels, we vary the

𝜃 parameter (the skew factor) from 0 to 0.99 in YCSB-MC and YCSB-HC workloads. As shown

in Figure 10, the abort rate is higher when 𝜃 is bigger due to a higher probability of conflict, and

the abort rate under the write-intensive workload YCSB-HC is even higher than in YCSB-MC. It

is interesting that the throughput is a bit higher and the latency is a bit lower when 𝜃 is bigger.

This is because that the aborted transactions resulted from conflicts will release the threads early

without blocking (Line 24 in Algorithm 1), which allows serving more new transactions (that do

not conflict with others) to commit. If the new transaction is read-only, it will be directly returned,

which helps reduce the latency and improve the throughput.

7.6 Scalability
In this experiment, we study the scalability of GeoGauss. We scale the number of replica nodes

from 3 to 15 and run YCSB-MC. As shown in Figure 11a, the throughput is steadily increased when

the number of replica nodes is no more than 9, then the throughput decreases. This is because more

replicas will result in more replication overhead, which degrades the performance. the latency

increases when using more replicas. This is because the epoch-based merge requires to receive

updates from all replicas, which may lead to longer synchronization time. To investigate the scaling

performance in a cross-continental setting. We set up a worldwide cluster that spreads across

continents, including 25 nodes deployed in five data centers (London, Singapore, Tokyo, Silicon

Valley, and Virginia). We scale the number of replica nodes from 3 to 25 and run YCSB-MC. The

throughput and latency results are shown in Figure 11b. We can see a similar trend with the

scalability experiment in China. The peak throughput in the worldwide cluster is lower than in

China, and the latency is much longer, which is under expectation.

(a) throughput (b) latency

Fig. 12. Performance with fault tolerance (YCSB-MC).

7.7 Fault Tolerance
In the above experiments, the fault tolerance supports of deterministic databases, e.g., Calvin
and Aria, are turned off for optimal performance, and GeoGauss only uses local write set backup

server which does not affect performance. In this experiment, we turn on Raft replication in
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Calvin, Aria, and GeoGauss, and compare the performance of these systems under fault tolerance

support (i.e., Calvin-Raft, Aria-Raft, GeoG-Raft). We alsomeasure the performance of GeoGauss
with the other two weaker fault tolerance mechanisms, i.e., local and remote write set backup

server (GeoG-LB and GeoG-RB). As shown in 12, GeoG-Raft shows comparable throughput with

Calvin-Raft and Aria-Raft. When adopting weaker fault tolerance mechanisms, e.g., GeoG-LB
and GeoG-RB, the throughput can be greatly increased. Regarding the latency results, GeoG-Raft
shows much lower latency than Calvin-Raft and Aria-Raft owing to our optimistic execution

scheme. As discussed in Section 5.2, GeoG-LB, GeoG-RB, and GeoG-Raft require ∼0.5 RTT, ∼1 RTT,
and ∼1.5 RTT, respectively, so GeoG-LB shows lower latency than GeoG-RB and GeoG-Raft.
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Fig. 13. Performance under failures (YCSB-MC).

To investigate the performance fluctuation under failures, we manually shut down a node and

see how GeoGauss acts after failure. Figure 13 shows the changes in throughput and latency from

each client’s perspective, where we place a client that connects to the server node in each region.

The temporary performance degradation during a node failure is due to the blocking of service, i.e.,
waiting for the updates from the failed node. GeoGauss can quickly respond to this failure owing

to our Raft-based membership management (with 500 ms timeout setup). The requests of client3

that were previously connected to the crashed node are routed to the nodes that are still providing

services in other regions. But the transaction requests are executed in remote regions, resulting

in decreased throughput and increased latency on client3. After the crashed node resumes, the

Raft-based membership management will notice and let client3 connect to the node in the same

region.

8 CONCLUSION
This paper presents GeoGauss, a strongly consistent and light-coordinated geo-distributed transac-

tional database with multi-master replication architecture. We have shown that the performance

of geo-distributed transaction processing can be greatly improved by GeoGauss with strong con-

sistency and weak isolation. By employing epoch-based output replication and optimistic asyn-

chronous execution, our multi-master OCC algorithm can efficiently merge the conflicts and at

the same time enforces strong consistency of replicas at the granularity of epochs. GeoGauss also

overcomes the disadvantage of deterministic databases and supports interactive SQL execution,

which has wider applicability.
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