
Layph: Making Change Propagation Constraint in
Incremental Graph Processing by Layering Graph

Song Yu†, Shufeng Gong†�, Yanfeng Zhang�†, Wenyuan Yu§, Qiang Yin‡, Chao Tian¶, Qian Tao§,
Yongze Yan†, Ge Yu†, Jingren Zhou§

† Northeastern University § Alibaba Group ‡ Shanghai Jiao Tong University ¶ Chinese Academy of Sciences
� Key Laboratory of Intelligent Computing in Medical Image of Ministry of Education, Northeastern University
{yusong, yanyongz}@stumail.neu.edu.cn, {zhangyf, gongsf, yuge}@mail.neu.edu.cn, {wenyuan.ywy, qian.tao,

jingren.zhou}@alibaba-inc.com, {q.yin}@sjtu.edu.cn, {tianchao}@iscas.ac.cn

Abstract—Real-world graphs are constantly evolving, which
demands updates of the previous analysis results to accommodate
graph changes. By using the memoized previous computation
state, incremental graph computation can reduce unnecessary
recomputation. However, a small change may propagate over
the whole graph and lead to large-scale iterative computations.
To address this problem, we propose Layph, a two-layered
graph framework. The upper layer is a skeleton of the graph
which is much smaller than the original graph, and the lower
layer has some disjoint subgraphs. Layph limits costly global
iterative computations on the original graph to the small graph
skeleton and a few subgraphs updated with the input graph
changes. In this way, many vertices and edges are not involved
in iterative computations, which significantly reduces the com-
putation overhead and improves the performance of incremental
graph processing. Our experimental results show that Layph
outperforms current state-of-the-art incremental graph systems
by 9.08× on average (up to 36.66×) in response time.

Index Terms—incremental graph processing, layered graph,
graph skeleton

I. INTRODUCTION

Iterative graph algorithms, e.g., single source shortest path

(SSSP) and PageRank, have been widely applied in many

fields [1]–[5]. Real-world graphs are continuously evolving

with structure changes, where vertices and edges are inserted

or deleted arbitrarily. These changes are usually small, e.g.,
there were 6.4 million articles on English Wikipedia in

2021 [6], but the average number of new articles per day

was only 580. Traditional classical graph processing systems

[7]–[13] have to recompute the updated graph from scratch.

However, there are considerable overlaps between computa-

tions before and after the graph updates. It is desirable to

adopt incremental graph computation to cope with these small

changes efficiently. That is, a batched iterative algorithm is

applied to compute the result over the original graph G till

convergence, and then an incremental algorithm is used to

adjust the result in response to the input changes ΔG to G.

The incremental graph computation can reduce unnecessary

recomputation by using the memoized iterative computation

state, e.g., intermediate vertex states or messages. The benefits

of incremental graph computation have led to the development

�Yanfeng Zhang is the corresponding author.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 Restart
KickStarter

RisGraph
 Ingress

 Layph
 0

 2

 4

 6

 8

 10

N
um

be
r

of
 e

dg
e

ac
tiv

at
io

ns
 (

×
10

9)

R
un

tim
e

(s
)

Number Runtime

(a) SSSP

 0

 10

 20

 30

 40

 50

Restart
GraphBolt

 DZiG
 Ingress

 Layph
 0

 20

 40

 60

 80

 100

 120

N
um

be
r

of
 e

dg
e

ac
tiv

at
io

ns
 (

×
10

9)

R
un

tim
e

(s
)

Number Runtime

(b) PageRank

Fig. 1: Number of edge activations and runtime of different

incremental graph processing systems for SSSP and PageRank.

of many incremental graph processing systems, such as Kick-

Starter [14], GraphBolt [15], Ingress [16], DZiG [17], and

RisGraph [18]. They memoize (intermediate or final) vertex

states and organize them in a data structure that captures

result dependencies, such as a tree (for critical path) [14], [18]

or a multilayer network (for per-iteration dependencies) [15],

[17]. With such a structure, the update of a vertex/edge will

be propagated for updating the memoized intermediate/final

states of vertices iteratively. However, an upstream vertex/edge

update may incur a large number of updates to the downstream

vertex/edge states in existing incremental graph processing

systems. That is, a small change may propagate over the entire

graph and lead to large-scale iterative computations.

With 5000 random edge updates on the UK graph (see Table

I for details), we run SSSP and PageRank on five state-of-the-

art incremental graph processing systems (KickStarter [14],

GraphBolt [15], DZiG [17], RisGraph [18], and Ingress [16])

and a Restart system that starts computations on the updated

graph from scratch. The number of edge activations and

runtime of these systems are reported in Figure 1. Even though

the amount of updates is small (|ΔG|/|G| = 5000/(9.4 ×
108)<0.001%), these updates propagate widely and iteratively

on the graph, resulting in a large number of edge activations

in some systems, which is almost approaching the number in

restarting iterative computations.

We empirically illustrate this observation with an example

in Figure 2. Figure 2b shows an updated graph based on graph

G, where the edge (v3, v4) is deleted and a new edge (v3, v2)

is added. As shown in Figure 2c, when running SSSP, existing

2766

2023 IEEE 39th International Conference on Data Engineering (ICDE)

2375-026X/23/$31.00 ©2023 IEEE
DOI 10.1109/ICDE55515.2023.00212

20
23

 IE
EE

 3
9t

h
In

te
rn

at
io

na
l C

on
fe

re
nc

e
on

 D
at

a
En

gi
ne

er
in

g
(I

C
D

E)
 |

97
9-

8-
35

03
-2

22
7-

9/
23

/$
31

.0
0

©
20

23
 IE

EE
 |

D
O

I:
10

.1
10

9/
IC

D
E5

55
15

.2
02

3.
00

21
2

Authorized licensed use limited to: Northeastern University. Downloaded on April 06,2025 at 06:45:23 UTC from IEEE Xplore. Restrictions apply.

4

(a) An example graph G

1

1

1

13

1

3

1

2
4

v0 v1

v2v4v5v6

v7 v8

(b) Graph updates G and updated graph G (d) Layered G for SSSP

Llow

1

1

1

1

3

v6

v7 v8

(e) Incremental SSSP on Layered G

(c) Incremental SSSP on G

G

Del edge (v3,v4,1)

Add edge (v3,v2,2)

v3
11

1

4
1

1

1

13

1

3

1

2
4

v0 v1

v2v4v5v6

v7 v8
v3

11

2

4
1

1

1

13

1

3

1

2
4

v0 v1

v2v4v5v6

v7 v8
v3

11

2

1

1

v1

v3 v2

Llow

1

1

1

1

3

v6

v7 v8
1

v1

v3 v22

G1 G2

11
11

3

2
2

v4v5

v0
1

Lup

3

2
4

v4v5

v0Lup

Fig. 2: An illustrative example of a layered graph for incremental SSSP, where v0 is source vertex, and G1 and G2 are two

dense subgraphs. The dashed lines are the shortcuts between two vertices, through which the shortest distance from a vertex

to another one can be directly obtained. The number labeled on each link represents the weight of the edge or shortcut. In (c)

and (e), the red links or circles represent the activated edges/shortcuts or vertices involved in iterative computations.

incremental graph processing systems [14], [16], [18] activate

most of the vertices and edges. As the iteration proceeds, the

activated vertices may be updated several times, e.g., v4 and

its downstream vertices are updated twice due to the update

messages from v2 at different iterations.

Challenge. Based on the above observations and illustration,

we can see that very small graph changes can also lead to a

large number of iterative computations, even on the basis of

previous memoized vertex/edge states provided by incremental

processing systems. The main reason is that, in real-world

graphs, vertices are either directly or indirectly connected in

several hops, which makes it hard to constrain the affected

area. The native properties of real graphs fundamentally limit

the effectiveness of incremental graph computation. Is it possi-

ble to reconstruct the graph structure to boost the performance

of incremental graph computation?

Intuition. In incremental graph computation, the messages

initiated by graph updates are propagated iteratively to update

the states of vertices. When an update message enters into a

dense subgraph from entry vertices, a large number of internal

vertices and edges within the subgraph will be activated and

involved in the iterative computation. The incoming messages

probably require many iterations to get out of this dense sub-

graph from exit vertices. A natural idea is to extract the entry
and exit vertices of the dense subgraph, and construct shortcuts

between them to propagate messages directly through the

dense subgraph, which can avoid the activations of a large

number of internal vertices and edges. As shown in Figure 2d,

we extract the entry vertex v0 and exit vertex v4 of G2 and

construct a shortcut between them. Then the messages can be

propagated directly through G2 via the shortcut. Furthermore,

we construct a shortcut between the entry vertices and the

internal vertices in each subgraph. The entry vertices can

accumulate the incoming messages and eventually assign them

to the internal vertices at a time via the shortcuts. As shown in

Figure 2d, after v5 accumulates all incoming messages, v5 will

send the update messages to v6-v8 at a time. In this way, only

the entry and exit vertices of subgraphs and outliers participate

in the global iterative computations.

Our Solution. Based on the above intuition, we propose

an incremental graph processing framework by layering the

graph, Layph. As shown in Figure 2d, Layph divides the

graph into two layers, the upper layer (Lup) and the lower

layer (Llow). Lup is a skeleton of the original graph G
composed of the boundary vertices of subgraphs and outliers,

the size of which is much smaller than that of G. Llow

is composed of some disjoint subgraphs. Vertices on Lup

and vertices on Llow are connected by shortcuts (dashed

lines) or edges. After G is updated by ΔG, we first update

the layered graph accordingly. The revision messages are

generated and propagated only within the subgraphs on Llow

that are updated by ΔG. As shown in Figure 2e, revision

messages are generated from v3 and are propagated within

G2. Then the messages are uploaded to Lup, e.g., the messages

are propagated from v2 to v4 in Figure 2e. The global iterative

computations are performed on Lup. Compared with 10 edges

participating in the iterative computation in Figure 2c, only 2

edges/shortcuts are involved on Lup in Figure 2e. Therefore,

the global iterative computations on Lup are much faster than

that on graph G′. Finally, the updates are assigned to the

other subgraphs on Llow, e.g., G2. Vertex states are updated

directly through shortcuts without iterative computations. We

can see that Layph performs iterative computations only on

the upper layer small skeleton and a few subgraphs (on Llow)

that are updated by ΔG. Most vertices and edges on Llow are

not involved in iterative computations. Thus Layph is able to

accelerate the incremental graph computation efficiently.

To sum up, we make the following contributions.

• Layered Incremental Graph Processing Framework. It

constraints the incremental iterative computation to a small

area, i.e., a few subgraphs affected by the graph update and

a small skeleton, thus greatly reducing the number of edge

activations in the iterative process. (Section III & V)

• Effective Skeleton Extraction and Automated Short-
cut Deduction. We design an effective skeleton extraction

method that reduces the size of the skeleton by replicating

vertices. Based on the input vertex-centric program, our

proposed framework can deduce the weight of shortcuts

automatically. (Section IV)

• High-Performance Runtime Engine. We implement our

runtime engine Layph based on Ingress [16] and Alibaba’s

libgrape-lite [19]. Comparing with current state-of-the-art

incremental graph processing systems, Layph can achieve

3.13-15.82× speedup over Kickstarter [14], 2.54-8.49×
speedup over RisGraph [18], 2.99-36.66× speedup over

2767

Authorized licensed use limited to: Northeastern University. Downloaded on April 06,2025 at 06:45:23 UTC from IEEE Xplore. Restrictions apply.

GraphBolt [15], 2.92-32.93× speedup over DZiG [17], and

1.06-7.22× speedup over Ingress [16]. (Section VI)

II. PRELIMINARIES

This section provides the necessary preliminaries for itera-

tive graph computation and incremental graph computation.

A. Iterative Graph Computation

Given an input graph G = (V,E), where V is a finite set of

vertices and E ⊆ V ×V is a set of edges. The weight of each

edge (u, v) ∈ E is wu,v in a weighted graph or a consistent

value 1 in an unweighted graph. In general, an iterative

graph algorithm A that executes in an accumulative model,

includes two types of operations, i.e., message generation F
and message aggregation G [9], [10], [20].

mi
u,v = F(

mi−1
u , wu,v

)
,

xi
v = G(xi−1

v , {mi
∗,v|(∗, v) ∈ E}). (1)

where mi−1
u = G({mi−1

∗,u |(∗, u) ∈ E}).
The message generate operation F applied on each vertex

u ∈ V prepares the message mu,v for each outgoing edge

(u, v) based on the aggregation of received message mu and

the edge weight wu,v . The aggregation operation G is applied

on each destination vertex v. It first aggregates the messages

that terminate at v to obtain a new message mv , then aggre-

gates the old vertex state xv and the aggregated message mv

to update the vertex state xv . The two-step process is applied

iteratively till convergence (when vertex states become stable).

To sum up, an iterative graph computation can be expressed

as A=(F ,G, X0,M0) where F and G are the operations

that specify the algorithm logic, and X0={x0
v|v ∈ V } and

M0={m0
v|v ∈ V } are the initial values of vertex states and

root messages respectively. A graph computation on the input

graph G can be denoted as A(G).
Suppose A can be executed asynchronously, then it can be

expressed as Equation (1) naturally, such as SSSP. Otherwise,

the synchronous algorithms should be rewritten in accumula-

tive mode and executed asynchronously, such as PageRank.

There are some efforts [9], [10] that rewrite a synchronous

algorithm in asynchronous accumulative mode.

Example 1: We show two example algorithms.

(a) SSSP. SSSP computes the shortest distance from a given

source s to all vertices in a directed and weighted graph G.

A is represented as follows

• F(mu, wu,v) = mu + wu,v; G = min;

• x0
v = 0 if v = s, otherwise x0

v = +∞;

• m0
v = 0 if v = s, otherwise m0

v = +∞.

Here the state xv of v indicates the shortest distance from

source s to v and wu,v represents the length of the edge

(u, v). Initially, we have x0
v = m0

v = 0 for v = s, and

x0
v = m0

v = +∞ for all v �= s. Each vertex u generates and

sends a message mu,v to each neighbor v, which represents

the current shortest distance from the source. Each destination

vertex v aggregates the messages from its incoming neighbors

and updates its state xv by min. The algorithm terminates when

the shortest distance values of all vertices are not changed.

(b) PageRank. PageRank computes the set of ranking scores

{PRv = d× sum(u,v)∈EPRu/Nu + (1− d) | v ∈ V }. Here d
is a constant damping factor and Nu denotes the number of

outgoing neighbors of u. Different from the original PageRank
algorithm that exploits the power method, an asynchronous

PageRank algorithm [10] that has been proved to be equivalent

to the original PageRank can be represented as follows

• F(mu, wu,v) = mu × d/Nu; G = sum;
• x0

v = 0, ∀v ∈ V ; m0
v = 1− d, ∀v ∈ V .

Intuitively, each vertex v uses its state xv to store its PageRank
score. Initially, we have x0

v = 0 and m0
v = 1 − d for all

v ∈ V . Every time when a vertex u receives a message mu,

it will send mu × d/Nu to each neighbor v. Each neighbor v
aggregates the messages from its incoming neighbors by sum
and updates its state by accumulating the aggregated messages.

The algorithm terminates when all vertex states are stable. �
Equation (1) defines the vertex-centric format of asyn-

chronous iterative computation. On this basis, we can define

a set-based iterative computation as follows

M i = F(M i−1);

Xi = G(Xi−1 ∪M i).
(2)

X = {xv | v ∈ V } is the set of vertex states. M0 = {m0
v | v ∈

V } is the set of root messages of each vertex and Mk �=0 =
{mk

v} is the set of generated messages on all edges. It should

be noticed that these are slight meaning changes of F and G
in set-based format. F is the message generate operation with

edge information embedded so it only needs a single parameter

M . G is the group-by aggregator (group by vertex id). Based

on this set-based computation, the vertex states set X after n
iterations is

Xn =G
(
X0 ∪ (G ◦ F)(M0) ∪ . . . ∪ (G ◦ F)n(M0)

)

=G
(
X0 ∪

n⋃
k=1

(G ◦ F)k(M0)
)
,

(3)

where G◦F(·) = G(F(·)) and (G◦F)k denotes k applications

of (G ◦ F).

Message Passing’s Perspective. From message propagation’s

perspective, the final state xv of each vertex v is obtained

by accumulating the messages M0 initiated from all vertices

transferred along different paths. In each iteration, i.e., one

time application of F and G, a message is processed and split

into several messages from a vertex to its direct neighbors

(under the effect of F). The messages received from different

incoming neighbors are aggregated into one message (under

the effect of G), which will be propagated again in the next

iteration. At the same time, the aggregated message is applied

to the vertex state (under the effect of G). This is exactly the

process described in Equation (1).

B. Incremental Graph Computation

Given an iterative graph computation A and its incremental

counterpart IA, the problem of incremental computation arises

2768

Authorized licensed use limited to: Northeastern University. Downloaded on April 06,2025 at 06:45:23 UTC from IEEE Xplore. Restrictions apply.

when the input graph G is updated with ΔG. Let A(G) denote

the output of an old graph G with the effect of batch graph

algorithm A. The inputs of incremental computation include

A(G) and graph updates ΔG. Then we have

IA(A(G),ΔG) = A(G⊕ΔG) (4)

It means that the incremental computation IA(A(G),ΔG) that

is performed based on the old result A(G) and the graph

updates ΔG is expected to output A(G⊕ΔG), where G⊕ΔG
denotes applying the updates ΔG to G. It is noticeable that

the incrementalization scheme IA is algorithm-specific and is

deduced from its original algorithm A.

The input batch update ΔG consists of a set of unit updates.

To simplify our discussion, we consider the insertion or

deletion of a single edge as a unit update in a sequence, which

can simulate certain modifications. For instance, each change

to an edge weight can be considered as deleting the edge

and followed by adding another edge with the new property.

The incremental computation IA will identify the changes to

the old output A(G) and make corrections of the previous

computation in response to ΔG.

Message Passing’s Perspective. From Equation (3) we know

that the input changes will affect the message propagation

since both F and G are correlated with the graph structure,

and as a result, will change the final vertex states. Due to the

insertion, update, or deletion of an edge, a set of messages

might become invalid, and another set of messages might

be missing. An old message transmitted during the run over

the original graph G is called invalid if the path for passing

the message disappears due to input updates ΔG. A new

message transferred in the run over the G ⊕ ΔG is called

missing if it did not appear in the run over G. In incremental

computation, we should first discover all the invalid and

missing messages and then perform the corrections on the

affected areas of G⊕ΔG by generating cancellation messages
(resp. compensation messages) to retract (resp. replay) effects

of the invalid messages (resp. missing messages) [14]–[17].

In this paper, the cancellation and compensation messages are

collectively called as revision messages.

III. FRAMEWORK OVERVIEW

In this section, we first present the workflow of the layered

graph framework and then analyze the benefits of Layph.

Workflow of Layph. The overall workflow is illustrated in

Figure 3. At the beginning of incremental graph processing,

given a graph G, we first divide the graph into two layers. The

upper layer (Lup) is the skeleton of the graph. Lup consists of

the entry/exit vertices of all dense subgraphs, vertices that are

not in any dense subgraph, and the shortcuts or edges between

them. The lower layer (Llow) is composed of all disjointed

dense subgraphs. The entry vertices (on Lup) and the internal

vertices (on Llow) of each dense subgraph are connected with

shortcuts between Lup and Llow. Please refer to Section IV for

the details of constructing the layered graph. Then we perform

incremental graph computations on the layered graph, which

��������	��
���
��������
�

�
�

�

��������	��
���
����

�
�

�

��������	��
���
����

��

���

�

�Lup

Llow
�

�Lup

Llow
�

�Lup

Llow

�

���������������
�
�����
�

Lup

Llow
�

�Lup

Llow
�

�Lup

Llow

�

�

�

���������������
�������������������
����

��������������������
��
� �����!����

�"������������
�
�����
��
�������!����

Fig. 3: Workflow of Layph.

includes two steps, i) the layered graph update (Section IV)

and ii) the vertex states update (Section V).

Layered Graph Update. Given a layered graph G of an origi-

nal graph G, G should be updated, when G is updated by ΔG.

This is because the shortcuts, including the shortcuts on Lup

and the shortcuts between Lup and Llow, may be changed

as the graph changes. The shortcut update requires iterative

computations and is only performed on the subgraphs updated

by ΔG. Meanwhile, the shortcut update can be parallelized

well as the subgraphs are independent of each other.

Vertex States Update. When the graph changes, we first de-

duce the revision messages based on the memoized infor-

mation [14]–[16], then propagate the revision messages on

the layered graph to revise the vertex states. The incremental

computation on Layph is performed as follows.

• Revision messages upload. In order to apply the revision

messages deduced by vertices on Llow to vertices on Lup,

the revision messages on Llow should be uploaded to Lup.

Similar to shortcut updates, the messages upload can also

be performed in parallel and only performed on subgraphs

affected by ΔG.

• Iterative computation on Lup. After receiving the revision

messages from Llow, iterative computations are performed

to propagate the revision messages and revise the states of

the vertices on Lup.

• Revision messages assignment. After the iterative compu-

tations on Lup, the entry vertices (on Lup) of each subgraph

accumulate all the revision messages. The accumulated re-

vision messages are assigned from entry vertices to internal

vertices (on Llow) through shortcuts to revise the states of

vertices on Llow.

Analysis. From the above workflow of Layph, we can see that

the iterative computations only perform on Lup and a few

subgraphs on Llow. The vertices and edges within subgraphs

that are not updated by ΔG are not involved in iterative

computations, which saves significant computation overhead.

IV. LAYERED GRAPH CONSTRUCTION AND UPDATE

Layph is performed on a layered graph. This section presents

how to construct a layered graph and update it incrementally.

2769

Authorized licensed use limited to: Northeastern University. Downloaded on April 06,2025 at 06:45:23 UTC from IEEE Xplore. Restrictions apply.

A. Layered Graph Construction

In this section, we first introduce how to extract vertices

on the upper layer. Then we provide an automated shortcut

calculation method.

1) Upper Layer Vertices Extraction: As we have presented

the intuition behind Layph in Section I and the workflow in

Section III, we should extract the entry and exit vertices of the

dense subgraphs and the vertices that are not in any subgraphs

into the upper layer to construct the skeleton of the graph.

This requires us to discover all the dense subgraphs from

the original graph. Before introducing the method of dense

subgraph discovery, we first provide the formal definition of

entry/exit/internal vertices and dense subgraph.

Definition 1 (Entry/Exit/Internal Vertices). Given a subgraph
Gi(Vi, Ei) of the graph G(V,E), where Vi ⊆ V and Ei ⊆ E.
The entry vertices of Gi are defined as V I

i = {v | (u, v) ∈
E, u ∈ V \ Vi, v ∈ Vi}, the exit vertices of Gi are defined as
V O
i = {v | (v, w) ∈ E, v ∈ Vi, w ∈ V \ Vi}, and the internal

vertices of Gi are defined as V̂i = Vi − V I
i − V O

i .

Definition 2 (Dense Subgraph). Given an input graph
G(V,E), the subgraph Gi(Vi, Ei) of G is a dense subgraph
such that the product of the number of entry vertices and that
of exit vertices is smaller than the number of edges in Gi, i.e.,

|V I
i | × |V O

i | < |Ei|.
Our definition of the dense subgraph is based on the follow-

ing observation. For each entry vertex v ∈ V I
i of subgraph Gi,

it is required to connect v with all exit vertices using shortcuts.

Thus, the number of the shortcuts in Gi is the product of the

number of entry and exit vertices, i.e., |V I
i | × |V O

i |. If there

are only a few edges in Gi, e.g., |V I
i | × |V O

i | > |Ei|, then

propagating messages from entry to exit vertices through the

shortcuts is slower than that through the edges in Gi, because

more shortcuts result in more message generation operations

and aggregation operations.

From Definition 2, a dense subgraph requires as many

internal edges as possible and as few boundary (entry/exit)

vertices as possible. We found that the requirements of a dense

subgraph are similar to that of the community. The community

requires as many internal edges as possible and as few external

edges as possible. This inspired us to adopt a community

discovery algorithm to discover dense subgraphs. Therefore,

in this paper, we use the community discovery algorithm to

find dense subgraphs, such as Louvain [21]. However, the

community discovery algorithms may find extremely large

subgraphs, which decreases the performance of our system

since extremely large graphs may result in an imbalance

workload. Therefore, we add a threshold K to limit the size

of each subgraph when discovering the subgraphs, i.e., the

number of vertices in each subgraph is smaller than K. As a

rule of thumb, K is set around 0.002-0.2% of the total number

of vertices. We also employ the work stealing technique to

handle the imbalance workload, in which an idle processing

thread will actively search out work for it to complete. A

community may not be a dense subgraph. We select the dense

subgraphs according to Definition 2, i.e., |V I
i | × |V O

i | < |Ei|,
from the dense subgraphs candidate set discovered by the

community discovery algorithm.
After discovering the dense subgraphs, the internal vertices

and edges within them are put into the lower layer, the other

vertices and edges i.e., entry/exit vertices of subgraphs and the

vertices that are not in any dense subgraphs and their edges

are extracted into the upper layer.

Problem Study. Although we can discover dense subgraphs

by using the above method, it suffers from a key limitation: the

shortcuts that need to be established are still numerous due to

the massive number of entry/exit vertices. As shown in Figure

4, we find that most boundary vertices (entry/exit vertices)

have high degrees and are likely to have many connections

to/from other subgraphs, leading to many entry/exit vertices

in the target/source subgraphs. For example, vertex v9 is with

high out-degree and has 3 out-edges connected to subgraph

G3, leading to 3 entry vertices in subgraph G3, and vertex

v6 with a high in-degree and has 3 in-edges originating from

subgraph G1, leading to 3 exit vertices in subgraph G1. A

large number of entry/exit vertices incurs a large skeleton

of the upper layer as shown in Figure 4b, which will hurt

the performance of iterative computation and increase the

computation cost for shortcut calculations/updates.

Solution: Vertex Replication. Figure 4 demonstrates that

there exist some entry/exit vertices in a subgraph that share the

same source/target vertex. This inspires us to propose a vertex

replication approach for reducing the number of entry/exit

vertices and shortcuts. The idea is illustrated in Figure 4c.

After dense subgraph discovery, if the number of entry/exit

vertices in a subgraph Gi that share the same source/target

vertex v is larger than a threshold, the source/target vertex

v (host vertex) will be replicated in subgraph Gi as a proxy
vertex v′. A high-degree vertex could have many proxy ver-

tices in multiple different dense subgraphs. Both entry and exit

vertices can have proxy vertices in other dense subgraphs. For

example, in Figure 4c, entry vertex v6 has a proxy vertex v′6
acting as a new exit vertex in subgraph G1. Originally, there

are 3 exit vertices in subgraph G1 linking to the entry vertex

v6, while now there is only one exit vertex v′6. Exit vertex

v9 has a proxy vertex v′9 in G3 as a new entry vertex. There

are supposed to be 3 entry vertices in G3 all originating from

vertex v9, but now there is only one entry vertex v′9.
By replicating exit or entry vertices between subgraphs,

some boundary vertices of dense subgraphs become internal

vertices and move from Lup to Llow. The size of the graph

skeleton on Lup is greatly reduced.

2) Shortcuts Calculation: On the upper layer, there are only

entry and exit vertices of each subgraph. It is required to

connect them with shortcuts for propagating messages from

entry vertices to exit vertices correctly and quickly. During

the iterative computations on Lup, the entry vertices send

messages to exit vertices directly through shortcuts and do

not propagate the messages down to internal vertices. In order

to revise the states of vertices on Llow, the entry vertices cache

2770

Authorized licensed use limited to: Northeastern University. Downloaded on April 06,2025 at 06:45:23 UTC from IEEE Xplore. Restrictions apply.

(b) Part of original layered graph

v10

v7
v5

v8

(c) Part of reshaped layered graph

v7

v10 v8

v1
v16

v17

v15

Llow Llow
v2 v3 v4
v1
v5

v11
v15
v12v13
v16

v17

(a) Original graph

v2

v10

v3

v7

v0

v4
v1

v11

v8

v9

v15

v12

v6

v14

G1

G2

G3

v13

v5
v16

v17
v4 v13
v6

v0 v14
v2 v3

v9
v12v11

v0 v14

v'9v'6
v9v6LupLup

Fig. 4: An illustrative example of the upper layer reshaping. A dotted circle is a proxy vertex. A bold black link is a

weighted/unweighted edge on original graph. A dotted link is a shortcut from an entry vertex to an exit vertex in a subgraph.

A blue link is a connection between a vertex and its replicated proxy vertex. In (b) and (c), for simplicity, we use two-way

hollow arrows to represent the set of shortcuts and edges between Lup and Llow.

these messages that should be propagated to internal vertices,

then propagate them down to internal vertices after the iterative

computations terminate. However, these messages spread to all

internal vertices may require iterative computations. In order

to propagate the messages from the entry vertices to internal

vertices efficiently, we also connect them with shortcuts.

Based on the above discussion, there are two kinds of

shortcuts in the layered graph, 1) the shortcuts from entry

vertices to exit vertices of the dense subgraph, and 2) the

shortcuts from entry vertices to internal vertices of the dense

subgraph. Essentially, both of these shortcuts connect the entry

vertices and other vertices of the dense subgraph. Therefore,

they can be calculated simultaneously with the same method.

Before introducing the shortcut calculation method, we first

provide the formal definition of the shortcut.

Definition 3 (Shortcut). Given a subgraph Gi(Vi, Ei) and
the input messages vector M = {mu | u ∈ V I

i } arriving at
entry vertices V I

i , the shortcuts Si are the direct connections
from entry vertices V I

i to all vertices Vi, i.e., Si = {�wu,v |
u ∈ V I

i , v ∈ Vi} where �wu,v is the weight of a shortcut from
vertex u to vertex v, such that

GVi

(FSi
(M)

)
= GVi

(∞⋃
k=1

(GVi
◦ FEi

)k(M)
)
, (5)

where FSi and FEi indicate the message propagation through
the shortcuts Si and the original edges Ei respectively, and
GVi

indicates the message aggregation on vertex set Vi.

The shortcut weight �wu,v from entry vertex u to vertex v
in Gi can be calculated by the following equation

�wu,v = Gv

(∞⋃
k=1

(GVi
◦ FEi

)k(mu)
)
, (6)

where Gv is the group-by aggregation on vertex v, mu is the

unit message. It means that we first initialize a unit message

mu for entry vertex u. Then we perform iterative computation

on the subgraph Gi to propagate messages from u to v until

all the vertices in Gi no longer receive any messages or the

received messages can be ignored. Finally, the aggregated

value of messages received by v can be treated as the weight

of the shortcut from u to v, i.e., �wu,v . The unit message

mu should be the identity element of the F operation to

make initiation. As shown in Example 2, the identity element

of ‘+’ is 0. Then, in SSSP, the min value of the messages

received by v originated from u is the shortest path from u
to v, i.e., the weight of the shortcut from u to v. To alleviate

the burden of users, Layph can automatically complete the

shortcut calculation by invoking the user-defined F and G
functions without the user’s intervention (see II-A).

Example 2: Consider running SSSP on the graph as shown

in Figure 2a. When computing the shortcuts inside subgraph

G2, a unit message mv0 = 0 (as the identity element of

‘+’ since F = mu + wu,v containing ‘+’) is input into

entry vertex v0. We iteratively perform F = mu + wu,v to

propagate messages and use G = min to aggregate the received

messages for each vertex. Finally, as shown in Figure 2d, the

aggregated values of the received messages on {v1, v2, v3, v4}
are {1, 4, 1, 2} respectively, i.e., the weights of shortcuts are

�wv0,v1 = 1, �wv0,v2 = 4, �wv0,v3 = 1, �wv0,v4 = 2. �
Finally, we give the formal definition of the layered graph.

Layered Graph. Given an input graph G(V,E), a set of

N dense subgraphs {G1(V1, E1), . . . , GN (VN , EN)}, the

layered graph is formed by the upper layer Lup = (Lup
V , Lup

E),
the lower layer Llow = (Llow

V , Llow
E) and the edges between

Lup and Llow, where Lup
V (resp. Llow

V) is the vertex set on the

upper layer (resp. the lower layer) and Lup
E (resp. Llow

E) is the

edge set on the upper layer (resp. the lower layer).

• Upper layer (Lup).
– Vertex set LV

up=
⋃N

i=1{V I
i , V

O
i }∪{V −∪N

i=1Vi} is com-

posed of the entry and exit vertices of all dense subgraphs

and the vertices that are not in any dense subgraphs.

– Edge set LE
up=

⋃N
i=1{�wu,v|�wu,v ∈ Si, u ∈ V I

i , v ∈ V O
i }∪

{E −⋃N
i=1 Ei} is composed of the shortcuts from entry

vertices to exit vertices in each dense subgraph and the

edges that are not in any dense subgraphs.

• Low layer (Llow).
– Vertex set LV

low =
⋃N

i=1{V̂i} is composed of the internal

vertices of all dense subgraphs.

– Edge set LE
low=

⋃N
i=1

{
Ei − {(u, v) ∈ Ei|u ∈ V̂i, v ∈

V I
i ∪ V O

i }} is composed of the edges within each sub-

graph, except the edges from internal vertices to entry/exit

vertices.

• Edges between Lup and Llow. LE
up low =

⋃N
i=1

{{�wu,v ∈
Si | u ∈ V I

i , v ∈ V̂i} ∪ {(u, v) ∈ Ei | u ∈ V̂i, v ∈
V I
i ∪V O

i }} is composed of the shortcuts from entry vertices

to internal vertices and the edges from internal vertices to

2771

Authorized licensed use limited to: Northeastern University. Downloaded on April 06,2025 at 06:45:23 UTC from IEEE Xplore. Restrictions apply.

entry/exit vertices within each dense subgraph.

The size of the upper layer (with respect to |LV
up| and |LE

up|)
is expected to be much smaller than that of the original graph

(with respect to |V | and |E|). For example, in Figure 2, the

upper layer contains 3 vertices and 3 edges/shortcuts, which is

smaller than the original graph with 9 vertices and 14 edges.

Analysis. Due to the introduction of shortcuts, Layph will

require more space. The additional space overhead includes

the shortcuts from entry vertices to all vertices within each

subgraph, i.e., O(
∑N

i=1(|V I
i | × |Vi|)), where |V I

i | is the

number of entry vertices of subgraph Gi and |Vi| is the number

of all vertices in Gi. In practice, the additional space overhead

is always smaller than that of the original graph, as shown in

Figure 11a (in Section VI-G).

B. Layered Graph Update

The layered graph needs to be updated when G is updated

with ΔG. The vertices may move between the two layers, due

to the generation or disappearance of dense subgraphs, e.g., the

internal vertices of the newly generated subgraph move from

Lup to Llow. In order to avoid the expensive overhead caused

by repeated subgraph discovery, we incrementally update

the dense subgraphs with incremental community detection

methods, such as C-Blondel [22] or DynaMo [23]. In practice,

the size of ΔG is very small compared with G. A small ΔG
does not have a large effect on existing dense subgraphs. Thus

we update the dense subgraphs only when enough ΔG are

accumulated. However, even a very small ΔG can still change

the weight of a number of shortcuts of the layered graph.

Shortcuts update. There are three kinds of shortcut updates.

i) Deletion. If all of an entry vertex’s in-edges from outside

are deleted, i.e., the connections from outside are cut off, this

entry vertex will become an internal vertex, and the shortcuts

originated from it should be removed. ii) Addition. If an in-

edge from outside is added to an internal vertex, this internal

vertex will become an entry vertex. The shortcuts from it

to other vertices in the subgraph should be calculated. iii)

Weight update. If there are addition or deletion edges within

a subgraph, the weight of the shortcuts should be updated.

The shortcut is built inside each dense subgraph according

to the Definition 3. Moreover, from the Equation (6), we can

see that the weight of each shortcut on Gi only depends on

the edges and vertices in Gi, and the shortcuts on the different

subgraphs are independent of each other. Therefore, we only

need to update the shortcuts on the subgraphs affected by

ΔG, and the shortcuts for each subgraph can be updated in

parallel. For the shortcut deletion or addition, they can be done

directly within the subgraph by removing or calculating the

shortcut. For the weight update, in order to avoid redundant

computation, we use an incremental method to update.

According to Equation (6), the weight of the shortcuts is

calculated by iterative computations, and the weight of the

shortcut from u to v is equal to the aggregate all the messages

received by v through all paths from u to v. After the edge

addition or deletion within the dense subgraph, some messages

received by v may become invalid or missing. Thus, the update

of the shortcut can adopt the existing incremental computa-

tion methods [14]–[16]. The compensation and cancellation

messages can be deduced based on the memoized information

when calculating the old shortcut. These messages will be used

to redo and undo the effect of missing and invalid messages on

vertex v, in which there are some missing and invalid messages

in the received messages of v due to the addition and deletion

edges within the dense subgraph.

Example 3: Consider running SSSP on the updated graph

as shown in Figure 2b. Since ΔG only changes G2, the

shortcuts related to G1 do not need to be updated. For

G2, the vertices on Lup do not need to change, since only

the inner edges change, and the shortcuts can be updated

incrementally. Therefore, we can get the weights of the old

shortcuts as the initial weights of the new shortcuts, i.e., the

initial values of {�wv0,v1 , �wv0,v2 , �wv0,v3} are set to {1, 4, 1, 2}.

Since the edge v3 → v4 is deleted and the state of v4 depends

on v3, it is necessary to generate a cancellation message

mv3,v4
=⊥ (⊥ means the vertex needs to be reset to the

default state, i.e., ∞ for SSSP), and mv3,v4 sets the state of

v4 to ∞ [14], [16], [18]. Meantime, v4 will get a message

mv2,v4 = 5 from its neighbor v2. In addition, since the edge

v3 → v2 is added, it is necessary to generate a compensation

message mv3,v2=3. Then all these revision messages will be

propagated inside G2. Finally, as shown in Figure 2e, the

aggregated values of the received messages on {v1, v2, v3, v4}
are {1, 3, 1, 4} respectively, i.e., the new weights of the short-

cuts are �wv0,v1=1, �wv0,v2=3, �wv0,v3=1, �wv0,v4=4. �

V. INCREMENTAL PROCESSING WITH LAYERED GRAPH

This section will introduce how Layph performs incremental

graph processing on the layered graph.

Revision messages deduction. As shown in Equation (3),

the final vertex state is determined by the received messages

that are from ALL vertices and transferred along different

paths. When the graph is updated, the messages received

by vertices may change due to the changes in the paths

that messages propagate. The incremental graph processing

framework can automatically [14], [16] or manually [15], [17]

obtain the revision messages i.e., compensation messages and

cancellation messages, and propagate them to revise the effect

of the missing and invalid messages on vertex states [15], [16].

For the revision messages, we can deduce them by employing

the method proposed in our previous work [16].

After deducing the revision messages, we propagate them

efficiently with the help of Layph. As we have introduced in

Section III, the propagation of revision messages on Layph is

in three steps, 1) messages upload, 2) iterative computation,

and 3) messages assignment.

A. Messages Upload

The upper layer Lup only contains a subset of vertices,

and the internal vertices inside each subgraph on Llow do not

participate in iterative computation on Lup. To ensure that all

2772

Authorized licensed use limited to: Northeastern University. Downloaded on April 06,2025 at 06:45:23 UTC from IEEE Xplore. Restrictions apply.

vertices on Lup converge with the effects of internal vertices,

the iterative computation on Lup should collect not only the

revision messages deduced by the vertices on Lup but also

those by internal vertices. Thus, it is required to upload the

revision messages deduced by the internal vertices of the dense

subgraphs on Llow to Lup. Since the entry/exit vertices of each

dense subgraph are on Lup, messages upload can be done by

propagating the revision messages to entry/exit vertices.
Not all the internal vertices within each dense subgraph

have connections with the entry/exit vertices, thus, we perform

a local iterative computation to propagate internal revision

messages to the entry/exit vertices of the subgraph. The iter-

ative computation terminates when the messages received by

entry/exit vertices can be ignored. After the upload of the mes-

sages, the accumulated messages on the entry vertices V I
i and

exit vertices V O
i can be treated as their initial revision mes-

sages i.e.,, M0
V I
i ∪V O

i
= GV I

i ∪V O
i

(⋃∞
k=1(GVi ◦ FEi)

k(M0
Vi
)
)
.

Together with the initial messages of vertices that are not

in any dense subgraph on LV
up, i.e., M

0
V−∪N

i=1Vi
, the initial

messages of vertices on Lup can be expressed as follows

M
0
LV

up
=

(N⋃
i=1

GV I
i ∪V O

i

(∞⋃
k=1

(GVi ◦ FEi)
k(M0

Vi
)
))

∪M
0
V−∪N

i=1Vi
,

(7)

where M
0
Vi

represents the initial revision messages.

Note. It is unnecessary to perform messages upload on all

subgraphs on Llow, because the revision messages are only

generated on subgraphs that are affected by ΔG [14]–[17]. In

general, since the size of ΔG is small, the number of affected

subgraphs is small, too. For all subgraphs affected by ΔG,

messages upload can be efficiently performed in parallel since

each subgraph is independent of the other.

Example 4: Running SSSP to convergence on the layered

graph with v0 as the source vertex in Figure 2d. When the

graph changes as shown in Figure 2b, the layered graph is

updated as shown in Figure 2e. At this time, the conver-

gence states of all vertices on the original graph are taken

as the initial states of the vertices on the updated graph,

i.e., {xv0 , ..., xv8} are {0, 1, 4, 1, 2, 5, 6, 7, 7}. Since G1 is not

directly affected by ΔG, there is no need to derive revision

messages on G1. On G2, a cancellation message mv3,v4
=⊥

and two compensation messages mv2,v4=5 and mv3,v2=3 will

be generated. For the cancellation message mv3,v4=⊥, it will

cause v4 to be reset to the default state (i.e., ∞), and all the

vertices that depend on v4 will be reset to the default state

according to the dependency tree [14], [16], [18]. Then all the

rest of the revision messages will be propagated inside G2,

and finally all messages will also be aggregated to the exit

vertex v4 on Lup, i.e., mv4=4. At this time, Lup obtains all

the revision messages of Llow, and v2 and v4 of G2 get new

states xv2=3 and xv4=4. �
B. Iterative Computation On The Upper Layer

After the upload of the messages, the revision messages

deduced by internal vertices of the subgraphs on Llow have

been propagated to Lup. However, these uploaded messages

are only cached in entry and exit vertices of the dense

subgraphs according to Equation (7). Iterative computations

are required to be performed on Lup to propagate the revision

messages so that the other vertices on Lup can receive all the

revision messages to revise their states.

The iterative computations only perform on Lup, i.e., only

LV
up and LE

up are involved in iterative computations, and the

entry and exit vertices of dense subgraphs will participate in

the iterative computations because they are on LV
up. When the

entry vertices receive messages, they do not send messages

to internal vertices, but propagate messages to exit vertices

via shortcuts. After the iterative computations, the states of

vertices on Lup can be expressed as follows

X∗
LV

up
= GLV

up

(
X0

LV
up

∪
∞⋃
k=1

(GLV
up

◦ FLE
up
)k(M0

LV
up
)
)
. (8)

Based on the following Theorem 1, We can see that after

the iterative computations on Lup, the vertices converge to

the same state as performing the iterative computation on the

original graph.

Theorem 1: With initial messages M
0
LV

up
defined in Equation

(7) and initial states X0
LV

up
, the converge states X∗

LV
up

of the
vertices on the upper layer after iterative computation on the
upper layer Lup(L

V
up, L

E
up) are equal to that after iterative

computation on updated graph G⊕ΔG. �

Proof sketch: By replacing M
0
LV

up
with Equation (7), the

initial messages from each updated subgraph’s internal vertices

are propagated out via boundary vertices. By iteratively apply-

ing FLE
up

and GLV
up

, these initiated messages no matter from

the internal vertices or from the vertices of Lup are propagated

on Lup and will be finally accumulated to vertices on Lup. �
Example 5: Figure 2e has introduced the iterative com-

putation on Lup. Based on Example 4, we get the states

{xv0=0, xv4=4, xv5=∞} and revision message {mv4=4} of

all the vertices on Lup. Then the iterative computation is

performed on Lup based on these initial states. First only v4
is the active vertex because it has revision message {mv4

=4}.

v4 is an exit vertex, and the message mv4,v5=mv4+wv4,v5=7
is generated through the outgoing edge (v4, v5). v5 is an entry

vertex, it aggregates the message mv4,v5 to mv5
to update its

own vertex state from xv5
=∞ to xv5=7 , and stores mv5

for messages assignment (Section V-C). v5 then generates a

message mv5,v0=mv5+wv5,v0=9 and sends it to v0. Then

v0 cannot update the message mv0 after receiving mv5,v0 .

Therefore, all vertices on Lup reach a convergent state, i.e.,
{v∗0=0, v∗4=4, v∗5=7}. �
C. Revision Messages Assignment

Since the iterative computation is only performed on Lup,

the revision messages will not touch the internal vertices of

each subgraph on Llow, i.e.,, the internal vertices will not

receive revision messages from outside. It is essential to launch

another step to apply outside messages to internal vertices.

2773

Authorized licensed use limited to: Northeastern University. Downloaded on April 06,2025 at 06:45:23 UTC from IEEE Xplore. Restrictions apply.

Though the internal vertices do not receive the revision

messages from outside, the entry vertices of each dense

subgraph have received all the revision messages from vertices

in other dense subgraphs and Lup according to Theorem 1. In

order to enable the internal vertices to receive outside revision

messages, the entry vertices cache the received messages

before propagating them to exit vertices via shortcuts during

the iterative computations. After many iterations, the entry

vertices may cache a large number of messages, and we only

store the aggregated messages. The cached messages can be

expressed as follows

MV I =
N⋃
i=1

GV I
i

(∞⋃
k=1

(GLV
up

◦ FLE
up
)k(M0

LV
up
)
)
. (9)

Finally, we send the messages that have been cached in

entry vertices to the internal vertices via shortcuts between

entry vertices and internal vertices. The states of the vertices

on Llow can be expressed as follows

X∗
LV

low
= GLV

low

(
XLV

low
∪

N⋃
i=1

(GV̂i
◦ FŜi

)(MV I
i
)
)
, (10)

where Ŝi = {�wu,v ∈ Si | u ∈ V I
i , v ∈ V̂i} is a set of shortcuts

between two layers, XLV
low

are vertex states on Llow after

local iterative computation for uploading revision messages to

vertices of Lup, i.e.,

XLV
low

= GLV
low

(
X0

LV
low

∪
∞⋃
k=1

(GVi
◦ FEi

)k(M0
Vi
)
)
. (11)

We have the following theorem to guarantee correctness.

Theorem 2: After iterative computation on the upper layer,
by assigning the accumulated messages of entry vertices to
internal vertices through shortcuts, the resulted internal vertex
states are the same as that after iterative computation on
updated graph G⊕ΔG. �

Proof sketch: According to Equation (11), after local iterative

computation for uploading revision messages to vertices on

Lup, the effects from internal vertices have been applied to

each other. The accumulated outside messages MV I
i

include

the effects from all other vertices outside the subgraph, which

are accumulated at the entry vertices V I
i . By assigning these

outside messages to internal vertices, i.e., GV̂i

(FŜi
(MV I

i
)
)
, the

outside effects are applied on internal vertices. The aggregation

results of these outside messages and the internal vertex states

XLV
low

are equal to that obtained by iterative computation on

the entire graph. �

Example 6: Following Example 5, for the activated en-

try vertex v5, it assigns revision messages to internal

vertices via shortcuts. Specifically, mv5,v6
=mv5

+�wv5,v6=8,

mv5,v7=mv5+�wv5,v7=9, and mv5,v8=mv5+�wv5,v8=9. Fi-

nally, {v6,v7,v8} get the convergence states {x∗
v6 = 8, x∗

v7
=

9, x∗
v8=9} by the message aggregation operation. �

TABLE I: Datasets used in the experiments

Graph Vertices Edges Size
UK-2005 (UK) [24] 39,459,925 936,364,282 16GB

IT-2004 (IT) [25] 41,291,594 1,150,725,436 19GB

SK-2005 (SK) [26] 50,636,154 1,949,412,601 33GB

Sinaweibo (WB) [27] 58,655,850 261,323,450 3.8GB

VI. EXPERIMENTS

We implement Layph on top of Ingress [16], an automated

incrementalization framework equipped with different memo-

ization policies to support vertex-centric graph computations.

In this section, we evaluate Layph and compare it with existing

state-of-the-art incremental graph processing systems.

A. Experimental Setup

We use AliCloud ecs.r6.13xlarge instance (52vCPU, 384GB

memory, 64-bit Ubuntu 18.04 with compiler GCC 7.5) for

these experiments.

Graph Workloads. We use four typical graph analysis algo-

rithms in our experiments, including Single Source Shortest

Path (SSSP), Breadth-First Search (BFS), PageRank (PR), and

Penalized Hitting Probability (PHP) [28]. SSSP and BFS can

be written in the form shown in Equation (1). We also rewrite

PHP and PageRank into the form shown in Equation (1)

using the method in [9], [10]. The former two are considered

converged when all vertex states no longer change. The latter

two are considered converged when the difference between the

vertex states in two consecutive iterations is less than 1e−6.

Datasets and Updates. We use four real graphs (see Table

I) in our experiments, including three web graphs UK-2005

(UK) [24], IT-2004 (IT) [25], and SK-2005 (SK) [26], and a

social network Sinaweibo (WB) [27]. We constructed ΔG by

randomly adding new edges to G and removing existing edges

from G. The number of added edges and deleted edges are

both 5,000 by default unless otherwise specified. ΔG refers

to the edge changes by default, besides, we randomly generate

a ΔG with 1,000 changed vertices (including 500 added

vertices and 500 deleted vertices) to evaluate the performance

of handling vertex updates.

Competitors. We compare Layph with five state-of-the-art

incremental graph processing systems, GraphBolt [15], Kick-

Starter [14], DZiG [17], Ingress [16], and RisGraph [18]. In

fact, KickStarter and RisGraph do not support PageRank and

PHP due to their single-dependency requirement. GraphBolt

and DZiG do not provide the implementations of SSSP and

BFS. In light of this, we only run PageRank and PHP (resp.

SSSP and BFS) on GraphBolt and DZiG (resp. KickStarter

and RisGraph). All of these systems are running with 16

worker threads.

B. Overall Performance

We first compare Layph with the competitors in response

time of each workload executed on different datasets. The Nor-
malized results are reported in Figure 5, where the response

time of Layph is treated as the baseline, i.e., Layph finishes

in unit time 1. In particular, Figure 5e reports the response

2774

Authorized licensed use limited to: Northeastern University. Downloaded on April 06,2025 at 06:45:23 UTC from IEEE Xplore. Restrictions apply.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

UK IT SK WB

N
or

m
al

iz
ed

 T
im

e

KickStarter
RisGraph

Ingress
Layph

(a) SSSP

 0

 2

 4

 6

 8

 10

 12

UK IT SK WB

N
or

m
al

iz
ed

 T
im

e

KickStarter
RisGraph

Ingress
Layph

(b) BFS

 0

 5

 10

 15

 20

 25

 30

 35

 40

UK IT SK WB

N
or

m
al

iz
ed

 T
im

e

GraphBolt
DZiG

Ingress
Layph

(c) PageRank

 0

 5

 10

 15

 20

 25

 30

 35

 40

UK IT SK WB

N
or

m
al

iz
ed

 T
im

e

GraphBolt
DZiG

Ingress
Layph

(d) PHP

 0

 1

 2

 3

 4

 5

 6

 7

UK IT SK WB

N
or

m
al

iz
ed

 T
im

e

Ingress
Layph

(e) PageRank(Vertex update)

Fig. 5: Response time comparison.

 0

 2

 4

 6

 8

 10

UK IT SK WB

N
or

m
al

iz
ed

 N
um

be
r

 o
f E

dg
e

A
ct

iv
at

io
ns

KickStarter
RisGraph

Ingress
Layph

(a) SSSP

 0

 5

 10

 15

 20

 25

 30

UK IT SK WB

N
or

m
al

iz
ed

 N
um

be
r

 o
f E

dg
e

A
ct

iv
at

io
ns

KickStarter
RisGraph

Ingress
Layph

(b) BFS

 0

 10

 20

 30

 40

 50

 60

 70

UK IT SK WB

N
or

m
al

iz
ed

 N
um

be
r

 o
f E

dg
e

A
ct

iv
at

io
ns

GraphBolt
DZiG

Ingress
Layph

(c) PageRank

 0

 5

 10

 15

 20

 25

 30

UK IT SK WB

N
or

m
al

iz
ed

 N
um

be
r

 o
f E

dg
e

A
ct

iv
at

io
ns

GraphBolt
DZiG

Ingress
Layph

(d) PHP

 0

 0.2
 0.4

 0.6
 0.8

 1
 1.2

 1.4

 1.6

 1.8

UK IT SK WB

N
or

m
al

iz
ed

 N
um

be
r

 o
f E

dg
e

A
ct

iv
at

io
ns

Ingress
Layph

(e) PageRank(Vertex update)

Fig. 6: Number of edge activations comparison.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

SSSP BFS PR PHP

N
or

m
al

iz
ed

 T
im

e

Layered graph update
Messages upload

Iterative computaton on Lup
Messages assignment

Fig. 7: Runtime breakdown.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

UK IT SK WB

N
or

m
al

iz
ed

 G
ra

ph
 S

iz
e

Original graph
Lup

Reshaped Lup

(a) Graph size

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

UK IT SK WB

N
or

m
al

iz
ed

 T
im

e

Ingress
Layph w/o replication

Layph

(b) SSSP runtime

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

UK IT SK WB

N
or

m
al

iz
ed

 T
im

e

Ingress
Layph w/o replication

Layph

(c) PageRank runtime

Fig. 8: Effect of vertex replication.

 0

 5

 10

 15

 20

1 2 4 8 16 32

T
im

e(
s)

Number of threads

KickStarter
RisGraph

Ingress
Layph

(a) SSSP

101

102

103

1 2 4 8 16 32

T
im

e(
s)

Number of threads

GraphBolt
DZiG

Ingress
Layph

(b) PageRank

Fig. 9: Scaling number of threads from 1 to 32.

 0

 5

 10

 15

 20

10 100 1K 10K 100K 1M

S
pe

ed
up

Batch size

KickStarter
RisGraph

Ingress

(a) SSSP

0

10

20

30

40

10 100 1K 10K 100K 1M

S
pe

ed
up

Batch size

GraphBolt
DZiG

Ingress

(b) PageRank

Fig. 10: Speedup over competitors when varying batch size.

time for processing vertex updates, while the rest is used for

edge updates. We can see that the improvement in handling

vertex changes in Layph is consistent with the improvement

in handling edge changes. When updating vertices, the other

systems meet runtime errors, thus we only compare Ingress

with Layph. It is shown that Layph consistently outperforms

others in most cases. Specifically, Layph achieves 3.13-15.82×
(8.49× on average) speedup over KickStarter, 2.54-8.49×
(4.49× on average) speedup over RisGraph, 2.99-36.66×
(18.99× on average) speedup over GraphBolt, 2.92-32.93×
(17.53× on average) speedup over DZiG, and 1.06-7.22×
(2.54× on average) speedup over Ingress. To explain the

reason for the above results, we also report the total number

of edge activations in Figure 6. An edge activation represents

an F operation. In most graph workloads, the cost of F is

much greater than that of G operation, because the number of

F and the unit cost of F are often both larger than that of G.

From Figure 5 and Figure 6, we can see that the normalized

number of edge activations is a similar trend to the normalized

response time of each system.

Regarding SSSP and BFS, RisGraph is faster than Kick-

Starter since it allows more parallelism during incremental

updates and allows for localized data access. Ingress and

RisGraph are comparable because the memoization-path en-

gine in Ingress follows a similar idea. Layph outperforms

the other competitors by leveraging the layered graph. Note

that, when performing BFS on WB, RigGraph is slower than

Layph but with fewer edge activations. This is because that

RisGraph can identify the safe and unsafe updates to reduce

edge activations. It just so happens that most of the updates

on WB are safe for BFS. However, the additional cost of

identifying the safe or unsafe is relatively expensive since WB

is very small. While in SSSP, compared with Ingress, Layph
also requires less response time but with more edge activations.

2775

Authorized licensed use limited to: Northeastern University. Downloaded on April 06,2025 at 06:45:23 UTC from IEEE Xplore. Restrictions apply.

This is because there are some large dense subgraphs in WB,

requiring more shortcut updates, which increase the number of

edge activations. Since Layph is parallel-friendly for shortcut

updates, it will only have a small effect on the response time.

Regarding PageRank and PHP, DZiG is faster than Graph-

Bolt since DZiG has a sparsity detection mechanism, based

on which it can adjust the incremental computation scheme.

Besides, Ingress is faster than DZiG and GraphBolt. This can

be attributed to its memoization-free engine which is more

efficient than others. Layph is built on top of Ingress, and can

further limit the iterative computation scope with the layered

graph, which reduces the number of activation edges, as shown

in Figure 6. We find that Layph exhibits less improvement on

WB. The reason is that the subgraphs in WB are much larger

than that in other graphs, which increases costs and weakens

gains. The reason will be further explained in Section VI-F.

C. Runtime Breakdown

During incremental computation, Layph consists of four

phases: the layered graph update, revision messages upload,

iterative computation on the upper layer, and messages as-

signment. To study the time spent in each phase, we run

four algorithms on UK and record the runtime of each phase.

The proportion of runtime for different phases is shown in

Figure 7. We can see that the iterative computation takes up

most of the runtime. The messages assignment is the second

most expensive phase. The layered graph update and revision

messages upload are both very fast except in PHP. This is

because the iterative computation of PHP is very fast, say

418 ms, which makes those two phases relatively longer. The

results indicate that the additional cost in our system, i.e., the

maintenance of the layered graph, is lightweight. Based on the

above experimental analysis, it is worth adopting the layered

graph in incremental graph processing.

D. Varying Number of Threads

We vary the number of execution threads from 1 to 32 to

see the runtime reduction. We run SSSP on UK and compare

Layph with KickStarter, RisGraph, and Ingress. The results are

shown in Figure 9a. We can see that as the threads increase,

the runtime decreases steadily in all systems as expected. The

reduction is smoother when the number of threads is larger

than 8. This is because all these systems use atomic operations

to guarantee correctness, hence threads will lead to more

write-write conflicts which will hurt parallelism. Compared

with the runtime with 1 thread, Layph with 32 threads can

achieve 10.1× speedup, which is higher than KickStarter

(4.7× speedup), RisGraph (6.2× speedup), and Ingress (9.0×
speedup). We also run PageRank on UK and compare Layph
with GraphBolt, DZiG, and Ingress. The results are reported

in Figure 9b where a base-10 log scale is used for the Y axis.

We can observe that GraphBolt, DZiG, and Layph show better

scaling performance than Ingress. The reason is that the prob-

lem of the write-write conflict in PageRank is more serious

than that in SSSP. In GraphBolt and DZiG, vertex states need

to be recorded during each iteration, which can alleviate the

conflict problem with massive space cost in sacrifice. In Layph,

both the shortcut update process and the local assignment

process contain many independent local computations, making

Layph more parallel-friendly. Therefore, Layph can benefit

more from parallelism.

E. Varying Amount of Updates

To study the performance with different amounts of updates,

we vary the size of the updates set (a.k.a. batch size) from 10

to 10 million on UK and compare Layph with the competitors

when running SSSP and PageRank. Figure 10 shows the

speedup results of Layph over the competitors. The speedup

is more significant with a smaller batch size because Layph
utilizes the layered graph to effectively reduce the scope

of global iterations. In PageRank, if the batch size is too

small, e.g., 10, the effects of these updates might only be

applied within subgraphs, thus the iterative computations are

constrained in affected subgraphs. However, the speedup is

less significant when the batch size gets larger. This is because

more updates are likely to affect more subgraphs in our system,

which increases the shortcut update cost and undermines

the benefits of the layered graph. However, large batches of

updates will prolong the response time and lose the real-

time property, so smaller batches of updates are preferable

for delay-sensitive applications or online applications.

F. Effect of Vertex Replication

To verify the effectiveness of vertex replication proposed in

Section IV-A1, we measure the sizes of the original graphs,

the original upper layers, and the reshaped upper layers as

shown in Figure 8a. We can see that the sizes of the original

graphs are greatly reduced (by 12%-60%) by using the layered

graph, and the sizes of the original upper layers are further

reduced (by 34%-87%) through vertex replication. We also run

SSSP and PageRank on the original graph with Ingress, the

original upper layer with Layph (without vertex replication),

and the reshaped upper layer with Layph. The runtime results

are reported in Figure 8b and Figure 8c, respectively. We

can see that most of the runtime results are proportional to

their graph sizes or the upper layer sizes. It is noticeable that

the runtime of SSSP on WB by Layph is longer with vertex

replication than without vertex replication. By digging into

the graph property, we find that the sizes of subgraphs in WB

are very large. With vertex replication, an edge update could

incur multiple local recomputations on multiple subgraphs

that are correlated to this updated edge. Therefore, if many

large subgraphs are affected, the layered graph update cost

for shortcut calculations is evident, which may overweigh the

benefits. On the contrary, if the size of the affected subgraph

is small, this will not impact performance as the shortcut

calculation will be very fast.

G. Analysis of Additional Overhead

To evaluate the effect of additional space and offline op-

erations on Layph, we first report the additional space cost

of Layph in Figure 11a. We can see that the additional space

cost brought by the layered graph is 37.89%, 61.53%, 19.79%,

2776

Authorized licensed use limited to: Northeastern University. Downloaded on April 06,2025 at 06:45:23 UTC from IEEE Xplore. Restrictions apply.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

UK IT SK WB

37.89%

61.53%

19.79%

0.32%

N
or

m
al

iz
ed

 s
pa

ce
 c

os
t

Dateset

 Edges in original graph
Shortcuts in layered graph

(a) Space cost

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

1 3 5 7 9 11 13 15

R
un

tim
e

(s
)

of incremental computation runs

Layph offline
Layph acc. inc.

Ingress acc. inc.

(b) Offline preprocessing time

Fig. 11: Additional space cost and offline preprocessing time.

and 0.32% of the original graph, which is acceptable. We

then report the offline preprocessing time (Layph offline), the

accumulative incremental computation time of Layph (Layph
acc. inc.), and that of Ingress (Ingress acc. inc.) in Figure 11b

when performing SSSP on UK. It is shown that after 9 runs

of incremental computation, the runtime of Layph, including

the offline time and the accumulative incremental computation

time, becomes less than Ingress. This is because the offline

operation is performed only once but can bring a significant

performance gain on each incremental computation.

VII. RELATED WORK

Incremental Graph Processing Systems. Incremental process-

ing for evolving graphs has attracted great attention in recent

years [14]–[18], [29]–[41]. Tornado [29] provides loop-based

incrementalization support for the fix-point graph computa-

tions. KickStarter [14] maintains a dependency tree to memo-

rize the critical paths for converged states and performs neces-

sary adjustments to accommodate changes. RisGraph [18] de-

duces safe approximation results upon graph updates and fixes

these results via iterative computation. GraphBolt [15] keeps

track of the dependencies via the memorized intermediate

states among iterations and adjusts the dependencies iteration-

by-iteration to achieve incremental computation. i2MapReduce

[38], [39] extends Hadoop MapReduce to support incremental

iterative graph computations by memorizing the intermedi-

ate map/reduce output. Similarly, many other works, e.g.,

DZiG [17] and HBSP model [41], also memorize and reuse

the previous computations to minimize useless re-execution.

Ingress [16] can automatically select the best memoization

scheme according to algorithm property. The above systems

propagate the effects of graph updates over the whole graph,

which causes a large number of vertices and edges to be acti-

vated, and ultimately leads to a large number of computations.

Hardware Accelerators for Incremental Graph Processing. A

number of solutions based on new hardware to accelerate

dynamic graph processing have been proposed recently [37],

[42]–[45]. GraSU [42] provides the first FPGA-based high-

throughput graph update library for dynamic graphs. It ac-

celerates graph updates by exploiting spatial similarity. Jet-

Stream [43] extends the event-based accelerator [20] for graph

workloads to support streaming updates. It works well on both

accumulative and monotonic graph algorithms. [44] proposes

input-aware software and hardware solutions to improve the

performance of incremental graph updates and processing.

TDGraph [45] proposes efficient topology-driven incremental

execution methods in accelerator design for more regular state

propagation and better data locality.

Incremental Graph Algorithms. There are also a number of

incremental methods proposed for specific algorithms, e.g.,
regular path queries [46], strongly connected components [47],

subgraph isomorphism [48], k-cores [49], graph partition-

ing [50], [51] and triangle counting [52]. In contrast to these

algorithm-specific methods, our Layph framework extends

Ingress [16], which can automatically deduce incremental

algorithms from the batch counterparts by a generic approach.

It supports a series of incremental graph algorithms with

different computation patterns, i.e., traversal-based (e.g., SSSP

and BFS) and iteration-based (e.g., PageRank and PHP).

Partition-based Methods. Some partition-based methods have

been proposed to improve graph processing, such as Blogel

[53], Giraph++ [54], Grace [55], GRAPE [13]. They employ

a block-centric (or subgraph-centric) framework to process

graphs and try to reduce the communication overhead between

threads or processors (reducing the information flow between

subgraphs). However, these systems are designed for static

graph processing. Different from these existing approaches,

the novelty of Layph lies in that we propose a layered graph

structure to improve the incremental graph processing for

dynamic graphs, which aims to reduce the computation caused

by massive message propagation.

VIII. CONCLUSIONS

We have proposed Layph, a framework to accelerate in-

cremental graph processing by layering graph. It relies on

limiting global iterative computations on the original graph

to a few independent small-scale local iterative computations

on the lower layer, which is used to update shortcuts and

upload messages, and a global computation on the upper

layer graph skeleton. This greatly fits incremental computation

for evolving graphs since the number of vertices and edges

involved in iterative computations is effectively limited by

our layered graph. Specifically, only the dense subgraphs

affected by ΔG on the lower layer and the graph skeleton

on the upper layer perform iterative computations. Layph is

implemented on top of our previous work Ingress to support

message-driven incremental computation. Our experimental

study verifies that Layph can greatly improve incremental

processing performance for dynamic graphs.

ACKNOWLEDGMENT

The work is supported by the National Natural Sci-

ence Foundation of China (62072082, U2241212, U1811261,

62202088, 62202301), the National Social Science Founda-

tion of China (21&ZD124), the Fundamental Research Funds

for the Central Universities (N2216012, N2216015), the Key

R&D Program of Liaoning Province (2020JH2/10100037),

and a research grant from Alibaba Innovative Research (AIR)

Program.

2777

Authorized licensed use limited to: Northeastern University. Downloaded on April 06,2025 at 06:45:23 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] J. Tang, T. Wang, J. Wang, and D. Wei, “Efficient social network
approximate analysis on blogosphere based on network structure charac-
teristics,” in Proceedings of the 3rd Workshop on Social Network Mining
and Analysis, SNAKDD 2009, Paris, France, June 28, 2009. ACM,
2009, p. 7.

[2] L. Page, S. Brin, R. Motwani, and T. Winograd, “The pagerank citation
ranking: Bringing order to the web.” Stanford InfoLab, Tech. Rep., 1999.

[3] J. Cho, S. Roy, and R. Adams, “Page quality: In search of an unbiased
web ranking,” in Proceedings of the ACM SIGMOD International
Conference on Management of Data, Baltimore, Maryland, USA, June
14-16, 2005. ACM, 2005, pp. 551–562.

[4] Y. Ahn, S. Park, S. Lee, and S. Lee, “A heterogeneous graph-based rec-
ommendation simulator,” in Seventh ACM Conference on Recommender
Systems, RecSys ’13, Hong Kong, China, October 12-16, 2013. ACM,
2013, pp. 471–472.

[5] B. Berger, R. Singh, and J. Xu, “Graph algorithms for biological
systems analysis,” in Proceedings of the Nineteenth Annual ACM-
SIAM Symposium on Discrete Algorithms, SODA 2008, San Francisco,
California, USA, January 20-22, 2008. SIAM, 2008, pp. 142–151.

[6] “Size of Wikipedia,” 2020, https://en.wikipedia.org/wiki/Wikipedia:Size
of Wikipedia.

[7] G. Malewicz, M. H. Austern, A. J. C. Bik, J. C. Dehnert, I. Horn,
N. Leiser, and G. Czajkowski, “Pregel: a system for large-scale graph
processing,” in Proceedings of the ACM SIGMOD International Con-
ference on Management of Data, SIGMOD 2010, Indianapolis, Indiana,
USA, June 6-10, 2010. ACM, 2010, pp. 135–146.

[8] J. E. Gonzalez, Y. Low, H. Gu, D. Bickson, and C. Guestrin, “Power-
graph: Distributed graph-parallel computation on natural graphs,” in 10th
USENIX Symposium on Operating Systems Design and Implementation,
OSDI 2012, Hollywood, CA, USA, October 8-10, 2012. USENIX
Association, 2012, pp. 17–30.

[9] Q. Wang, Y. Zhang, H. Wang, L. Geng, R. Lee, X. Zhang, and G. Yu,
“Automating incremental and asynchronous evaluation for recursive
aggregate data processing,” in Proceedings of the 2020 International
Conference on Management of Data, SIGMOD Conference 2020, online
conference [Portland, OR, USA], June 14-19, 2020. ACM, 2020, pp.
2439–2454.

[10] Y. Zhang, Q. Gao, L. Gao, and C. Wang, “Maiter: An asynchronous
graph processing framework for delta-based accumulative iterative com-
putation,” IEEE Trans. Parallel Distributed Syst., vol. 25, no. 8, pp.
2091–2100, 2014.

[11] Z. Yanfeng, G. Qixin, G. Lixin, and W. Cuirong, “Priter: a distributed
framework for prioritized iterative computations,” in ACM Symposium on
Cloud Computing in conjunction with SOSP 2011, SOCC ’11, Cascais,
Portugal, October 26-28, 2011. ACM, 2011, p. 13.

[12] X. Zhu, W. Chen, W. Zheng, and X. Ma, “Gemini: A computation-
centric distributed graph processing system,” in 12th USENIX Sympo-
sium on Operating Systems Design and Implementation, OSDI 2016,
Savannah, GA, USA, November 2-4, 2016. USENIX Association, 2016,
pp. 301–316.

[13] W. Fan, J. Xu, Y. Wu, W. Yu, J. Jiang, Z. Zheng, B. Zhang, Y. Cao, and
C. Tian, “Parallelizing sequential graph computations,” in Proceedings
of the 2017 ACM International Conference on Management of Data,
SIGMOD Conference 2017, Chicago, IL, USA, May 14-19, 2017. ACM,
2017, pp. 495–510.

[14] K. Vora, R. Gupta, and G. Xu, “Kickstarter: Fast and accurate computa-
tions on streaming graphs via trimmed approximations,” in Proceedings
of the Twenty-Second International Conference on Architectural Support
for Programming Languages and Operating Systems, ASPLOS 2017,
Xi’an, China, April 8-12, 2017. ACM, 2017, pp. 237–251.

[15] M. Mariappan and K. Vora, “Graphbolt: Dependency-driven syn-
chronous processing of streaming graphs,” in Proceedings of the Four-
teenth EuroSys Conference 2019, Dresden, Germany, March 25-28,
2019. ACM, 2019, pp. 25:1–25:16.

[16] S. Gong, C. Tian, Q. Yin, W. Yu, Y. Zhang, L. Geng, S. Yu, G. Yu,
and J. Zhou, “Automating incremental graph processing with flexible
memoization,” Proc. VLDB Endow., vol. 14, no. 9, pp. 1613–1625, 2021.

[17] M. Mariappan, J. Che, and K. Vora, “Dzig: sparsity-aware incremental
processing of streaming graphs,” in EuroSys ’21: Sixteenth European
Conference on Computer Systems, Online Event, United Kingdom, April
26-28, 2021. ACM, 2021, pp. 83–98.

[18] G. Feng, Z. Ma, D. Li, S. Chen, X. Zhu, W. Han, and W. Chen,
“Risgraph: A real-time streaming system for evolving graphs to support

sub-millisecond per-update analysis at millions ops/s,” in SIGMOD ’21:
International Conference on Management of Data, Virtual Event, China,
June 20-25, 2021. ACM, 2021, pp. 513–527.

[19] “libgrape-lite,” 2020, https://github.com/alibaba/libgrape-lite.
[20] S. Rahman, N. B. Abu-Ghazaleh, and R. Gupta, “Graphpulse: An event-

driven hardware accelerator for asynchronous graph processing,” in
53rd Annual IEEE/ACM International Symposium on Microarchitecture,
MICRO 2020, Athens, Greece, October 17-21, 2020. IEEE, 2020, pp.
908–921.

[21] V. D. Blondel, J.-L. Guillaume, R. Lambiotte, and E. Lefebvre, “Fast
unfolding of communities in large networks,” Journal of statistical
mechanics: theory and experiment, vol. 2008, no. 10, p. P10008, 2008.

[22] D. Zhuang, J. M. Chang, and M. Li, “Dynamo: Dynamic community
detection by incrementally maximizing modularity,” IEEE Trans. Knowl.
Data Eng., vol. 33, no. 5, pp. 1934–1945, 2021.

[23] M. Seifikar, S. Farzi, and M. Barati, “C-blondel: An efficient louvain-
based dynamic community detection algorithm,” IEEE Trans. Comput.
Soc. Syst., vol. 7, no. 2, pp. 308–318, 2020.

[24] “uk-2005,” 2005, https://www.cise.ufl.edu/research/sparse/matrices/LAW
/uk-2005.html.

[25] “it-2004,” https://law.di.unimi.it/webdata/it-2004/, 2004.
[26] “sk-2005,” https://law.di.unimi.it/webdata/sk-2005/, 2005.
[27] R. A. Rossi and N. K. Ahmed, “The network data repository with

interactive graph analytics and visualization,” in Proceedings of the
Twenty-Ninth AAAI Conference on Artificial Intelligence, January 25-
30, 2015, Austin, Texas, USA. AAAI Press, 2015, pp. 4292–4293.

[28] Z. Guan, J. Wu, Q. Zhang, A. K. Singh, and X. Yan, “Assessing and
ranking structural correlations in graphs,” in Proceedings of the ACM
SIGMOD International Conference on Management of Data, SIGMOD
2011, Athens, Greece, June 12-16, 2011. ACM, 2011, pp. 937–948.

[29] X. Shi, B. Cui, Y. Shao, and Y. Tong, “Tornado: A system for real-
time iterative analysis over evolving data,” in Proceedings of the 2016
International Conference on Management of Data, SIGMOD Conference
2016, San Francisco, CA, USA, June 26 - July 01, 2016. ACM, 2016,
pp. 417–430.

[30] D. Sengupta, N. Sundaram, X. Zhu, T. L. Willke, J. S. Young, M. Wolf,
and K. Schwan, “Graphin: An online high performance incremental
graph processing framework,” in Euro-Par 2016: Parallel Processing -
22nd International Conference on Parallel and Distributed Computing,
Grenoble, France, August 24-26, 2016, Proceedings, ser. Lecture Notes
in Computer Science, vol. 9833. Springer, 2016, pp. 319–333.

[31] S. Ko, T. Lee, K. Hong, W. Lee, I. Seo, J. Seo, and W. Han, “iturbograph:
Scaling and automating incremental graph analytics,” in SIGMOD ’21:
International Conference on Management of Data, Virtual Event, China,
June 20-25, 2021. ACM, 2021, pp. 977–990.

[32] X. Jiang, C. Xu, X. Yin, Z. Zhao, and R. Gupta, “Tripoline: generalized
incremental graph processing via graph triangle inequality,” in EuroSys
’21: Sixteenth European Conference on Computer Systems, Online
Event, United Kingdom, April 26-28, 2021. ACM, 2021, pp. 17–32.

[33] T. A. K. Zakian, L. A. R. Capelli, and Z. Hu, “Incrementalization
of vertex-centric programs,” in 2019 IEEE International Parallel and
Distributed Processing Symposium, IPDPS 2019, Rio de Janeiro, Brazil,
May 20-24, 2019. IEEE, 2019, pp. 1019–1029.

[34] D. G. Murray, F. McSherry, R. Isaacs, M. Isard, P. Barham, and
M. Abadi, “Naiad: a timely dataflow system,” in ACM SIGOPS 24th
Symposium on Operating Systems Principles, SOSP ’13, Farmington,
PA, USA, November 3-6, 2013. ACM, 2013, pp. 439–455.

[35] F. McSherry, D. G. Murray, R. Isaacs, and M. Isard, “Differential
dataflow,” in Sixth Biennial Conference on Innovative Data Systems
Research, CIDR 2013, Asilomar, CA, USA, January 6-9, 2013, Online
Proceedings. www.cidrdb.org, 2013.

[36] P. Vaziri and K. Vora, “Controlling memory footprint of stateful stream-
ing graph processing,” in 2021 USENIX Annual Technical Conference,
USENIX ATC 2021, July 14-16, 2021, I. Calciu and G. Kuenning, Eds.
USENIX Association, 2021, pp. 269–283.

[37] D. Chen, C. Gui, Y. Zhang, H. Jin, L. Zheng, Y. Huang, and X. Liao,
“Graphfly: efficient asynchronous streaming graphs processing via
dependency-flow,” in 2022 SC22: International Conference for High
Performance Computing, Networking, Storage and Analysis (SC), 2022,
pp. 632–645.

[38] Y. Zhang, S. Chen, Q. Wang, and G. Yu, “i2mapreduce: Incremental
mapreduce for mining evolving big data,” in 32nd IEEE International
Conference on Data Engineering, ICDE 2016, Helsinki, Finland, May
16-20, 2016. IEEE Computer Society, 2016, pp. 1482–1483.

2778

Authorized licensed use limited to: Northeastern University. Downloaded on April 06,2025 at 06:45:23 UTC from IEEE Xplore. Restrictions apply.

[39] Y. Zhang and S. Chen, “i2mapreduce: incremental iterative mapreduce,”
in 2nd International Workshop on Cloud Intelligence (colocated with
VLDB 2013), Cloud-I ’13, Riva del Garda, Trento, Italy, August 26,
2013. ACM, 2013, pp. 3:1–3:4.

[40] Z. Cai, D. Logothetis, and G. Siganos, “Facilitating real-time graph
mining,” in Proceedings of the Fourth International Workshop on Cloud
Data Management, CloudDB 2012, Maui, HI, USA, October 29, 2012.
ACM, 2012, pp. 1–8.

[41] C. Wickramaarachchi, C. Chelmis, and V. K. Prasanna, “Empowering
fast incremental computation over large scale dynamic graphs,” in 2015
IEEE International Parallel and Distributed Processing Symposium
Workshop, IPDPS 2015, Hyderabad, India, May 25-29, 2015. IEEE
Computer Society, 2015, pp. 1166–1171.

[42] Q. Wang, L. Zheng, Y. Huang, P. Yao, C. Gui, X. Liao, H. Jin, W. Jiang,
and F. Mao, “Grasu: A fast graph update library for fpga-based dynamic
graph processing,” in FPGA ’21: The 2021 ACM/SIGDA International
Symposium on Field Programmable Gate Arrays, Virtual Event, USA,
February 28 - March 2, 2021. ACM, 2021, pp. 149–159.

[43] S. Rahman, M. Afarin, N. B. Abu-Ghazaleh, and R. Gupta, “Jetstream:
Graph analytics on streaming data with event-driven hardware accelera-
tor,” in MICRO ’21: 54th Annual IEEE/ACM International Symposium
on Microarchitecture, Virtual Event, Greece, October 18-22, 2021.
ACM, 2021, pp. 1091–1105.

[44] A. Basak, Z. Qu, J. Lin, A. R. Alameldeen, Z. Chishti, Y. Ding,
and Y. Xie, “Improving streaming graph processing performance using
input knowledge,” in MICRO ’21: 54th Annual IEEE/ACM International
Symposium on Microarchitecture, Virtual Event, Greece, October 18-22,
2021. ACM, 2021, pp. 1036–1050.

[45] J. Zhao, Y. Yang, Y. Zhang, X. Liao, L. Gu, L. He, B. He, H. Jin,
H. Liu, X. Jiang, and H. Yu, “Tdgraph: a topology-driven accelerator
for high-performance streaming graph processing,” in ISCA ’22: The
49th Annual International Symposium on Computer Architecture, New
York, New York, USA, June 18 - 22, 2022. ACM, 2022, pp. 116–129.

[46] W. Fan, C. Hu, and C. Tian, “Incremental graph computations: Doable
and undoable,” in Proceedings of the 2017 ACM International Confer-

ence on Management of Data, SIGMOD Conference 2017, Chicago, IL,
USA, May 14-19, 2017. ACM, 2017, pp. 155–169.

[47] J. Holm, K. de Lichtenberg, and M. Thorup, “Poly-logarithmic deter-
ministic fully-dynamic algorithms for connectivity, minimum spanning
tree, 2-edge, and biconnectivity,” Journal of the ACM, vol. 48, no. 4,
pp. 723–760, 2001.

[48] K. Kim, I. Seo, W. Han, J. Lee, S. Hong, H. Chafi, H. Shin, and G. Jeong,
“Turboflux: A fast continuous subgraph matching system for streaming
graph data,” in Proceedings of the 2018 International Conference on
Management of Data, SIGMOD Conference 2018, Houston, TX, USA,
June 10-15, 2018. ACM, 2018, pp. 411–426.

[49] R. Li, J. X. Yu, and R. Mao, “Efficient core maintenance in large
dynamic graphs,” IEEE Trans. Knowl. Data Eng., vol. 26, no. 10, pp.
2453–2465, 2014.

[50] W. Fan, M. Liu, C. Tian, R. Xu, and J. Zhou, “Incrementalization of
graph partitioning algorithms,” Proc. VLDB Endow., vol. 13, no. 8, pp.
1261–1274, 2020.

[51] W. Fan, C. Hu, M. Liu, P. Lu, Q. Yin, and J. Zhou, “Dynamic scaling
for parallel graph computations,” Proc. VLDB Endow., vol. 12, no. 8,
pp. 877–890, 2019.

[52] A. McGregor, S. Vorotnikova, and H. T. Vu, “Better algorithms for
counting triangles in data streams,” in Proceedings of the 35th ACM
SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Sys-
tems, PODS 2016, San Francisco, CA, USA, June 26 - July 01, 2016.
ACM, 2016, pp. 401–411.

[53] D. Yan, J. Cheng, Y. Lu, and W. Ng, “Blogel: A block-centric framework
for distributed computation on real-world graphs,” Proc. VLDB Endow.,
vol. 7, no. 14, pp. 1981–1992, 2014.

[54] Y. Tian, A. Balmin, S. A. Corsten, S. Tatikonda, and J. McPherson,
“From ”think like a vertex” to ”think like a graph”,” Proc. VLDB Endow.,
vol. 7, no. 3, pp. 193–204, 2013.

[55] W. Xie, G. Wang, D. Bindel, A. J. Demers, and J. Gehrke, “Fast iterative
graph computation with block updates,” Proc. VLDB Endow., vol. 6,
no. 14, pp. 2014–2025, 2013.

2779

Authorized licensed use limited to: Northeastern University. Downloaded on April 06,2025 at 06:45:23 UTC from IEEE Xplore. Restrictions apply.

