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Abstract—Processing large graphs with memory-limited GPU
needs to resolve issues of host-GPU data transfer, which is a
key performance bottleneck. Existing GPU-accelerated graph
processing frameworks reduce the data transfers by managing
the active subgraph transfer at runtime. Some frameworks
adopt explicit transfer management approaches based on explicit
memory copy with filter or compaction. In contrast, others
adopt implicit transfer management approaches based on on-
demand access with zero-copy or unified-memory. Having made
intensive analysis, we find that as the active vertices evolve,
the performance of the two approaches varies in different
workloads. Due to heavy redundant data transfers, high CPU
compaction overhead, or low bandwidth utilization, adopting a
single approach often results in suboptimal performance.

In this work, we propose a hybrid transfer management
approach to take the merits of both the two approaches at
runtime, with an objective to achieve the shortest execution time
in each iteration. Based on the hybrid approach, we present
HyTGraph, a GPU-accelerated graph processing framework,
which is empowered by a set of effective task scheduling optimiza-
tions to improve the performance. Our experimental results on
real-world and synthesized graphs demonstrate that HyTGraph
achieves up to 10.27X speedup over existing GPU-accelerated
graph processing systems including Grus, Subway, and EMOGI.

Index Terms—GPU, Graph processing, Hybrid transfer man-
agement

I. INTRODUCTION

Analyzing large-scale graph data plays an important role

in real-world applications, including geo-information mining,

social network analysis, and business association analysis.

Compared with the shared-memory-based frameworks and

the shared-nothing-based frameworks, GPU-based graph pro-

cessing attracts more attention for its high memory bandwidth

and massive parallel computation [19], [34], [39], [42], [47].

Unfortunately, GPU’s limited device memory can only accom-

modate a small set of real-world graphs. When the size of

the input graph exceeds the GPU memory capacity (memory
oversubscription), existing GPU-based systems fail to work

(e.g., Medusa [47], CuSha [19], Gunrock [42], Tigr [34], SEP-

Graph [39], etc).

Recently, researches [12], [13], [24], [27], [35]–[37], [40],

[46] have focused on supporting GPU-accelerated graph pro-

cessing to take advantage of both high-performance GPU

graph processing and sufficient host memory for storing the
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TABLE I: Advances from NVIDIA P100 to H100.

GPUs Mem. bdw. PCIe x16 bdw. Mem. bdw/
PCIe. bdw

P100 [31] (2016) 732GB/s 16GB/s (Gen3) 45.8X
V100 [32] (2017) 900GB/s 16GB/s (Gen3) 56X
A100 [29] (2020) 1.9TB/s 32GB/s (Gen4) 61X
H100 [30] (2022) 3TB/s 64GB/s (Gen5) 48X

large-scale graphs. Similar to that of out-of-core graph pro-

cessing [21], [33], [38], [49], the major challenge for GPU-

accelerated graph processing is the low computation resource

utilization caused by the extensive data movement overhead

between GPU and host memory. Compared to the high-speed

global memory access bandwidth in GPU, the host memory

and GPU are connected with a slow PCIe interface, which

can be an order of magnitude slower. For example, the host-

GPU bandwidth via PCIe 3.0 can be limited to be 16GB/s

(12.3GB/s in practice) [27]. Moreover, the development of the

new generation of PCIe has not narrowed the bandwidth gap,

because the memory bandwidth of the GPU is also increasing.

Table I illustrates the bandwidth comparison of the last four

generations of GPU and PCIe.

To reduce the data movements between GPU and host

memory, existing GPU-accelerated frameworks [12], [16],

[27], [35], [36], [40], [46] track the evolving active vertices

during the iterative processing. Considering a vertex-centric

graph processing, where the computation is performed in a

series of iterations, in each iteration, the algorithm takes only

the vertices updated by the previous iteration as input (i.e.,

active vertices), updates their out-going neighbors and marks

the neighbors whose values have been updated as the active

vertices in the next iteration. During the iterative processing,

only the out-going edges of the active vertex (i.e., active

edges) need to be accessed. Following the existing frameworks

[12], [16], [27], [35], [36], [40], [46], we assume that the

vertex-associated data (including vertex value, neighbor index,

and activity status) can be resident in the GPU memory and

the edge-associated data (including edges and edge weights)

can entirely fit into the host memory. During the iterative

processing, the active subgraph containing active edges must

be transferred to the GPU memory.

According to the way of reducing host-GPU data transfers,

the existing frameworks can be classified into two categories:

Explicit (active subgraph) Transfer Management (ExpTM)
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TABLE II: Runtime comparison of Subway and EMOGI on

variable algorithms and datasets.

SK-2005 graph PageRank Algorithm

SSSP PageRank sk-2005 uk-2007
Subway 14.6(s) 8.7(s) 8.7(s) 16.9(s)

EMOGI 7.5(s) 18.6(s) 18.6(s) 12.4(s)

based frameworks [16], [35]–[37], [46] and Implicit (active

subgraph) Transfer Management (ImpTM) based frame-

works [12], [27], [40].

With the ExpTM approach, the programmers have to man-

ually manage the active subgraph transfer. In ExpTM-based

frameworks, the oversized graph is partitioned into smaller

subgraphs that can fit into GPU device memory. Before being

transferred to GPU through the explicit memory copy engine

(cudaMemcpy), the subgraphs have to pass through a CPU-

based redundancy removal module to remove inactive edges.

According to the working mode, this approach can be either

filter-based [16], [20], [36] or compaction-based [35], [37],

[46], and the transfer reduction performance is determined by

the power of removal module.

Recently, a more general solution, ImpTM-based approach

has become available [12], [27], [40]. Rather than explicitly

managing the data movements of active subgraphs. ImpTM-

based frameworks allow GPU programs to access the active

edges in the host memory in an on-demand mechanism [4],

[5], [12], [27]. Compared with ExpTM, ImpTM requires less

engineering efforts, we can directly extend a single GPU

frameworks into an out-of-core one by managing the host-

resident edge data with unified-memory [12], [40] or zero-copy

memory [27]. During the iterative processing, the memory

slices containing active edges can be implicitly transferred to

the GPU memory without programmers’ manual management.

Since ImpTM approaches rely on the system-provided mem-

ory access mechanism, its transfer efficiency is sensitive to

the graph access pattern. Recent research [27] shows that the

performance gap between suboptimal unified-memory access

and explicit memory copy can be more than three times.

Having made extensive analysis, we find that a decision to

choose one or the other approach for the best performance

is determined by the memory access pattern of active edges.

In a GPU-accelerated graph processing framework based on

a single approach, the performance is often suboptimal. We

show the performance comparison of Subway [35] (a ExpTM-

compaction-based framework) and EMOGI [27] (an ImpTM-

zero-copy-based framework). Table II shows that on sk-2005

graph [2], EMOGI outperforms the Subway on Single Source

Shortest Path algorithm (SSSP) , but it losses on PageRank.

In contrast, for PageRank algorithm, Subway beats EMOGI

on SK dataset [2], but losses on UK dataset [2].

In this work, we present a Hybrid Transfer Management
approach (HyTM). Unlike prior frameworks that use either

ExpTM or ImpTM, our hybrid approach combines ExpTM

and ImpTM to maximize the performance. In the prepro-

cessing stage, HyTM partitions the graph as ExpTM does.
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Fig. 1: An example of vertex-centric SSSP computation start-

ing from source a. The orange box represents the active

vertex and the green box represents the inactive vertex. The

input graph is organized into CSR, whose vertex-associated

data resides in GPU and edge-associated data resides in host

memory.

Then during the iterative processing, it estimates ExpTM cost

and ImpTM cost on-the-fly by analyzing the edge access

pattern of each partition and chooses the most cost-efficient

transfer approach. Based on HyTM, we propose HyTGraph,

a GPU-accelerated graph processing system with flexible

asynchronous task scheduling. Unlike prior frameworks [16],

[35], [36], [46] that simply process the loaded subgraphs mul-

tiple times, HyTGraph adopts a contribution-driven priority

scheduling method, which can gather and prioritize the vertices

that contribute more to convergence.

We have made the following contributions in this paper.

• Providing insights into the two existing approaches. We

conduct a comprehensive study on the performance merits

and limits of the two transfer management approaches

(ExpTM and ImpTM).

• Proposing a hybrid transfer management framework. We in-

troduce a hybrid transfer management method to maximize

the performance by taking the merit of both ExpTM and

ImpTM.

• Delivering a GPU-accelerated graph processing system.

Based on the hybrid transfer management method, we

design and implement HyTGraph, a transfer-efficient GPU-

accelerated graph processing system with flexible asyn-

chronous task scheduling to enable high performance.

We evaluate HyTGraph on both real-world and synthesized

graphs. The experimental results show that HyTGraph out-

performs the state-of-the-art systems, i.e., on average 4.11X

speedup over Subway [35], 2.37X speedup over Grus [40]

and 1.74X speedup over EMOGI [27].

II. BACKGROUND

A. Vertex-Centric Graph Processing and Active vertices

Vertex-centric programming [14], [25] has been widely

adopted in Graph processing frameworks for its simplicity,

high scalability, and powerful expression ability. It defines

a generic function that defines the behavior of a vertex and

its neighbors. Considering the message passing direction, the
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function can be either pull-based or push-based [39]. During

the computation, this function is evaluated on all input vertices

iteratively until the algorithm reaches convergence. Figure 1

illustrates a push-based example of SSSP, an algorithm to

find the shortest paths from a given source vertex to all

the other vertices. It starts from the source vertex a, where

the initial distance is set to 0. In each iteration, the input

vertices send their current shortest distances to the outgoing

neighbors, and the neighbor receiving messages will update its

shortest distance as the shortest one. The algorithm converges

when no more vertices are updated. We can observe that,

during the iterative computation, only the vertices updated by

the previous iteration (active vertices) need to be processed.

The number of active vertices increases with the message

scatter from the source vertex and decreases as most vertices

converge.

The graph processing which processes graph data iteratively

has a special memory access pattern. The edge data that

requires substantial memory footprint is read-only, and the

vertex data that requires small memory footprint is read-write.

When the input graph exceeds the GPU memory capacity,

placing the relatively small vertex data in GPU and accessing

the required edge data on demand from host memory is a

worth trying solution. Firstly, The edge data transfer is easier

to manage than the vertex data transfer because the edge data

is read-only, requiring only one-way communications (host-to-

GPU). Secondly, in real-world graphs, the number of vertex is

often orders-of-magnitude less than the number of edge. Even

a commonly used 16GB GPU can still process a large graph

with hundred-millions of vertices and tens of billions of edges.

As the edge-associated data needs to transferred multiple

times, adopting additional transfer management module to

reduce the inactive edge transfers is critical to performance.

B. ExpTM Approaches

ExpTM-filter. GraphReduce [36], GTS [20], and Graphie

[16] adopt filter-based method to reduce the inactive subgraph

transfer. They monitor the active edges of the partitioned

subgraphs in each iteration and transfer only those partitions

that contain active edges. Figure 2 (a) provides an illustrative

example. This method filters out partitions that do not contain

active edges without doing additional processing, so each

active partition will be entirely transferred to GPU even if

only one edge is active. When the proportion of active edges

in a partition is low, the volume of redundant data transfer

will be large.

ExpTM-compaction. In contrast, some frameworks [35],

[37], [46] introduce CPU-assisted compaction to reduce redun-

dant data transfers. Before transferring a partitioned subgraph

to GPU, these frameworks use CPUs to remove the inactive

edges and compact the remaining edges into a continuous

memory space to leverage explicit memory copy. Figure 2

(b) shows an illustrative example. Subway [35] is a typical

ExpTM-compaction-based system. In each iteration, it com-

pacts all the active edges into a new graph and transfer it

to GPU for parallel processing. Compared with the filter-

based frameworks [16], [36], compaction-based frameworks

can minimize the data transfers by removing all inactive edges.

But at the cost, it involves additional CPU and main memory

read/write overhead.

C. ImpTM Approaches

ImpTM-unified-memory. The unified-memory defines a

managed memory space in which both GPU and CPU can

observe a single address space with a coherent memory image

[12], [40]. The memory pages (4KB in default) containing the

requested data will be automatically migrated to GPUs, and

the subsequent accesses to the same memory page will read

data from the GPU memory without additional data transfers.

When the memory footprint of the kernel is larger than the

GPU memory, some pages may need to be evicted from the

GPU to make room for the new pages. Figure 2 (c) shows an

illustrative example. It should be noted that the “automated

migration” cost is not free. When the requested memory page

is not in the GPU memory, a page fault is triggered, which

requires not only data transfers but also heavy Translation

Lookaside Buffer (TLB) invalidation and page table updating

overhead [27].

ImpTM-zero-copy. In contrast, zero-copy memory access

is a more lightweight approach. Zero-copy maps pinned host

memory to GPU address spaces, allowing GPU programs to

directly access the host memory through the Transaction Layer

Packet (TLP) of PCIe [27]. Compared with unified-memory,

zero-copy provides much fine-grained access granularity. By

the PCIe 3.0 specification, each TLP can process at most 256

outstanding memory requests simultaneously, and each request

can carry 32/64/96/128-byte [27] data according to the size of

accessed data. Such that, zero-copy memory access allows the

programs to access the edges of multiple randomly distributed

active vertices simultaneously, and each vertex occupies one

or several memory requests. Moreover, zero-copy requires less

transferring overhead than unified-memory based frameworks

because it requires no additional page migration. As a sacrifice,

the zero-copy method cannot provide the data reuse function.

Multiple accesses to the same data will cause multiple separate

data transfers.

III. ANALYSIS OF EXISTING APPROACHES: A

MOTIVATING STUDY

In this section, we experimentally analyze the existing

approaches with two graph algorithms SSSP and PageRank.

They have two typical active vertices change patterns (increase

then decrease, and monotone decrease). The details of the used

graphs, test platform, and system configurations are given in

Section VII-A.

A. Analysis of ExpTM
ExpTM-filter. As mentioned above, the filter-based ExpTM

has a large volume of redundant transfers even if the pro-

portion of active edge is low. We run PageRank and SSSP

on friendster-konect [1] graph to explore the redundant data
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transfer problem, the partition number is set to 256. Figure 3

(a) shows the proportion curves of active edges and partitions

containing active edges (active partitions). We can observe

that the proportion of active partitions does not decrease

immediately with the proportion of active edges. For SSSP

and PageRank algorithms, the active edges account for only

28.3% and 12.3% of the total transfer volume. Therefore,

ExpTM-filter is inefficient when there are few active edges

in the partition. While, when the proportion of active edge is

large, ExpTM-filter method shows advantages, because it can

fully utilize the PCIe bandwidth with cudaMemcpy.

ExpTM-compaction. The compaction-based ExpTM

achieves significant transfer reduction and can leverage the

efficient explicit memory copy. But it involves heavy active

edge compaction overhead, which is positively correlated to

the proportion of active edges. As pointed out by Subway

[35], when the proportion of active edges is large (e.g., 80%),

the cost of compaction can even outweigh the benefit of

transfer reduction [35], Figure 3 (b) illustrates the per-iteration

runtime breakdown of Subway (a ExpTM-compaction based

framework) and indicates when the costs outweigh the

benefits. Figure 3 (c) illustrates the overall performance

breakdown of SSSP algorithm on Subway, we remove its

preprocessing stage and show only the execution time. We

can observe that on all five datasets, the compaction stage

accounts for 34.5% of the overall runtime.

B. Analysis of ImpTM

ImpTM-unified-memory. Unified-memory is not an efficient

way of handling graph algorithms. First, the cost of “auto-

mated migration” is high. Due to heavy TLB invalidation

overhead and page table updating overhead [27], the peak

bandwidth of unified-memory can only reach 73.9% of that of

explicit memory copy (cudaMemcpy) [27]. Second, the graph

algorithms usually have poor temporal locality [27], [37].

When the accessed vertex contains only several or dozens of

neighbors, the 4KB memory page may contain non-negligible

inactive data [12], [27]. Figure 3 (d) shows the proportion

of the active edges and the active memory pages of each

iteration, for SSSP and PageRank algorithms, the active edges

account for only 54.5% and 65.0% of the total transfer volume.

For these two reasons, the unified-memory-based ImpTM

shows poor transfer efficiency on large graphs, no matter the

proportion of active edge is high or low. However, the UM-

based method will have good performance when the graph

size is small enough to fit into GPU memory because the

graph can be fully cached in GPU after being transferred once.

In addition, for graph pattern matching algorithms having
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complex memory access patterns, unified memory may have

good performance when some subgraphs need to be accessed

multiple times [8].

ImpTM-zero-copy. The key of implementing efficient zero-

copy-based graph processing is fully utilizing the PCIE band-

width. As pointed out by EMOGI [27], saturating most of

the 256 memory requests in each TLP with 128-byte data

is necessary for maximizing the PCIe bandwidth utilization.

In addition to the payloads of memory requests, the TLP

also includes a header field to maintain the necessary control

information. A smaller memory request size means that PCIe

needs to use more TLPs to process the same amount of

data, and thus wastes more bandwidth on transferring the

header fields. Figure 3 (e) shows the throughput of zero-

copy under different memory request granularity (from 32

byte to 128 byte). We can observe that, when the memory

request size is 128-byte, the zero-copy access can achieve

almost the same performance as cudaMemcpy (the maximum

PCIe utilization). While, when the access granularity is set

to 32-byte, the throughput decreases significantly. To achieve

the maximum bandwidth utilization, EMOGI [27] proposes

merged and aligned optimization with which each warp of

threads access consecutive neighbors of one vertex in a 128-

byte cache line size from the edge-associated array. In this

way, the neighbors of high-degree vertices can be accessed

with consecutive and saturated memory requests. However,

guaranteeing most of the memory requests reach 128-byte

is challenging. Assuming each vertex occupies 4-byte, we

need 32 neighbors per vertex to saturate the 128-byte memory

requests. In real-world graphs, the number of neighbor is often

less than this value due to the power-law property. Figure 3

(f) illustrates the distribution of vertex degrees of five real-

world graphs used in this paper. Most vertices (on average

74.7%) have less than 32 neighbors, and 51.1% of them have

less than 8 neighbors. Zero-copy based method has unstable

performances on real world graphs, it prefers subgraphs with

few active vertices and large average degrees.

C. Performance Comparison of the Four Approaches

We report the per-iteration runtime of ExpTM-filter,

ExpTM-compaction, ImpTM-unified-memory, and ImpTM-

zero-copy on friendster-konect [1] with two typical graph

algorithms (the traversal algorithm SSSP and the iterative al-

gorithm PageRank [39]) in Figure 3 (f) and (g). We implement

ExpTM-filter (E-F), ImpTM-unified-memory (I-UM), and

ImpTM-zero-copy (I-ZC) with SEP-Graph’s processing ker-

nel [39] and enable the cudaMemAdviseSetReadMostly
optimization for ImpTM-unified-memory (the evicted memory

pages will be discarded instead of written back to host

memory). We use Subway [35] as the ExpTM-compaction (E-

C), because it has highly-optimized CPU compaction engine

and GPU kernel function from Tigr [34]. All the approaches

are configured with synchronous processing to ensure that the

number of active vertices in each iteration is roughly the same.

We use a “Prefer” curve to indicate the winner in each

iteration. By referring to the proportion curves of active edges
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Fig. 4: A toy graph with 9 vertices and 128 edges in CSR. The

graph is divided into two subset, each of which containing 64

edges. The numbers below are the number of neighbors.

of SSSP and PageRank in Figure 3 (a), we observe that

when the proportion of active edges is large, ExpTM-filter

has better performance because it has high PCIe bandwidth

utilization (with cudaMemcpy) and requires no additional

CPU processing overhead. When the proportion of active edge

is small, ImpTM-zero-copy shows better performance than the

others in most iterations because it can transfer the neighbors

of active vertices with fine-grained memory requests. For SSSP

algorithm, ExpTM-compaction shows better performance than

ImpTM-zero-copy on some iterations. This can be attributed to

the unstable performance of zero-copy under different vertex

degrees. As mentioned above, the performance of zero-copy

is not only related to the proportion of active edges, but also

related to the number of active vertices. When the number

of active edges is fixed, a large number of active vertices

means that zero-copy has to use more unsaturated memory

requests to process the data and thus results in more TLPs.

Figure 4 shows a toy graph with 9 vertices and 128 edges.

We divide the graph into two subsets (in green and gray),

each of which has 64 neighbors. The two subgraphs have the

same proportion of active edges (0.5) when being activated.

When the subgraph with 6 vertices (in green) is activated, zero-

copy has to use 6 memory requests. When the subgraph with 3

vertices is activated, zero-copy only needs 3 memory requests.

This causes zero-copy performance to be unstable, even if their

proportions of active edge are the same. Therefore, neither

ExpTM-compaction nor ImpTM-zero-copy shows consistently

better performance than each other.

In summary, although existing approaches significantly re-

duce the data transfers, the performance is still suboptimal.

Most of them can only adapt to one or several cases.

D. Summary of Existing Systems

In Table III, We summarize these approaches and their rep-

resentative systems. We also list their strengths, weaknesses,

and preferred subgraph. In addition to the systems [12], [27],

[35], [36] mentioned above, Scaph [46] and Ascetic [37]

adopt ExpTM-compaction. Different from Subway, Scaph [46]

performs compaction on the partitioned graph. It distinguishes

the partitions with a small proportion of active edges, and

compacts them for the subsequent GPU processing. In con-

trast, the partitions with a large proportion of active edges

will be entirely loaded to GPU. Ascetic [37] divides GPU

memory into a static region and an on-demand region, exploits

the temporal locality across iterations for the static region,

and compacts the other active subgraphs with CPU for the

on-demand region. Grus [40] is an ImpTM-based framework.

It manages the edge-associated data in main memory with
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TABLE III: Summary of existing systems

Approach Systems Strengths Weaknesses Prefer

ExpTM-filter

GraphReduce [36] •Less CPU overhead • Redundant data •Subgraph with a large

Graphie [16] •High transfer efficiency transfers proportion of active edges

GTS [20]

ExpTM-compaction

Subway [35] •Significant transfer • High compaction •Subgraph with a small

Scaph [46] reduction overhead proportion of active edges

Ascetic [37] and small average degree

ImpTM-unified-memory
HALO [12] • Easy to use • Redundant data transfers • Small graph that can

Grus [40] • High transfer overhead fit into GPU memory

ImpTM-zero-copy EMOGI [27]

• Easy to use • Unstable bandwidth • Subgraph with a small

• Fine grained memory utilization proportion of active edges

access and high average degree

Partitioned (logically) Edge-Associated Data
...H

O
ST

G
PU Cost-Analyzer&

Engine-Selector

Vertex Associated Data 
...

ExpTM-F
 Kernel

ExpTM-C
 Kernel

ImpTM-ZC
 Kernel

Zero-Copy Task Combiner

Cost-Aware
Task GenerationAsynchronous Task Scheduling

cudaMemCpy

Tasks
Flexible

Multi-steram
Scheduling

Contribution
Driven 

Scheduling

Fig. 5: Overview of HyTGraph.

priorities, prefetching high-priority data to the GPU through

unified-memory and accessing low-priority data through zero-

copy. In addition, some frameworks [13], [24] also use CPU-

GPU co-processing to accelerate graph processing. We will

review these works in Section IX.

IV. HYTGRAPH OVERVIEW

We present HyTGraph, a GPU-accelerated graph processing

framework that adopts hybrid transfer management (HyTM) to

maximize performance. HyTGraph organizes the graph into

CSR structure, whose neighbor index array is resident in the

GPU global memory, and edge-associated arrays (neighbor ar-

ray and edge-weight array) are logically partitioned on the host

side. Following the existing frameworks [16], [46], HyTGraph

partitions the edge-associated data into N edge-balanced parti-

tions {P0, P1 . . . , PN−1} with chunk-based partitioning [46],

[48], in which each Pi is a set of consecutively numbered

vertices of partition i. During the iterative computation, the

partitions containing active edges are scheduled with their

most cost-efficient engine for GPU computation. HyTGraph

provides two functions to achieve efficient HyTM.

Cost-aware task generation. In the cost-aware task gener-

ation module, HyTGraph computes the data transfer costs of

different approaches and selects the most cost-efficient one for

each partition. Based on the analysis in section III, we choose

ExpTM-filter, ExpTM-compaction, and ImpTM-zero-copy as

our baseline. In addition, HyTGraph provides a task combiner

to merge the subgraphs (to be scheduled) into larger tasks

to achieve lower scheduling overhead in the task scheduling

stage.

Asynchronous task scheduling. HyTGraph introduces asyn-

chrony to improve task scheduling efficiency. Rather than sim-

ply recompute the loaded subgraph multiple times [35], [46],

HyTGraph adopts a contribution-driven priority scheduling to

prioritize those partitions that contribute more to convergence.

This method is based on the following observation: The

vertices with large degrees often become hubs in the compu-

tation paths. To improve resource utilization, HyTGraph uses

multiple CUDA streams to overlap the computation kernel,

data transfer, and CPU-based active subgraph compaction.

Figure 5 shows an overview of HyTGraph. The cost-

aware task generation and asynchronous task scheduling are

iteratively alternating until the algorithm reaches convergence.

V. COST-AWARE TASK GENERATION

A. Cost Analysis and Engine Selection

Most of the Existing activeness-tracking-based frameworks

use the activeness ratio as the metric [16], [24], [36], [46].

They evaluate the proportion of active edges on each par-

titioned subgraph to determine the appropriate processing

engine. Such an approach provides an intuitive and lightweight

distinguishing method, but is hard to adapt to HyTM approach.

As discussed in Section III-C, the proportion of active edges

cannot reflect the time cost of different approaches. In this

work, we present a cost-aware engine selection method. Dur-

ing the iterative processing, we measure the overhead for each

partition as follows.

Cost of ExpTM-filter. The ExpTM-filter based approach

entirely transfers the partitions with active edge entirely to

GPU device memory with explicit memory copy engine

(cudaMemcpy). So it has only data transfer cost, which

can be approximated by the saturated TLPs (as discussed in

Section III, Figure 3 (e)). Given a partition i, the number of

memory transaction can be calculated with
∑

v∈Pi
Do(v) ∗

d1/m, where
∑

v∈Pi
Do(v) is the number of edge of partition

i, d1 represents the memory occupation of one vertex, and m
represents the maximum capacity of an outstanding memory

request (128-byte). Denote MR as the maximum number of an

outstanding memory request in TLP (MR = 256 in PCIe 3.0
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specification) and �·� as the round-up operation, we formalize

the transfer overhead of each partition i as follow:

Tefi =
⌈( ∑

v∈Pi

Do(v)
) ∗ d1/m/MR

⌉
∗RTT, (1)

where
⌈(∑

v∈Pi
Do(v)

)∗d1/m/MR
⌉

is actually the num-

ber of TLPs, and RTT represents the round trip time for PCIe

to process each saturated TLP.

Cost of ExpTM-compaction. ExpTM-compaction involves

additional CPU-based compaction, so its cost consists of two

parts, the data transfer overhead, and the compaction overhead.

Since the compaction needs to reorganize the active edges and

change their positions, we also need to generate a vertex index

array and transfer it to GPU for addressing the compacted

neighbors. Then the transfer volume can be formalized as∑
v∈Ai

Do(v) ∗ d1 + |Ai| ∗ d2, where Ai represents the active

vertex subset of Pi and d2 represents the memory occupation

of each index. The CPU-based compaction is related to transfer

volume and the throughput of CPU-based compaction, which

can be computed with
∑

v∈Ai
Do(v)∗d1+ |Ai| ∗d2/Thptcpt,

where Thptcpt is the throughput of CPU-based compaction.

Then the cost of ExpTM-compaction can be formalized as

follow:

Teci =
⌈( ∑

v∈Ai

Do(v) ∗ d1 + |Ai| ∗ d2
)
/m/MR

⌉
∗RTT

+
∑
v∈Ai

Do(v) ∗ d1 + |Ai| ∗ d2/Thptcpt (2)

Cost of ImpTM-zero-copy. The ImpTM-zero-copy approach

provides vertex-oriented on-demand access in a cacheline size,

so each active vertex v takes one or several independent

memory requests. The memory request number of vertex v
can be formalized as �Do(v) ∗ d1/m�. Do(v) represents the

number of out-going neighbors of active vertex v. Considering

that we can hardly guarantee the neighbors of all vertices

start from the aligned memory position, some vertices may

have the misaligned neighbor array and thus require one

additional memory transaction [27]. We introduce a function

am(), which returns 1 for the vertices requiring one additional

transaction and 0 for the others1. Then the transfer overhead

of ImpTM-zero-copy can be formalized as follow:

T izi =
⌈( ∑

v∈Ai

(�Do(v) ∗ d1/m�+ am(v)
))

/MR
⌉
∗RTTzc,

(3)

where
(∑

v∈Pi(V )∩Ai
�Do(v) ∗ d1/m� + am(v)

)
is the

required memory transactions of active vertices. It should be

noted that the TLP round trip time of zero-copy (RTTzc) is

not the same as that in ExpTM (RTT ) because the payload of

each TLP in zero-copy may be unsaturated. This makes RTTzc

1In the implementation, the memory request number of each active vertex
�Do(v)∗d1/m�+am(v) can be directly computed by using the length and
physical start position of the neighbors.

always less than the RTT s in ExpTM-filter and ExpTM-

compaction. In this paper, we use a dumpling factor γ to

compute RTTzc for each partition as follows: RTTzc =
γ ∗RTT + (1− γ) ∗ (∑v∈Ai

Do(v)/
∑

v∈Pi
Do(v)) ∗RTT ,

where (
∑

v∈Ai
Do(v)/

∑
v∈Pi

Do(v) is the proportion of ac-

tive edge. γ ∗RTT represents the fixed time to process a TLP,

and (1−γ)∗(∑v∈Ai
Do(v)/

∑
v∈Pi

Do(v))∗RTT represents

the time related to the size of payload. By referring to [27],

we set γ to 0.625.

Transfer engine selection. We need to compare Tefi, Teci,
and T izi to choose the most cost-efficient transfer engine.

While theoretically modeling the throughput of compaction

operation Thptcpt in Teci (formula 2) is challenging because

ExpTM-compaction introduces parallel and random writes on

the host memory. This makes Thptcpt vary with active edges

nonlinearly. In practice, we compute Teci by considering only

the transfer overhead and compare it with Tefi and T izi.
If Teci is less than α∗Tefi and Teci is less than β∗T izi, we

choose ExpTM-compaction. The first condition comes from

Subway’s observation [35], where α is set to 80%. The second

condition is based on the observation from Section III: When

a partitioned subgraph has few active edges but many active

vertices, the average degree of these active vertices is small,

and zero-copy requires multiple unsaturated memory requests

to transfer the data. Therefore, compacting and transferring

them with ExpTM-compaction is a better choice. In our

implementation, β is set to 40%. If these conditions are not

met, we compare T izi with Tefi. If T izi is less than Tefi,
we choose ImpTM-zero-copy. Otherwise we choose ExpTM-

filter. In the computation, the value of RTT can be arbitrarily

specified, because it will be omitted during comparison.

Since the cost computation between partitions is indepen-

dent, HyTGraph computes Tefi, Teci, and T izi and chooses

the most cost-efficient transfer engine on GPU, transferring

only the selection result back to CPU the subsequent task

scheduling. This design can help reduce the burden of CPUs.

We show the overall execution flow of the cost-aware engine

selection in algorithm 1 line (2-13).

B. Task Combination
Another key to implementing hybrid transfer management

is to determine appropriate task scheduling granularity. The

existing frameworks [16], [24], [36], [46] directly use the

partitioned subgraphs as scheduling unit. This method is

simple but may lead to low efficiency in the task scheduling

stage. If the partition size is too large, the coarse-grained cost

computation may lead to inappropriate engine selection and

thus affect the overall performance.If the partition size is small,

the transfer engine can be finely selected, but a large number

of partitioned subgraphs may cause non-negligible scheduling

overhead (e.g., kernel launches and fragmented data transfers)

in the execution stage. On those partitions with few active

vertices, even one active vertex still requires one CUDA kernel

launch.

To achieve fine-grained engine selection and low overhead

task scheduling at the same time, HyTGraph decouples the
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Algorithm 1 Cost-aware task generation

Input: active vertex set {A0, · · · , AN−1} of N partitions,
Output: tasks prefer ExpTM-filter {V f0 . . . V fM−1} (M < N ),

task prefer ExpTM-compaction V c, and task prefer ImpTM-zero-
copy V z.

1: initialize a selection array {p0, . . . pN−1} on GPU.
Cost analysis and engine selection:

2: for each Ai in {A0, · · · , AN−1} do in parallel
3: Compute Tefi, Teci, and T izi according to Formula (1,2,3)
4: if Teci < α ∗ Tefi and Teci < β ∗ T izi then
5: pi=‘ExpTM-C’;
6: insert Ai to V c; //pre-combine on GPU
7: else if Tefi < Tizi then
8: pi=‘ExpTM-F’;
9: else

10: pi=‘ImpTM-ZC’;
11: insert Ai to V z; //pre-combine on GPU
12: end if
13: end for
14: Copy V c, {p0, . . . pN−1} and {A0, · · · , AN−1} to host.

Task Combination:
15: i = 0, j = 0, length = 0;
16: while i < N do
17: if pi==‘ExpTM-F’ and length < k then
18: insert Ai to V fj ;
19: length = length+ 1;
20: else
21: length = 0, j = j + 1;
22: end if
23: i = i+ 1;
24: end while

graph partitioning and task partitioning and optimizes them

separately. HyTGraph partitions the graph into small partitions

(32MB each partition) to provide fine-grained cost analysis.

While in the iterative processing, HyTGraph packages the

partitions choosing the same engine into large task units to re-

duce the scheduling overhead. Specifically, for partitions using

ExpTM-filter, HyTGraph merges k consecutive partitions into

a large one (k=4 in HyTGraph) to reduce the processing over-

head (Line 15-24 in algorithm 1). For partitions using ExpTM-

compaction, HyTGraph merges all their active vertices and

writes their neighbor to one consecutive memory space to

leverage efficient explicit memory copy (line 6 in algorithm

1). For partitions using ImpTM-zero-copy, HyTGraph merges

all their active vertices (line 11 in algorithm 1) and processes

them with one CUDA kernel to leverage the implicit transfer-

computation overlapping of zero-copy.

VI. ASYNCHRONOUS TASK SCHEDULING

HyTGraph improves the asynchronous task scheduling from

two directions: First, it accelerates convergence and reduces

transfer volume through contribution-driven priority schedul-

ing. Second, it improves resource utilization through multi-

stream scheduling.

A. Contribution-Driven Priority Scheduling
Asynchronous computation allows the newly updated results

to be used immediately in subsequent computation, has been

proved to be effective in GPU-based graph processing [6],

[39]. Many GPU-accelerated graph processing frameworks

[16], [35], [46] also adopt asynchronous processing to reduce

the host-GPU data transfers. In these frameworks, the sub-

graphs loaded to GPU memory will be processed multiple

times to squeeze all possible updates in each data transfer.

However, simply processing the transferred subgraph multi-

times may lead to inefficiency because these local updates

may be abolished by the subsequent results from other parti-

tions, leading to more computations and data transfers. This

problems is known as stale computation problem [10], [41]. In

the experiment, we observe that the multi-round computation

can even increase the transfer volume (See Section VII-D for

details) in some cases. To effectively leverage the flexibility

of asynchronous processing, HyTGraph adopts contribution-

driven priority scheduling.

Hub-vertex-driven priority scheduling. Due to the power-

law property of real-world graphs, some important vertices

with high incoming/outgoing degrees often become the hubs in

the computation path. These vertices become critical upstream

dependencies of a large number of vertices because of the

large outgoing degree. On the other hand, because of the

large incoming degree, these vertices have a high probabil-

ity of being activated in the iterative computation. If these

vertices do not accumulate sufficient updates before being

scheduled, the downstream computation results based on the

current value are likely to be abolished by subsequent new

updates. Based on this observation, we propose a hub-vertex-

driven priority scheduling approach. By ensuring that the hub

vertices accumulate enough contributions before being sched-

uled, HyTGraph can reduce the possible stale computations

on the downstream vertices. Implementing hub-vertex-driven

scheduling in GPU-accelerated platforms is challenging, be-

cause the hub vertices may distribute randomly among the

whole graph, which makes hub-vertices hard to gather and

transfer. To solve this problem, HyTGraph adopts the hub

sorting method [44] to gather and sort the top 8% important

vertices at the beginning of the CSR structure, where the

importance score of each vertex v is measured by the following

formula:

H(v) =
Do(v) ∗Di(v)

Domax ∗Dimax
(4)

Di(v), Do(v), Dimax, and Domax represent the incoming-

, outgoing-, maximum incoming-, and maximum outgoing-

degree, respectively. In this way, the hub vertices are gathered

together, and the non-hub-vertices remain their natural order.

HyTGraph recomputes the loaded subgraph only once because

most updates can only pass two hops effectively [38]. Another

benefit of this hub-vertex gathered method is that the vertices

having a high probability of being activated (with large in-

degree) are stored together. This property can help improve

the effect of cost-aware task generation.

It is worth mentioning that the hub sorting does not need

to be performed in each run. As long as performing the hub-

sorting once in the data preparation stage, all the subsequent

executions (of different algorithms) can benefit from it.
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Δ-driven priority scheduling. For some iterative graph

algorithms based on value accumulation, e.g., Δ-based PageR-

ank and PHP algorithm [43], the contribution of vertices is

directly reflected in their delta values (the messages to-be-

accumulated). Prioritizing the vertices with large Δ value

can help the downstream vertices accumulate updates more

effectively [39], [41]–[43]. Since the original Δ-driven priority

scheduling is vertex-centric, it can not be directly used in

GPU-accelerated graph processing. HyTGraph implements Δ-

driven scheduling with minor modifications. In each iteration,

HyTGraph computes Δ value for all partitions and prioritizes

those with large delta values. Similar to that of hub-vertex-

driven priority scheduling, in Δ-driven scheduling, HyTGraph

process the loaded partition only one more time.

B. Flexible Multi-Stream Scheduling

The processing engines of ExpTM-F, ExpTM-C, and

ImpTM-zero-copy-ZC require different resources, including

CPUs for active edge compaction, GPU for the computation

kernel, and PCIe for the host-GPU data transfer. To overlap the

resource utilization and improve the parallelism, HyTGraph

uses multiple CUDA streams to process the tasks concurrently.

During the iterative processing, the task scheduler monitors the

available streams and assigns them to tasks that have not been

scheduled. The operating system will automatically overlap

data transfer and kernel computation of different streams.

HyTGraph first schedules the ExpTM-Filter tasks with spe-

cific priority (as discussed in Section VI-A) to leverage the

contribution-driven priority scheduling. Then the ImpTM-

zero-copy and ExpTM-compaction tasks are scheduled. The

CPU-based active edge compaction can be overlapped with

the kernel computation and data transfer of ImpTM-zero-copy

and ExpTM-filter. After finishing all the computing tasks,

HyTGraph will call Algorithm 1 to prepare information for

the next iteration.

C. Other Implementations

Implementation of processing kernels. HyTGraph pro-

vides three processing kernels for implementing ExpTM-filter,

ExpTM-compaction, and ImpTM-zero-copy hybrid execution.

Since the ExpTM-based engine needs to perform computa-

tion on partitioned subgraph, we implement its processing

kernels by extending SEP-Graph’s processing kernel to enable

neighbor shifting on the edges-associated array [39]. While for

ImpTM-zero-copy, HyTGraph uses the original kernel of SEP-

Graph. HyTGraph inherits a series of inner-GPU optimizations

from SEP-Graph, including data-/topology-driven switching

[39] and Cooperative Thread Array (CTA) scheduling [22].

In addition, we also implement the bitmap-directed frontier

optimization [40] to reduce the atomic conflict of active vertex

maintenance.

Implementation of compaction. We implement a simple yet

efficient parallel edge compaction engine by referring to Sub-

way [35]. Since the physical locations of the edge-associated

data are changed in the compaction stage, HyTGraph has to

generate a new compressed neighbor index array and transfers

TABLE IV: Dataset description.

Dataset |V| |E| |E|/|V| Size
sk-2005 [2] (SK) 50.6M 1.93B 38 28GB

Twitter [1] (TW) 52.5M 1.96B 37 32GB

Friendster-konect [1] (FK) 68.3M 2.59B 37 42GB

uk-2007 [2] (UK) 105.1M 3.31B 31 55GB

Friendster-snap [3] (FS) 65.6M 3.61B 55 58GB

RMAT [7] 1-100M 0.1-6.4B - -

it to the GPU along with the compacted edge array(s) for the

ExpTM-compaction computation.

VII. EXPERIMENTAL EVALUATION

A. Experimental Setup

Environments. Our test platform is equipped with one Intel

Silver 4210 2.20Ghz 10-core CPU, 128GB DRAM, and an

NVIDIA GTX 2080Ti GPU with 34SMX clusters, 4352 cores,

and 11GB GDDR6 global memory. The GPU is enabled with

CUDA 10.1 runtime and 418.67 driver, the host side is running

Ubuntu 18.04 with Linux kernel version 4.13.0. All the source

codes are compiled with O3 optimization.

Graph algorithms and datasets. We evaluate HyTGraph

with four algorithms. Besides SSSP and PageRank, the other

two algorithms are Breadth-First Search (BFS) and Connect

Component (CC) [39]. We use both real-world graphs and

synthesized graphs in our evaluation. The major parameters of

graph datasets that are used in our experiments are presented

in Table IV: Friendster-konect (FK) and Friendster-snap (FS)

are undirected social network datasets. sk-2005 (SK) and uk-

2007 (UK) are directed web graph datasets. Twitter (TW) is a

directed social network dataset. The synthesized graphs used

in our experiment are generated by RMAT [7] with power-law

distribution.

Systems for comparison. We compare HyTGraph with three

representative and public available GPU-accelerated graph

processing systems Subway [35], EMOGI [27], and Grus [40],

and a CPU-based graph processing system Galois [28] (Scaph

[46] and Ascetic [37] are also available but we could not run

them in our environment due to various CUDA errors, we were

not able to resolve these errors after multiple email exchanges

with the authors). Besides Subway [35] and EMOGI [27], Grus

is a hybrid framework [40] that combines ImpTM-unified-

memory and ImpTM-zero-copy, when the storage space is

large enough, it caches the transferred data in GPU through

unified memory. When the device memory is full, Grus

accesses the host data through zero-copy. Unlike HyTGraph,

Grus’ hybrid processing does not consider the processing

overhead of the two approaches. In addition to these systems,

we also implement pure ExpTM-filter and ImpTM-unified-

memory in HyTGraph’s codebase for a fair comparison. We

use the default configuration of these systems and all the

runtime results are measured by averaging the results of 5

runs.
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TABLE V: Comparison with other systems.

Overall runtime (s)

Alg. System SK TW FK UK FS

PR

Galois 21.3 66.3 293.6 28.5 342.4

ExpTM-F 37.7 34.8 60.7 34.3 162.8

ImpTM-UM 6.89 16.5 75.4 22.4 102.7

Grus 1.72 12.2 52.2 14.8 79.8

Subway 8.68 38.1 73.7 16.9 108.4

EMOGI 18.6 21.4 51.1 12.4 68.3

HyTGraph 2.85 11.5 30.1 4.71 40.8

SSSP

Galois 26.7 12.9 51.5 15.2 33.1

ExpTM-F 60.9 15.1 50.4 60.9 70.1

ImpTM-UM 12.7 10.1 37.2 18.6 34.9

Grus 25.2 11.2 70.8 5.32 16.9

Subway 14.6 10.9 20.8 18.4 27.7

EMOGI 7.46 4.09 14.9 4.71 11.8

HyTGraph 6.11 2.09 8.81 2.78 6.64

CC

Galois 23.9 15.7 35.9 55.1 39.4

ExpTM-F 21.9 5.47 10.9 41.6 11.8

ImpTM-UM 1.43 1.49 3.27 7.88 4.16

Grus 2.09 1.36 3.21 5.17 4.69

Subway 11.67 6.52 8.61 14.7 14.1

EMOGI 4.01 1.96 2.71 4.54 3.76

HyTGraph 3.65 1.19 2.01 3.86 2.59

BFS

Galois 16.2 7.55 12.5 15.2 14.7

ExpTM-F 20.3 3.86 8.87 25.1 9.54

ImpTM-UM 1.13 1.29 1.97 2.33 6.25

Grus 0.83 1.11 1.85 2.37 3.35

Subway 7.39 5.79 6.85 9.04 13.49

EMOGI 1.06 1.04 1.44 1.26 1.97
HyTGraph 0.93 0.85 1.82 0.88 2.54

B. Overall Performance

1) Comparison with ExpTM-F, Subway, and EMOGI: Table

V shows the overall results. Due to the heavy redundant trans-

fer, ExpTM-F shows worse performance than the others, the

speedup of HyTGraph over ExpTM-F ranges from 2.01X (for

PageRank on FK) to 28.52X (for BFS on UK) with an average

of 8.99X. Neither Subway nor EMOGI is always better than

the other. The speedup of HyTGraph over Subway ranges from

2.36X (for SSSP on FK) to 10.27X (for BFS on UK) with an

average of 4.11X. Subway’s critical performance bottleneck

lies in its heavy CPU-based compaction and preprocessing

(For SSSP algorithm, the preprocessing and compaction over-

head account for 46.9%-74.9% of the total runtime). On CC,

SSSP, and PageRank, HyTGraph is faster than EMOGI by

1.74X on average, with its speedups ranging from 1.10X to

6.53X. With the help of zero-copy, EMOGI achieves signifi-

cant performance improvement on low-activeness subgraphs.

While for the high-activeness subgraphs, especially those with

dense and small degree vertices, EMOGI usually has low

host-GPU utilization due to unsaturated memory requests.

In contrast, HyTGraph achieves efficient data transfer on

both high-activeness and low-activeness partitions by adopting

hybrid transfer management. On BFS, HyTGraph outperforms

Subway and EMOGI on SK, TW, and UK. On FK and

FS, EMOGI shows better performance because most of the
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Fig. 6: Execution path of HyTGraph and per-iteration runtime

comparison with ExpTM-filter, EMOGI and Subway (on FK).

accesses on these two graphs are sparse. Moreover, compared

with HyTGraph, EMOGI avoids the cost analysis, engine

selection, and task merging.

2) Comparison with Unified-Memory-based Approaches
(ImpTM-UM and Grus): On SK graph, the unified-memory-

based frameworks show better performance than the others

for PageRank, CC, and BFS algorithms because the edge-

associated data can be entirely cached in the GPU memory.

UM-based approaches only transfer the data once. While,

when processing large graphs, the performance of ImpTM-UM

degrades significantly because the implicit data transfer re-

quires expensive page replacement and data transfer overhead.

The experimental results show that on the four large graphs,

HyTGraph achieves on average 2.81X and 2.37X speedups

over ImpTM-UM and Grus, respectively.

3) Comparison with CPU-based Approach: From Table V,

we can observe that the GPU-accelerated graph processing

frameworks show significant performance improvement over

CPU-based Galois. Specifically, HyTGraph shows on average

5.27x-12.78x speedups over Galois.

C. Execution Path Analysis

To demonstrate the performance improvement of hybrid

processing, we record the execution path of HyTGraph on

PageRank and SSSP to show the proportion of partitions using

ExpTM-filter, ExpTM-compaction, and ImpTM-zero-copy in

each iteration. Figure 6 (a) shows the result of PageRank, the

proportion of active partitions is high in the early iterations,

HyTGraph prefers ExpTM-filter. As the algorithm converges

and many vertices become inactive, the proportion of ImpTM-

zero-copy begins to increase. For SSSP in Figure 6 (b), there

are few active vertices in the early and last few iterations,

HyTGraph prefers ImpTM-zero-copy. When most vertices are

activated in the middle iterations, HyTGraph prefers ExpTM-

filter to improve the transfer efficiency. As the number of

active vertex decreases, ExpTM-compaction is also used in

some partitions.

Figure 6 (c) and (d) show the per-iteration runtime results of

ExpTM-F, Subway, EMOGI, and HyTGraph. As these systems

567

Authorized licensed use limited to: Northeastern University. Downloaded on April 06,2025 at 06:23:20 UTC from IEEE Xplore.  Restrictions apply. 



 0

 1

 2

 3

SK TW FK UK FS SK TW FK UK FS SK TW FK UK FS SK TW FK UK FS

N
or

m
al

iz
ed

 S
pe

ed
up Hybrid Hybrid+TC Hybrid+TC+CDS

(D) BFS(c) CC(b) SSSP(a) PageRank

Fig. 7: Performance gain analysis of Task Combining (TC) and Contribution-Driven Scheduling (CDS).

adopt different asynchronous processing strategies, the active

vertex number of different systems in each iteration is not

exactly the same. HyTGraph cannot consistently outperform

the others in each iteration. While, through the hybrid transfer

management, HyTGraph achieves the minimum overall run-

time.

D. Transfer Reduction Analysis

TABLE VI: Transfer reduction analysis.

Transfer volume / Edge volume

Alg. Dataset ExpTM-F Subway EMOGI HyTGraph

PR

SK 57.6X 2.46X 3.31X 2.17X
TW 52.4X 5.48X 20.6X 10.9X

FK 58.3X 10.74X 24.6X 12.01X

UK 30.9X 1.79X 3.81X 1.68X
FS 121.6X 12.44X 25.23X 12.62X

SSSP

SK 44.3X 4.23X 3.29X 3.25X
TW 11.2X 2.07X 1.74X 1.25X

FK 28.1X 3.32X 4.81X 4.60X

UK 24.3X 1.78X 1.11X 1.13X

FS 24.1X 3.19X 2.69X 2.52X

We analyze the effectiveness of HyTGraph’s transfer reduc-

tion by comparing it with ExpTM-filter, Subway (ExpTM-

compaction), and EMOGI (ImpTM-zero-copy). We run

PageRank and SSSP on all the five real-world graphs and

normalize the data transfer volume to the edge volume. As

shown in Table VI, ExpTM-filter has the highest transfer vol-

ume. With the help of fine-grained zero-copy access, EMOGI

achieves considerable transfer reduction. However, due to the

lack of asynchronous scheduling, its transfer volume is still

large. Benefiting from the CPU-based compaction, Subway

is expected to have minimal data transfer volume. But the

multi-round asynchronous processing performs differently on

different algorithms. For PageRank algorithm based on value

accumulation, the multi-round processing significantly reduces

the transfer times because the additional computations on par-

titioned subgraphs can still contribute to the final convergence.

As processes the transferred subgraph only once more, HyT-

Graph has no transfer advantages over Subway for PageRank

algorithm, especially on the small graph with few partitions,

e.g., HyTGraph requires 2X data transfer compared to Subway

on TW graph. HyTGraph has comparable data transfer volume

with subway on SK graph (another small graph) because it

benefits a lot from the contribution-driven priority scheduling

(As illustrated in Figure 8 (a), the contribution-driven schedul-

ing shows significant performance improvement on the two

web graphs, SK and UK.). For the value-replacement-based
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Fig. 8: Performance comparison with increasing graph size, the

graphs are generated by RMAT with sizes from 0.1 Billion to

6.4 Billion (64X).

SSSP algorithm, simply processing the transferred subgraph

multiple times may cause stale computation problem (Section

VI), leading to more computations and data transfers. We can

observe that Subway transfers more data than EMOGI on SK,

TW, UK, and FS for SSSP algorithm. In contrast, with the

help of hybrid transfer management and asynchronous task

scheduling, HyTGraph achieves significant transfer reduction

in all cases and alleviates the stale computation problem.

E. Performance Gain of Task Combining and Contribution-
Driven Scheduling

To analyze the performance gain of task combining and

contribution-driven scheduling, we start from the pure hybrid

transfer management with basic optimization (multi-stream

scheduling) and integrate task combining (as described in

section V-B), and contribution-driven scheduling (as described

in section VI-A) one by one. Figure 7 shows the normalized

speedups. The task combining (TC) can bring Hybrid an

on average 1.28X, 1.37X, 1.19X, and 1.05X speedups on

PageRank, SSSP, CC, and BFS, respectively. The contribution-

driven scheduling (CDS) can further bring 2.18X, 1.21X,

1.25X, and 1.06X speedups over the hybrid processing with

TC. Finally, the two proposed designs can bring an overall

2.78X, 1.67X, 1.47X, and 1.16X speedups over the raw

hybrid transfer management, respectively. PageRank algorithm

benefits most because the proposed asynchronous processing

can effectively accelerate the convergence by prioritizing the

vertices with large rank values. In contrast, BFS rarely benefits

from the two designs because the vertices are activated only

once during the iterative processing.

F. Sensitivity Analysis
Varying graph sizes. We compare HyTGraph with Grus,

Subway, and EMOGI under variable graph sizes and report
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the results in Figure 8. When the graph size is small, Grus

shows better performance because the data only needs to be

loaded once. While, as the graph size increases, the inefficient

data transfer of unified-memory will reduce its performance.

Subway fails to run the graph with 6.4B edges because of

the integer overflow problem. As the graph size increases

from 0.1B to 6.4B (64X), the runtimes of Grus, EMOGI, and

HyTGraph for PageRank increase by 231.2X, 111.6X, and

105.39X, respectively. For SSSP algorithm, the runtime of

Grus, EMOGI, and HyTGraph increase by 111.8X, 57.08X,

and 49X, respectively. HyTGraph shows better performance

when scaling to larger graphs.

Varying GPUs. We evaluate the performance of HyT-

Graph on different GPUs, including GTX 1080 (2560cores,

8GB), TESLA P100 (3584cores, 16GB), and GTX 2080Ti

(4352cores, 11GB) with FS graph. We normalize the runtimes

of all systems to Subway and show the results in Figure 9.

We can observe that HyTGraph outperforms the other three

competitors. For PageRank, HyTGraph achieves 2.6X-2.7X,

2.0X-3.1X, and 1.6-1.7X speedups over Subway, Grus, and

EMOGI, respectively. For SSSP, HyTGraph achieves 4.0X-

4.2X, 2.5X-5.5X, and 1.7X-2.0X speedups over Subway, Grus,

and EMOGI, respectively.

VIII. LIMITATIONS AND FUTURE WORK

Cost computation of ExpTM-C. The current version of

HyTGraph uses an approximate method to compute the cost

of ExpTM-C because the overhead of irregular main memory

access is hard to quantify accurately. It would be interesting

future work to model the ExpTM-C overhead through machine

learning techniques.

Processing hyper-scale graph. For a hyper-scale graph

whose vertex data exceeds a single GPU memory, processing

it with GPU needs to partition the vertex data into smaller

chunks that can fit into GPU memory. Such an approach

requires frequent host-GPU vertex data swapping, leading to

additional data transfer overhead. Therefore, designing new

algorithms to optimize the host-GPU vertex data access and

exploring whether the computation improvement can cover

the additional I/O overhead are interesting and less studied

problems. We will take them as our future work.

Adapting to GPU platforms with fast interconnects. Re-

cently, the hardware makers have come up with fast inter-

connect technologies (e.g., NVIDIA NVlink [30] and Intel

CXL [9]) to replace the slow PCIe bus, which can provide

faster GPU-CPU interconnect bandwidth (NVlink-4.0 [30]).

In a GPU-accelerated platform with fast interconnections, the

main memory may become a new bottleneck of host-GPU

data transfers [23]. We can improve HyTGraph by exploring

the main memory access performances of different transfer

methods and integrating the main memory accessing cost in

our hybrid model to adapt to these new platforms.

IX. RELATED WORK

In-GPU-memory graph processing. To accelerate graph

processing, the high parallelism of GPU has attracted great

attention [11], [17]–[19], [26], [42], [45], [47]. Cusha [19]

uses two novel data structures, named GShards and CW, to

avoid non-coalesced memory access. Gunrock [42] performs

computation on the frontier with data-centric abstraction. Tigr

[34] proposes a virtual transformation to transform skewed

graphs into virtual vertices for load-balancing. SEP-Graph [39]

switches execution paths adaptively based on a selection in

each of the three pairs of parameters, namely, Sync or Async,

Push or Pull, and DD (data-driven) or TD (topology-driven).

Out-of-GPU-memory graph processing. GPU-accelerated

graph processing has attracted extensive attention. Besides the

systems mentioned above [12], [16], [27], [35]–[37], [40],

[46], recent studies also propose CPU-GPU co-processing to

accelerate large graphs computation [13], [24]. Totem [13]

partitions a graph into two subgraphs, one for CPU and

one for GPU, keeping the number of data transfers to a

minimum at the expense of severe load imbalance. Garaph [24]

concurrently processes the active subgraphs on host and GPU.

However, the CPU-based low-activeness subgraph processing

may become a new bottleneck. Besides graph processing,

researchers have also focused on GPU-accelerated pattern

matching on large graphs. Guo et al. [15] propose a shared

execution approach to reduce the host-GPU data transfer of

subgraph matching. Chen et al. [8] propose a unified memory-

based subgraph matching framework that combines zero-copy

memory and unified virtual memory to optimize the data

transfer on subgraphs with different memory access patterns.

X. CONCLUSION

We present HyTGraph, a highly efficient GPU-accelerated

graph processing framework by adaptively switching the trans-

fer management approach involving explicit transfer man-

agement and implicit transfer management. This hybrid ap-

proach maximizes the host-GPU bandwidth and is necessary

to achieve the shortest overall execution time. Our intensive

experiments show the high effectiveness of HyTGraph.

ACKNOWLEDGMENT

We thank the anonymous reviewers for their construc-

tive comments and suggestions. The work is supported by

the National Natural Science Foundation of China under

grants 62072082, U2241212, U1811261, 62202088, the Na-

tional Social Science Foundation of China under grants

21&ZD124, and the Key R&D Program of Liaoning Province

2020JH2/10100037.

569

Authorized licensed use limited to: Northeastern University. Downloaded on April 06,2025 at 06:23:20 UTC from IEEE Xplore.  Restrictions apply. 



REFERENCES

[1] The koblenz network collection. http://konect.uni-koblenz.de/. Ac-
cessed: 2021-09-01.

[2] Laboratory for web algorithmics. http://law.di.unimi.it/. Accessed: 2021-
09-01.

[3] Stanford network analysis project. https://snap.stanford.edu/. Accessed:
2021-09-01.

[4] N. Agarwal, D. W. Nellans, M. Stephenson, M. O’Connor, and S. W.
Keckler. Page placement strategies for gpus within heterogeneous
memory systems. In Ö. Özturk, K. Ebcioglu, and S. Dwarkadas, editors,
Proceedings of the Twentieth International Conference on Architectural
Support for Programming Languages and Operating Systems, ASPLOS
2015, Istanbul, Turkey, March 14-18, 2015, pages 607–618. ACM, 2015.

[5] R. Ausavarungnirun, J. Landgraf, V. Miller, S. Ghose, J. Gandhi, C. J.
Rossbach, and O. Mutlu. Mosaic: a GPU memory manager with
application-transparent support for multiple page sizes. In H. C. Hunter,
J. Moreno, J. S. Emer, and D. Sánchez, editors, Proceedings of the
50th Annual IEEE/ACM International Symposium on Microarchitecture,
MICRO 2017, Cambridge, MA, USA, October 14-18, 2017, pages 136–
150. ACM, 2017.

[6] T. Ben-Nun, M. Sutton, S. Pai, and K. Pingali. Groute: An asynchronous
multi-gpu programming model for irregular computations. In V. Sarkar
and L. Rauchwerger, editors, Proceedings of the 22nd ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming, Austin,
TX, USA, February 4-8, 2017, pages 235–248. ACM, 2017.

[7] D. Chakrabarti, Y. Zhan, and C. Faloutsos. R-MAT: A recursive
model for graph mining. In M. W. Berry, U. Dayal, C. Kamath, and
D. B. Skillicorn, editors, Proceedings of the Fourth SIAM International
Conference on Data Mining, Lake Buena Vista, Florida, USA, April
22-24, 2004, pages 442–446. SIAM, 2004.

[8] J. Chen, Q. Wang, Y. Gu, C. Li, and G. Yu. Unified-memory-based
hybrid processing for partition-oriented subgraph matching on GPU.
World Wide Web, 25(3):1377–1402, 2022.

[9] CXL. Compute express link specification revision 1.1. https://www.
computeexpresslink.org/, 2022.

[10] W. Fan, P. Lu, X. Luo, J. Xu, Q. Yin, W. Yu, and R. Xu. Adaptive
asynchronous parallelization of graph algorithms. In G. Das, C. M.
Jermaine, and P. A. Bernstein, editors, Proceedings of the 2018 Interna-
tional Conference on Management of Data, SIGMOD Conference 2018,
Houston, TX, USA, June 10-15, 2018, pages 1141–1156. ACM, 2018.

[11] A. Gaihre, Z. Wu, F. Yao, and H. Liu. XBFS: exploring runtime
optimizations for breadth-first search on gpus. In J. B. Weissman,
A. R. Butt, and E. Smirni, editors, Proceedings of the 28th International
Symposium on High-Performance Parallel and Distributed Computing,
HPDC 2019, Phoenix, AZ, USA, June 22-29, 2019, pages 121–131.
ACM, 2019.

[12] P. Gera, H. Kim, P. Sao, H. Kim, and D. A. Bader. Traversing large
graphs on gpus with unified memory. Proc. VLDB Endow., 13(7):1119–
1133, 2020.

[13] A. Gharaibeh, L. B. Costa, E. Santos-Neto, and M. Ripeanu. A yoke
of oxen and a thousand chickens for heavy lifting graph processing.
In P. Yew, S. Cho, L. DeRose, and D. J. Lilja, editors, International
Conference on Parallel Architectures and Compilation Techniques, PACT
’12, Minneapolis, MN, USA - September 19 - 23, 2012, pages 345–354.
ACM, 2012.

[14] J. E. Gonzalez, Y. Low, H. Gu, D. Bickson, and C. Guestrin. Pow-
ergraph: Distributed graph-parallel computation on natural graphs. In
C. Thekkath and A. Vahdat, editors, 10th USENIX Symposium on
Operating Systems Design and Implementation, OSDI 2012, Hollywood,
CA, USA, October 8-10, 2012, pages 17–30. USENIX Association, 2012.

[15] W. Guo, Y. Li, M. Sha, B. He, X. Xiao, and K. Tan. Gpu-accelerated
subgraph enumeration on partitioned graphs. In Proceedings of the 2020
International Conference on Management of Data, SIGMOD Conference
2020, online conference [Portland, OR, USA], June 14-19, 2020, pages
1067–1082. ACM, 2020.

[16] W. Han, D. Mawhirter, B. Wu, and M. Buland. Graphie: Large-scale
asynchronous graph traversals on just a GPU. In 2019 USENIX Annual
Technical Conference, USENIX ATC 2019, Renton, WA, USA, July 10-
12, 2019, pages 429–442. USENIX Association, 2019.

[17] P. Harish and P. J. Narayanan. Accelerating large graph algorithms on
the GPU using CUDA. In S. Aluru, M. Parashar, R. Badrinath, and
V. K. Prasanna, editors, High Performance Computing - HiPC 2007,
14th International Conference, Goa, India, December 18-21, 2007,

Proceedings, volume 4873 of Lecture Notes in Computer Science, pages
197–208. Springer, 2007.

[18] S. Hong, S. K. Kim, T. Oguntebi, and K. Olukotun. Accelerating CUDA
graph algorithms at maximum warp. In C. Cascaval and P. Yew, editors,
Proceedings of the 16th ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, PPOPP 2011, San Antonio, TX, USA,
February 12-16, 2011, pages 267–276. ACM, 2011.

[19] F. Khorasani, K. Vora, R. Gupta, and L. N. Bhuyan. Cusha: vertex-
centric graph processing on gpus. In B. Plale, M. Ripeanu, F. Cappello,
and D. Xu, editors, HPDC’14, pages 239–252, 2014.

[20] M. Kim, K. An, H. Park, H. Seo, and J. Kim. GTS: A fast and scalable
graph processing method based on streaming topology to gpus. In
Proceedings of the 2016 International Conference on Management of
Data, SIGMOD Conference 2016, San Francisco, CA, USA, June 26 -
July 01, 2016, pages 447–461, 2016.

[21] A. Kyrola, G. E. Blelloch, and C. Guestrin. Graphchi: Large-scale graph
computation on just a PC. In C. Thekkath and A. Vahdat, editors, 10th
USENIX Symposium on Operating Systems Design and Implementation,
OSDI 2012, Hollywood, CA, USA, October 8-10, 2012, pages 31–46.
USENIX Association, 2012.

[22] M. Lee, S. Song, J. Moon, J. Kim, W. Seo, Y. Cho, and S. Ryu.
Improving GPGPU resource utilization through alternative thread block
scheduling. In 20th IEEE International Symposium on High Per-
formance Computer Architecture, HPCA 2014, Orlando, FL, USA,
February 15-19, 2014, pages 260–271. IEEE Computer Society, 2014.

[23] C. Lutz, S. Breß, S. Zeuch, T. Rabl, and V. Markl. Pump up the volume:
Processing large data on gpus with fast interconnects. In Proceedings of
the 2020 International Conference on Management of Data, SIGMOD
Conference 2020, online conference [Portland, OR, USA], June 14-19,
2020, pages 1633–1649, 2020.

[24] L. Ma, Z. Yang, H. Chen, J. Xue, and Y. Dai. Garaph: Efficient
gpu-accelerated graph processing on a single machine with balanced
replication. In D. D. Silva and B. Ford, editors, 2017 USENIX Annual
Technical Conference, USENIX ATC 2017, Santa Clara, CA, USA, July
12-14, 2017, pages 195–207. USENIX Association, 2017.

[25] G. Malewicz, M. H. Austern, A. J. C. Bik, J. C. Dehnert, I. Horn,
N. Leiser, and G. Czajkowski. Pregel: a system for large-scale graph
processing. In A. K. Elmagarmid and D. Agrawal, editors, Proceedings
of the ACM SIGMOD International Conference on Management of Data,
SIGMOD 2010, Indianapolis, Indiana, USA, June 6-10, 2010, pages
135–146. ACM, 2010.

[26] D. Merrill, M. Garland, and A. S. Grimshaw. High-performance and
scalable GPU graph traversal. ACM Trans. Parallel Comput., 1(2):14:1–
14:30, 2015.

[27] S. Min, V. S. Mailthody, Z. Qureshi, J. Xiong, E. Ebrahimi, and W. Hwu.
EMOGI: efficient memory-access for out-of-memory graph-traversal in
gpus. Proc. VLDB Endow., 14(2):114–127, 2020.

[28] D. Nguyen, A. Lenharth, and K. Pingali. A lightweight infrastructure
for graph analytics. In M. Kaminsky and M. Dahlin, editors, ACM
SIGOPS 24th Symposium on Operating Systems Principles, SOSP ’13,
Farmington, PA, USA, November 3-6, 2013, pages 456–471. ACM, 2013.

[29] NVIDIA. Nvidia a100 tensor core gpu. https://www.nvidia.com/en-us/
data-center/a100/, 2022.

[30] NVIDIA. Nvidia h100 tensor core gpu. https://www.nvidia.com/en-us/
data-center/h100/, 2022.

[31] NVIDIA. Nvidia tesla p100. https://www.nvidia.com/en-us/data-center/
tesla-p100/, 2022.

[32] NVIDIA. Nvidia v100 tensor core gpu. https://www.nvidia.com/en-us/
data-center/v100/, 2022.

[33] A. Roy, I. Mihailovic, and W. Zwaenepoel. X-stream: edge-centric graph
processing using streaming partitions. In M. Kaminsky and M. Dahlin,
editors, ACM SIGOPS 24th Symposium on Operating Systems Princi-
ples, SOSP ’13, Farmington, PA, USA, November 3-6, 2013, pages 472–
488. ACM, 2013.

[34] A. H. N. Sabet, J. Qiu, and Z. Zhao. Tigr: Transforming irregular graphs
for gpu-friendly graph processing. In X. Shen, J. Tuck, R. Bianchini,
and V. Sarkar, editors, Proceedings of the Twenty-Third International
Conference on Architectural Support for Programming Languages and
Operating Systems, ASPLOS 2018, Williamsburg, VA, USA, March 24-
28, 2018, pages 622–636. ACM, 2018.

[35] A. H. N. Sabet, Z. Zhao, and R. Gupta. Subway: minimizing data
transfer during out-of-gpu-memory graph processing. In A. Bilas,
K. Magoutis, E. P. Markatos, D. Kostic, and M. I. Seltzer, editors,

570

Authorized licensed use limited to: Northeastern University. Downloaded on April 06,2025 at 06:23:20 UTC from IEEE Xplore.  Restrictions apply. 



EuroSys ’20: Fifteenth EuroSys Conference 2020, Heraklion, Greece,
April 27-30, 2020, pages 12:1–12:16. ACM, 2020.

[36] D. Sengupta, S. L. Song, K. Agarwal, and K. Schwan. Graphreduce:
processing large-scale graphs on accelerator-based systems. In J. Kern
and J. S. Vetter, editors, Proceedings of the International Conference
for High Performance Computing, Networking, Storage and Analysis,
SC 2015, Austin, TX, USA, November 15-20, 2015, pages 28:1–28:12.
ACM, 2015.

[37] R. Tang, Z. Zhao, K. Wang, X. Gong, J. Zhang, W. Wang, and P. Yew.
Ascetic: Enhancing cross-iterations data efficiency in out-of-memory
graph processing on gpus. In ICPP 2021: 50th International Conference
on Parallel Processing, Lemont, IL, USA, August 9 - 12, 2021, pages
41:1–41:10. ACM, 2021.

[38] K. Vora. LUMOS: dependency-driven disk-based graph processing. In
D. Malkhi and D. Tsafrir, editors, USENIX ATC 2019, pages 429–442.
USENIX Association, 2019.

[39] H. Wang, L. Geng, R. Lee, K. Hou, Y. Zhang, and X. Zhang. Sep-
graph: finding shortest execution paths for graph processing under a
hybrid framework on GPU. In J. K. Hollingsworth and I. Keidar, editors,
Proceedings of the 24th ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, PPoPP 2019, Washington, DC, USA,
February 16-20, 2019, pages 38–52. ACM, 2019.

[40] P. Wang, J. Wang, C. Li, J. Wang, H. Zhu, and M. Guo. Grus: Toward
unified-memory-efficient high-performance graph processing on GPU.
ACM Trans. Archit. Code Optim., 18(2):22:1–22:25, 2021.

[41] Q. Wang, Y. Zhang, H. Wang, L. Geng, R. Lee, X. Zhang, and
G. Yu. Automating incremental and asynchronous evaluation for
recursive aggregate data processing. In D. Maier, R. Pottinger, A. Doan,
W. Tan, A. Alawini, and H. Q. Ngo, editors, Proceedings of the 2020
International Conference on Management of Data, SIGMOD Conference
2020, online conference [Portland, OR, USA], June 14-19, 2020, pages
2439–2454. ACM, 2020.

[42] Y. Wang, A. A. Davidson, Y. Pan, Y. Wu, A. Riffel, and J. D. Owens.
Gunrock: a high-performance graph processing library on the GPU. In
R. Asenjo and T. Harris, editors, The 23rd International Symposium
on High-Performance Parallel and Distributed Computing, HPDC’14,
Vancouver, BC, Canada - June 23 - 27, 2014, pages 239–252. ACM,
2016.

[43] Y. Zhang, Q. Gao, L. Gao, and C. Wang. Maiter: An asynchronous graph
processing framework for delta-based accumulative iterative computa-
tion. IEEE Trans. Parallel Distributed Syst., 25(8):2091–2100, 2014.

[44] Y. Zhang, V. Kiriansky, C. Mendis, S. P. Amarasinghe, and M. Zaharia.
Making caches work for graph analytics. In 2017 IEEE International
Conference on Big Data (IEEE BigData 2017), Boston, MA, USA,
December 11-14, 2017, pages 293–302. IEEE Computer Society, 2017.

[45] Y. Zhang, X. Liao, H. Jin, B. He, H. Liu, and L. Gu. Digraph:
An efficient path-based iterative directed graph processing system on
multiple gpus. In I. Bahar, M. Herlihy, E. Witchel, and A. R. Lebeck,
editors, Proceedings of the Twenty-Fourth International Conference
on Architectural Support for Programming Languages and Operating
Systems, ASPLOS 2019, Providence, RI, USA, April 13-17, 2019, pages
601–614. ACM, 2019.

[46] L. Zheng, X. Li, Y. Zheng, Y. Huang, X. Liao, H. Jin, J. Xue, Z. Shao,
and Q. Hua. Scaph: Scalable gpu-accelerated graph processing with
value-driven differential scheduling. In A. Gavrilovska and E. Zadok,
editors, 2020 USENIX Annual Technical Conference, USENIX ATC
2020, July 15-17, 2020, pages 573–588. USENIX Association, 2020.

[47] J. Zhong and B. He. Medusa: Simplified graph processing on gpus.
IEEE Trans. Parallel Distributed Syst., 25(6):1543–1552, 2014.

[48] X. Zhu, W. Chen, W. Zheng, and X. Ma. Gemini: A computation-
centric distributed graph processing system. In K. Keeton and T. Roscoe,
editors, 12th USENIX Symposium on Operating Systems Design and
Implementation, OSDI 2016, Savannah, GA, USA, November 2-4, 2016,
pages 301–316. USENIX Association, 2016.

[49] X. Zhu, W. Han, and W. Chen. Gridgraph: Large-scale graph processing
on a single machine using 2-level hierarchical partitioning. In S. Lu and
E. Riedel, editors, 2015 USENIX Annual Technical Conference, USENIX
ATC ’15, July 8-10, Santa Clara, CA, USA, pages 375–386. USENIX
Association, 2015.

571

Authorized licensed use limited to: Northeastern University. Downloaded on April 06,2025 at 06:23:20 UTC from IEEE Xplore.  Restrictions apply. 


