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a b s t r a c t

Density Peaks Clustering (DPC) is a recently proposed clustering algorithm that has distinct advantages
over existing clustering algorithms, which has already been used in a wide range of applications.
However, DPC requires computing the distance between every pair of input points, therefore incurring
quadratic computation overhead, which is prohibitive for large data sets. To address this efficiency
problem, we propose to use GPU to accelerate DPC. We exploit a spatial index structure VP-Tree
to efficiently maintain the data points and propose a GPU-friendly parallel VP-Tree construction
algorithm. Based on the constructed VP-Tree, we propose a GPU-Accelerated DPC algorithm GDPC, in
which the all-pair computation in DPC is greatly accelerated. Furthermore, in order to process dynamic
evolving datasets, we propose an incremental GDPC algorithm, Incremental GDPC. Our results show that
GDPC can achieve over 5.3-148.9X acceleration compared to the state-of-the-art GPU-based, multicore-
based, and distributed DPC implementations, a 2.3-40.5X acceleration compared to the state-of-the-art
incremental DPC algorithm.

© 2022 Elsevier B.V. All rights reserved.
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1. Introduction

Data clustering is one of the most fundamental problems in
any real-world applications, such as recommender systems,
ocial networks, image processing, and bioinformatics. Basically,
t groups a set of objects based on the similarities of objects such
hat objects in the same group (i.e., cluster) are more similar
o each other than to those in other groups. Many different
lustering algorithms have been proposed in the literature such
s Kmeans [1] and DBSCAN [2]. There are also many research
fforts to improve the efficiency of clustering to handle massive
ata [3–5].
Density Peaks Clustering (DPC) [6] is a novel clustering algo-

rithm proposed recently. Given a set of points, DPC computes two
metrics for every point p: (i) the local density ρ, which is the
number of points within a specified distance from p; and (ii) the
dependent distance δ, which is the minimum distance from p to
other points with higher densities. It is observed that the center
of a cluster sees the highest local density among its neighboring
points (i.e., density center), and has a relatively large distance
from other points with higher densities (i.e., far away from other
density centers). Thus, cluster centers can be identified as points
with both large ρ and large δ. With these identified cluster
centers and the density center dependency trees extracted dur-
ing the dependent distance δ’s computation, the point-to-center
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relationship, or in other words, the point-to-cluster assignment
(clustering results), can be discovered.

Compared with previous clustering algorithms, DPC has many
advantages. (1) Unlike Kmeans, DPC does not require a pre-
specified number of clusters. (2) DPC does not assume the clusters
to be ‘‘balls’’ in space and supports arbitrarily shaped clusters.
(3) DPC is more deterministic, since the clustering results have
been shown to be robust against the initial choice of algorithm
parameters. (4) The extraction of (ρ, δ) provides a two-dimensiona
epresentation of the input data, which can be in very high
imensions, so that it is easier for users to gain new insights from
he two-dimensional representation plot of the data. Due to its ef-
ectiveness and novelty, DPC has already been employed in a wide
ange of applications, such as neuroscience [7], geoscience [8],
nd computer vision [9].
While DPC is attractive for its effectiveness and its simplicity,

he application of DPC is limited by its computational cost. In
rder to obtain the density values ρ, DPC computes the distance

between every pair of points. That is, given N points in the input
data set, its computational cost is O(N2). Moreover, in order to
obtain the dependent distance values δ, a global sort operation
on all points based on their density values (with computational
cost O(Nlog(N))) and N(N−1)

2 compare operations are required. As
result, it can be very time consuming to perform DPC on large
ata sets.
In the past few years, several research efforts have been put

n accelerating DPC. LSH-DDP [3], EDDPC [10] and FDDP [11]
everage distributed approaches to help DPC handle large scale
atasets. EDMStream [12] improves DPC by efficiently maintain-
ng a novel in-memory dependent-tree structure. Ex-DPC and

https://doi.org/10.1016/j.future.2022.11.033
https://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.future.2022.11.033&domain=pdf
mailto:zhangyf@mail.neu.edu.cn
https://doi.org/10.1016/j.future.2022.11.033


Z. Liu, S. Gong, Y. Su et al. Future Generation Computer Systems 141 (2023) 399–413

S
c

p
G
l
d
e
d
D
d
o
D
t
c

p
d
w
t
a
p
c
r
o
B
d
t
m
p
d

d
d
i
t

t
c
o
f
S
d
f
c

-Approx-DPC [13] accelerate DPC efficiency by leveraging multi-
ore processing.
The recent advance in GPU technology is offering great

rospects in parallel computation [14,15]. With up to 80 GB
PU memory size [16], it is possible to use GPU to process
arge-scale data. There exist several related work have been
evoted to accelerate DPC using GPU’s parallelization ability. Li
t al. [17] propose a thread/block model and shared memory
esigns to accelerate the distance matrix computation. CUDA-
P [18] also integrates GPU’s parallelization ability and improves
ata locality to increase performance. However, these methods
nly focus on employing GPU’s many-core features to accelerate
PC, without paying attention to utilizing spatial index structures
hat can greatly filter out a large number of unnecessary all-pair
omputations.
In this paper, we exploit a spatial index structure vantage

oint tree (VP-Tree) [19] to help efficiently maintain clustering
ata. With VP-Tree, data points are partitioned into ‘‘hypershells’’
ith decreasing radius. Comparing with other spatial index struc-
ures (such as KD-Tree [20] and Ball-Tree [21]), VP-Tree is more
ppropriate in DPC algorithm, because the decreasing-radius hy-
ershell structure in VP-Tree can well support the point density
omputation (that obtains nearby points within a predefined
adius of a point) and the dependent distance computation (that
btains the distance to the nearest neighbor with higher density).
esides, VP-Tree is more suitable for clustering high-dimensional
ata [22]. More importantly, the construction of VP-Tree and
he search of VP-Tree can be well parallelized to adapt to GPU’s
any-core architecture. Based on the GPU-based VP-Tree, we
ropose GDPC algorithm, where the density ρ and the depen-
ent distance δ can be efficiently calculated by querying the

index structure and lots of unnecessary distance measurements
(between faraway points) can be avoided.

On the other hand, new data are produced every day and
the data distribution may evolve overtime. As a result, the clus-
tering results should continuously evolve correspondingly. The
dynamically evolving feature of data drives us to seek an incre-
mental clustering approach. Rather than re-performing DPC on
the whole updated data sets, the incremental clustering algo-
rithm leverages previous clustering results and only updates the
affected point-to-cluster assignments. Considering the massive
size of data sets, the incremental processing approach is desirable
especially in production usage. Therefore, we further propose In-
cremental GDPC to support incremental clustering, which extends
GDPC in the following aspects. (1) We design a GPU-friendly
dynamic VP-Tree index update scheme that reduces the number
of tree traversals and eliminates the write-write conflicts in GPU’s
many core computations. (2) Based on this dynamic VP-Tree
index, we propose Incremental GDPC which can efficiently update
the clustering results.

To sum up, we list our contributions in the following.

• GPU-Accelerated VP-Tree Construction. We design a vec-
torized VP-Tree layout to adapt to GPU architecture and take
full advantage of GPU parallelism to speed up the VP-Tree
index construction.
• GPU-Accelerated DPC Implementation. We propose to use

the VP-Tree index to improve the efficiency of all-pair com-
putation and rely on this index to avoid unnecessary compu-
tations in DPC’s density evaluation and dependent distance
evaluation with GPU’s parallel computation support.
• GPU-Accelerated Incremental DPC Update. We provide in-

cremental clustering support for dynamically evolving data
by designing the GPU-friendly incremental update methods
of density and dependent distance based on the dynamic
VP-Tree.
400
We perform experiments on various real-world datasets and
compare with a state-of-the-art GPU-based DPC algorithm CUDA-
DP [18], a multicore-based parallel DPC algorithm S-Approx-
DPC [13], and a distributed DPC implementation LSH-DDP [3].
Our results show that our GDPC can achieve 5.3–17.8X speedup
over CUDA-DP, 43–148.9X speedup over S-Approx-DPC and 44.8–
78.8X speedup over LSH-DDP. We further perform experiments
on evolving datasets and compare with the state-of-the-art in-
cremental DPC algorithm EDMStream [12]. Our results show
that our Incremental GDPC can achieve 2.3–40.5X speedup over
EDMStream.

The remainder of the paper is organized as follows. Sec-
tion 2 describes the background on DPC and GPU’s architecture.
Section 3 presents the GPU-accelerated VP-Tree construction and
query methods. Section 4 proposes our GPU-accelerated DPC
algorithm GDPC. Section 5 introduces how we maintain the dy-
namic VP-Tree on GPU and proposes Incremental GDPC. Section 6
reports the experimental results. Section 7 discusses related work
and Section 8 concludes the paper.

2. Background and preliminaries

In this section, we first review the standard Density Peaks
Clustering (DPC) algorithm. We then introduce the background
of GPU architecture and memory hierarchy.

2.1. DP clustering

Density Peaks Clustering (DPC) [6] is proposed based on two
observations: (i) cluster centers are surrounded by neighbors
with lower local densities, and (ii) cluster centers are at a rela-
tively large distance from any points with higher local densities.
Correspondingly, DPC computes two metrics for every data point:
(i) its local density ρ and (ii) its distance δ from other points
with higher density. DPC uses these two values to identify density
peaks, i.e., cluster centers.

The local density ρi of data point pi is the number of points
whose distance to pi is smaller than dc

ρi = |{pj
⏐⏐dij < dc}| (1)

where dij is the distance from point pi to point pj, and dc is called
the cutoff distance specified by users. The dependent distance δi of
point pi is computed as

δi = min
j:ρj>ρi

(dij). (2)

It is the minimum distance from point pi to any other point
whose local density is higher than that of point pi. Suppose point
pj is point pi’s nearest neighbor with higher density, i.e., pj =
argminj:ρj>ρi (dij). We say that point pi is dependent on point pj
and name point pj as the dependent point of point pi. If there are
multiple nearest neighbors with higher density having the same
distance to point pi, we randomly pick one among them as the
ependent point. If a point i has the highest density among all
ata points, i.e., i = argmaxt ρt , we set δi = maxj(dij) and name
t as the absolute density peak. Then we can label every point with
wo values ρ and δ.

Based on these two sets of values, cluster centers can be iden-
ified as the points with both large ρ and large δ. The principle
an be explained as follows. A point with small ρi is likely to be
utliers or boundary points no matter how large its δi is. Next, we
ocus on the points with relatively large ρi to study the effect of δi.
mall δi implies that point pi is surrounded by at least one higher
ensity neighbor. Anomalously large δi implies that point pi is far
rom another dense area and point pi itself could be the cluster
enter (density peak) of its own region, since there is no point
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Fig. 1. An illustrative example of density peaks clustering.
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ith higher density around it. δi is much larger than the typical
earest neighbor distance only for points that are local or global
axima in density. Thus, the density peaks (i.e., cluster centers)
re recognized as points for which the value of δi is anomalously
arge as well as large ρi.

Fig. 1 illustrates the process of DPC through a concrete exam-
le. Fig. 1(a) shows the distribution of a set of 2-D data points.
ach point pi is depicted on a decision graph by using (ρi, δi)
s its x-y coordinate as shown in Fig. 1(b). By observing the
ecision graph, the density peaks can be identified in the top right
egion since they are with relatively large ρi and large δi. Since
ach point is only dependent on a single point, we can obtain a
ependent tree [12] rooted by the absolute density peak as shown
n Fig. 1(c). The height of each point implies the density. The
ength of each link implies the dependent distance. For each point
here is a dependent chain ending at a density peak. After the
ensity peaks (as cluster representatives) have been found, each
emaining point is assigned to the same cluster as its dependent
oint.

.2. General-purpose GPUs

Graphics Processing Units (GPUs) have been widely used in
any fields for high-performance computing and big data pro-
essing. A GPU consists of many stream multiprocessors (SMs) and
ach has many CUDA cores with L1 cache. Several memory hier-
rchy layers such as the L2 cache and the DRAM global memory
re shared by all SMs. The global memory is off-chip with the
argest memory size (up to 24 GB) but with the slowest access
peed. A group of 32 threads are organized into a warp and are
xecuted in a single-instruction-multiple-data (SIMD) manner.
ultiple warps compose a thread block that can be dispatched

o a specific SM. The thread blocks further constitute a GPU
ernel, which is a parallel function that can be invoked by the
rogrammer and executed on all the SMs in a GPU.
GPUs provide powerful computation resources and high mem-

ry bandwidth. To fully utilize GPUs, three key points should be
oticed during algorithm design: (1) Avoiding warp divergence.
hen different instructions among the threads are executed in
warp, warp divergence could occur, which is a major perfor-
ance bottleneck that prevents data-intensive applications from
aining high performance in GPUs. An experienced programmer
hould avoid warp divergence and load imbalance across threads.
2) Avoiding memory divergence. Coalesced memory access should
e used to make a batch of memory addresses requested by a
arp fall within one GPU cache line, so that they can be served
y a single memory transaction. Otherwise, multiple memory
ransactions will be required, which leads to memory divergence.
emory divergence reduces loading efficiency and throughput.

3) Reducing global memory access. Global memory also should
e minimized by maximizing the use of shared memory on the
evice, because the latency of global memory access costs hun-
reds of clock cycles. Therefore, increasing on-chip data locality
nd reducing global memory access are critical for improving
erformance.
401
. GPU-accelerated VP-Tree construction and query

VP-Tree is the key component in our proposed GPU-
ccelerated DPC algorithm. In this section, we first discuss why
e prefer VP-Tree over other spatial index structures. We then
escribe the VP-Tree construction and query methods in detail.

.1. Why VP-Tree?

In DP clustering, the calculations of the density value ρ and
he dependent distance value δ for each data point are the two
ey steps, which take up most of the computation time. According
o Eq. (1), the computation of the density values requires a huge
mount of nearest neighbors (NN) search operations, especially
or big data clustering. According to Eq. (2), the computation of a
oint’s dependence value also requires to access the point’s NNs
ince the point’s dependent point is likely to be close (recall that
he dependence value of a point is the distance to its dependent
oint, which is the nearest neighbor with higher density). A com-
on approach for speeding up NN search is to exploit the spatial

ndex. There exist several well-studied spatial index structures,
ncluding KD-Tree [20], Ball-Tree [21], VP-Tree [19], etc.

KD-Tree [20] is one of the most commonly used indexes for
N search problems. The KD-Tree is a binary tree in which
ach leaf node is associated with a k-dimensional point. Every
nternal node of the tree represents a splitting hyperplane that
ivides the space into two parts. Points to the left/right of this
yperplane are stored on the left/right subtree. The hyperplane
irection is carefully chosen perpendicular to one of the axes
n the k-dimensional space. In other words, KD-Tree leverages
he dimensions to separate data points. However, in DPC, the
omputations of ρ and δ require to use the relative distances
etween points. The data points should be organized by their
elative distances but not by their dimensions. This is also the
eason why KD-Tree’s performance degrades significantly when
ealing with high-dimensional data.
Ball-Tree [21] can be used to index data points according to

heir relative distances, which is also a binary tree where each
ode defines a k-dimensional hypersphere (i.e., ball). Each inter-
al node of the tree partitions the data points into two disjoint
ubsets which are associated with different balls. Each leaf node
f the tree defines a ball and enumerates all data points inside
hat ball. While the balls themselves may intersect, each point
ould be assigned to more than one ball according to its distance
rom the ball’s center. The performance of the Ball-Tree greatly
epends on the placement of balls, and a good placement algo-
ithm aims to minimize the overlap between balls. However, the
all placement algorithms [23] usually contain complex logic flow
ith many if-else branches, which is difficult to be parallelized
ith GPU architecture.
R-Tree [24] is a hierarchical data structure that groups nearby

bjects and represents them with their minimum bounding rect-
ngles in the next higher level of the tree. It has been widely
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Fig. 2. An illustrative example of VP-Tree structure. Red points form a cluster,
and blue points form another cluster.

adopted in many applications for indexing multi-dimensional
spatial data. R-Tree requires a preprocessing step before construc-
tion to recursively divide the data space into small partitions,
and then build a tree structure based on these partitions. While,
VP-Tree directly builds the index according to the distance with-
out the preprocessing. In addition, R-Tree allows sibling nodes
to overlap each other, so query operations cannot guarantee a
unique search path, which may lead to many useless queries and
significantly impact query performance. Although there are a lot
of work on building R-Tree based on GPUs [25–27], or using R-
Tree to accelerate the density clustering algorithm [28]. However,
compared with VP-Tree, R-tree requires more complex operations
to reduce the overlap between nodes and keep balance, which is
not suitable for GPU.

The Vantage Point Tree (VP-Tree) [19] is another spatial index
imilar to Ball-Tree. Each node of the tree contains one of the data
oints and a radius. Under the left child are all points that are
loser to the node’s point than the radius. The other child contains
ll of the points which are farther away. The construction of VP-
ree can be explained with an illustrative example. As shown in
ig. 2, point 28 is first chosen as the vantage point (vp) as it is far
way from other points. Point 28 is also picked as the level-0 vp
root node) of the VP-Tree as shown in Fig. 2(b). We then draw a
all centered at point 28 with carefully computed radius r such
hat half of the points are in the ball while half is outside. All the
oints in the ball are placed in the root node’s left subtree, while
ll the points outside are placed in the right subtree. The process
s recursively applied for the inside-ball points and outside-ball
oints respectively. Finally, we will obtain such a VP-Tree as
hown in Fig. 2(b).
The tree requires no other knowledge about the points in it but

nly a distance function that satisfies the properties of a metric
pace [29]. It does not need to find bounding shapes (hyper-
lanes or hyperspheres) or find points midway between them.
hese properties greatly match the needs of DPC. Furthermore,
he construction and the search of VP-Tree can be efficiently
arallelized with CUDA architecture since only a few data depen-
encies are required to handle. In the following subsections, we
ill present the details of the Vectorized VP-Tree structure and
he GPU-accelerated VP-Tree construction methods.

.2. Vectorized VP-Tree layout

The original VP-Tree structure is stored with many pointers
hat link different memory locations. A child node reference is
pointer referring to the location of the next level child. Since

he memory locations of these tree nodes are randomly spread
ut in memory space, it is difficult to utilize the GPU mem-
ry hierarchy to explore the data locality and could result in
emory divergence. Moreover, the next child location is ob-

ained through the reference pointer, which will incur many

ndirect global memory accesses. As discussed in Section 2.2, a

402
GPU-friendly design should avoid warp divergence, memory di-
vergence, and reduce global memory accesses. The pointer-based
tree structure does not adapt to GPU architecture. Therefore, a
vectorized GPU-friendly VP-Tree structure is desired.

In our approach as shown in Fig. 3, the VP-Tree nodes are
arranged in a breadth-first fashion in a one dimensional array (or
vector) instead of pointers. The root node is stored at position
0 in the array. Suppose a node’s position is i, we can obtain its
left child position as 2i+ 1 and its right child position as 2i+ 2.
Since a node’s child position is known, there is no need to store
pointers. This design requires less memory and provides higher
search throughput due to coalesced memory access.

In the original VP-Tree index, each internal node stores a
vantage point as well as its corresponding radius (which will be
used during tree search). It is noticeable that, in our vectorized
VP-Tree design, each array element does not store the point data
but stores the point id and its corresponding radius, which only
takes up 4+4=8 bytes. The point data are separately maintained in
a long array where each array element stores a specific point data
and can be accessed directly with a given point id. In addition, the
parallel query performance of VP-Tree is greatly limited by the
height of the tree. A higher tree implies more branches which are
harmful to parallelization. In our design, we compact 32 point ids
into a leaf node in order to reduce the height of the tree. Since
the leaf nodes only store point ids but no radius, a leaf node takes
up 32 × 4 = 128 bytes in order to exactly match the cache line
size. This can also maximize the fanout and improve parallelism
effectively. A number of 32 threads can be scheduled to execute
the computation in parallel. Thus, we have another array design
that stores leaf nodes where each array element takes 128 bytes.
To sum up, our vectorized VP-Tree design is composed of three
arrays. We refer to the array that maintains the VP-Tree vantage
points’ metadata as vantage array, the array that maintains leaf
point ids as leaf array, and the array that maintains the point data
as data array.

The typical tree construction methods involve many random
insert operations and node split operations, e.g., B-tree, which
incurs a large number of divergent branches. Branch divergence
has a significant impact on the performance of GPU programs and
limits parallelism. While VP-Tree is created from the root node to
leaf nodes level by level in a top-down manner. More and more
internal tree nodes are created and contained in the tree as the
tree is created from the top level to lower levels. Since VP-Tree is
a balanced binary tree and there is no dependency between these
internal nodes, the construction of VP-Tree can be parallelized ef-
ficiently, which highly adapts to single-instruction-multiple-data
(SIMD) architecture of GPUs.

3.3. Parallel construction of VP-Tree

The VP-Tree is recursively created as shown in Algorithm 1. As
mentioned, a vectorized VP-Tree that adapts to GPU is composed
of three arrays. Given the original data array data[] that stores
the point data, our algorithm will output a vantage array that
stores VP-Tree’s internal nodes and a leaf array that stores VP-
Tree’s leaf nodes. Based on a heuristic method for choosing a
vantage point [30], we first randomly pick a point p and make
the farthest point from p as the level-0 vantage point vp[0]
(Line 4). Then we compute each point’s distance from vp[0]
(Line(s) 9–10). The point ids are sorted in ascending order of these
distance values (Line 11), where we use CUB [31] Library for high-
performance sort operation. The medium of these distance values
(i.e., dist[sort_ids[mid]]) is used as level-0 vantage point’s radius
(Line 13). The points within this radius are arranged in the left
sub-tree, while the points outside this radius are arranged in the
right sub-tree. We then choose the in-radius vantage point id as
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Algorithm 1: Vectorized VP-Tree Construction
Input: point data array data[]
Output: vantage array vp[] and leaf array leaf [][]

1 ids[] ← initialize with point ids;
2 h← ⌈log2(ids[].length/32)⌉; // tree height
3 p← randomly select a point from data[];
4 vp[0].id← find the farthest point id from p;
5 Recur_Build(ids[], 0);

// ids[]: point ids; i: vantage point id
6 Function Recur_Build(ids[], i):
7 size← ids[].length;
8 if size > 32 then

// construct internal node
9 foreach id in ids[] do

10 ⟨id, dist[id]⟩ ← compute distance from data[id] to
vp[i]

11 sort_ids[] ← sort ids in ascending order of dist[id] in
parallel;

12 mid← ⌊size/2⌋;
13 vp[i].r ← dist[sort_ids[mid]];// vp’s radius

// recursively build left subtree
14 vp[2i+ 1].id← sort_ids[mid];
15 Recur_Build(data[], sort_ids[0,mid− 1], 2i+ 1);

// recursively build right subtree
16 vp[2i+ 2].id← sort_ids[size− 1];
17 Recur_Build(data[], sort_ids[mid, size− 1], 2i+ 2);
18 else

// construct leaf node
19 leaf [i− (2h

− 1)] ← ids[];

sort_ids[mid], which is likely to be far away from all other in-
adius points, and store it in the left child node (Line 14). We
lso choose the out-radius vantage point id as sort_ids[size − 1],
hich is likely to be far away from all other out-radius points
nd store it in the right child node (Line 16). Given the in-radius
oints (i.e., with point ids in sort_ids[0,mid − 1]) and in-radius
antage point, we can apply the same process on the left sub-tree
Line 15). Similarly, given the out-radius points (i.e., with point
ds in sort_ids[mid, size]) and out-radius vantage point, we can
lso apply the same process on the right sub-tree (Line 17). The
ecursive process will proceed if the number of in-radius points
r out-radius points is larger than 32 (Line 8). Otherwise, we
erminate the recursive construction process and make this node
s a leaf node and accommodate all the point ids in the leaf node.

UDA Multi-Stream Optimization. As we construct a balanced
inary tree in a top-down manner, the degree of parallelism is
xponentially increasing since there is no dependency when cre-
ting multiple same-level child nodes. We can issue concurrent
PU operations by placing them in multiple CUDA streams and
chieve task-level parallelism (Line 15 and Line 17).
403
. GDPC based on VP-Tree

In this section, we describe our proposed GPU-based DPC al-
orithm, GDPC that utilizes the constructed VP-Tree to accelerate
PC. The original DPC algorithm contains three steps, computing
ensity values ρ, computing dependent distances δ, and assigning
oints to clusters. All three steps of GDPC are performed on GPU.
n the following, we will describe these steps respectively.

.1. Computing density values ρ

The computation of ρ requires a large number of nearest
neighbors search operations. This requires O(n2) distance mea-
surements in a naive implementation. Our basic idea is to utilize
the VP-Tree index to avoid unnecessary distance measurements.
We illustrate the use of the existing VP-Tree through an illus-
trative example as shown in Fig. 4. When computing a point’s
density value, it is required to access the points that are in point
21’s dc range. Let us compute point 21’s density value (i.e., count
the number of points within the gray circle) based on an existing
VP-Tree’s space partition result as shown in Fig. 4. We first
evaluate the distance from point 21 to level-0 vantage point 28.
Since the gray circle with radius dc is completely inside the level-
0 ball (with green arc line), i.e., |p21, p28| + dc ≤ vp[0].r where
|·, ·| is the distance between two points, it is enough to search
the left child, where the vantage point is point 27. Vantage point
27’s ball (with orange arc line) intersects with the gray circle,
i.e., |p21, p27| − dc ≤ vp[1].r (the gray circle has a part inside
the orange ball) and |p21, p27|+dc ≥ vp[1].r (the gray circle has
a part outside the orange ball), so we need to search both the left
child (with vantage point 24) and the right child (with vantage
point 26). Similarly, we find the gray circle is completely inside
vantage point 24’s ball but intersecting with vantage point 26’s
ball, so we can locate the covered leaf nodes, i.e., vantage point
24’s left leaf node (containing point 24, 13, 10, 22), vantage point
26’s left leaf node (containing points 26, 23, 9, 2), and vantage
point 26’s right leaf node (containing point 5, 21, 28). These points
are the candidate points for further distance calculations.

We describe the details more formally in Algorithm 2. Lines
1–10 depict how we determine the covered leaf nodes for point
p, i.e., cover_leaves[p], which contain all the candidate points for
distance calculation. This is exactly the same process as we illus-
trated in the above example. Line 11 is the ρ computation that is
only based on the candidate points contained in cover_leaves[p]
(a set of covered leaf nodes for point p).

To achieve high parallelism and to coalesced memory access
during the point search process, we adopt several implementa-
tion optimizations as follows.

Calculation Order Arrangement (Line 3). During tree traversal,
if multiple threads in a warp execute random queries, it is difficult

to achieve coalesced memory access because they might traverse
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Algorithm 2: GDPC Algorithm based on VP-Tree
Input: data array data[], vantage array vp[], leaf array leaf [][],

and cut-off distance dc
Output: density array ρ[], dependent distance array δ[],

point-cluster assignment cluster[]
1 init cover_leaves[];// cover leaves for each point
2 n← vp[].length; // number of internal nodes
/* compute density values */

3 foreach point p parallel do
4 Stack S.push(0) ; // push root into stack S

// search covered leaves within dc range
5 while S is not empty do
6 i← S.pop();
7 if i ≥ n then

// this is a covered leaf node
8 cover_leaves[p].append(leaf [i− n]);

9 if
⏐⏐data[vp[i].id], data[p]⏐⏐− dc ≤ vp[i].r then
// search left child node

10 S.push(2i+ 1);

11 if
⏐⏐data[vp[i].id], data[p]⏐⏐+ dc ≥ vp[i].r then
// search right child node

12 S.push(2i+ 2);

13 ρ[pid] ← evaluate p’s ρ based on cover_leaves[p];
/* compute dependent distances */

4 foreach point p parallel do
15 if p has highest density among cover_leaves[p] then

// compute dependent distances globally
16 {dep[p], δ[p]} ← find p’s dep. neighbor and evaluate δ

based on all points data[];
17 else

// compute dependent distances locally
18 {dep[p], δ[p]} ← find p’s dep. neighbor and evaluate δ

based on cover_leaves[p];

/* peak selection and cluster assignment */
9 peak[] ← determine density peaks (large ρ and large δ);
0 cluster[] ← determine each point’s cluster assignment based on

peak[] and dep[];

the tree along different paths. Diverse queries in a warp would
lead to poor GPU performance due to memory divergence. If mul-
tiple queries share the same traversal path, the memory accesses
coalesce when they are processed in a warp. We design our warp
parallelism in terms of VP-Tree properties. Because the points
assigned to the same leaf node share the same traversal path,
we assign the threads in the same warp to process the points in
the same leaf node. That is, we execute warp-parallelism between
leaf nodes and execute thread-parallelism within each leaf node.
In this way, the warp divergence is mitigated.

Ballot-Counting Optimization (Line 13). CUDA’s ballot func-
ion takes a boolean expression and returns a 32-bit integer,
here the bit at every position i is the boolean value of thread
within the current thread’s warp. The ballot function performs
reduction-and-broadcast operation over a predicate, which is
sually a comparison between a key (or a pivot) and each thread’s
ey. The intrinsic operation can enable an efficient implementa-
ion of the per-block scan. By combining the __ballot() and
_popc() intrinsics, we can efficiently count the number of
oints within dc .

Fully Contained Leaf Nodes. In the original VP-Tree, the points
in the vantage node might be not contained in leaf nodes. That
means, we have to check internal vantage nodes in order not to
miss dc range points, which could result in memory divergence.
In our implementation, the vantage points also have their copies
in leaf nodes to avoid memory divergence.
404
Fig. 4. An illustrative example of using VP-Tree (better with color).

4.2. Computing dependent distances δ

Given the computed density values, we can calculate the de-
pendent distance values as shown in Lines 14–18 in Algorithm
2. Recall that the dependent distance of a point is its distance to
the nearest neighbor with a higher density as shown in Eq. (2).
We can again leverage the VP-Tree index. Since a point p’s near-
est neighbor with a higher density is highly likely to be in its
leaf nodes, we first locally search among its leaf nodes. If such
a point does not exist (when the point itself has the highest
density among its leaf nodes), we will search globally by checking
all the other points with higher density (Line(s) 15–16). Other-
wise, its dependent neighbor resides in the covered leaf nodes
cover_leaves[p], so we can obtain its dependent neighbor and
compute its dependent distance only considering the candidate
points in its covered leaf nodes (Line(s) 17–18). The distance
calculation results in the previous step are reused to find the
closest points with higher density to save computation costs.

Similarly, we achieve coalesced memory access by arranging
the calculation order (Line 18), making threads in a warp to
process the points in the same warp. In order to avoid unnec-
essary distance calculations, we also sort the candidate points
in descending order of their density values. Since we attempt to
find the nearest neighbor with a higher density, we can skip the
distance calculations with the points which have a lower density
in terms of the density-ordered list (Line(s) 16,18).

4.3. Assigning points to clusters

Given the density values ρ and the dependent distance values
δ, we then need to pick the density peaks, which have both
large ρ and large δ (Line 19). Given a set of density peaks (each
represents a cluster), we should assign each point to a certain
density peak (i.e., a certain cluster). We perform this process by
tracing the assignment chain till meeting a certain density peak.
The assignment dependency relationship (as shown in Fig. 1(c))
is recorded when computing δ (Line(s) 16,18).

To adapt to GPU’s parallel architecture, we need to build a
reverse index of the assignment chain. Then, the point assignment
is similar to a label propagation process starting from a number
of density peaks in a top-down manner (Line 20), where the label
is a certain density peak’s id and the reversed dependencies can
be regarded as the underlying graph edges. This label propagation
process can be easily parallelized since the propagation processes

on different sub-trees are totally independent.
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. Incremental GDPC

In this section, we present how to handle incremental updates
f GDPC clustering results on evolving datasets. Suppose the
riginal dataset is D and the newly added data is ∆D. In order to
pdate clustering results in response to input changes, we should
irst update the VP-Tree efficiently with GPU parallelism. In
ection 5.1, we propose an incremental update method that can
djust the GPU-based VP-Tree incrementally with newly added
ata ∆D. Furthermore, the addition of new points always results
n changes of the ρ and δ values. The simplest way to update
lustering results is to reperform GDPC based on the updated
PU-based VP-Tree. However, reperforming GDPC will result in
large amount of redundant computation, because most of the
oints’ ρ and δ values are not changed, i.e., they are not affected
y the newly added data. Thus we only compute the ρ and δ

alues for the new points in ∆D and update the ρ and δ values
hat are affected by ∆D. We will introduce the details of the
ncremental update of ρ and δ values in Sections 5.2 and 5.3. Last,
e introduce how to incrementally update clustering results in
ection 5.4.

.1. Incremental update of VP-Tree

The structure of VP-Tree is determined by the selected vantage
oints and their radius. When adjusting the VP-Tree to adapt to
he newly added points, some points will be re-partitioned due to
he re-selection of vantage points or the changes of their radius.
n order to minimize the changing scope of VP-Tree, Fu et al. [30]
ave proposed a dynamic VP-tree structure, which processes the
ew insertions sequentially one by one. However, this strategy is
esigned based on CPU and involves upward backtracking, which
ncurs significant redundant reconstruction costs on GPU.

In this subsection, we propose a GPU-friendly incremental
pdate method to update VP-Tree dynamically and efficiently
n parallel. The basic idea is to group points in ∆D according
o their target leaf nodes (data locations) and perform inser-
ions/deletions within the same target leaf node together. This
an adapt to GPU’s SIMD execution model and greatly improve
arallelism. To avoid leaf node overflow after insertion, we should
nsure enough space for these leaf nodes. We introduce a new
rray free[] to maintain the free room of all leaf nodes rooted by
p[] and that of all leaf nodes leaf []. Given the incremental input
D, if there is not enough free room to accommodate ∆D, the
P-Tree should be expanded. There are two ways to increase the
apacity of GPU-based VP-Tree, one is to rebuild the GPU-based
P-Tree with all data points D∪∆D, and the other is to split each
eaf node and increase the tree height, i.e., the original leaf node
ecomes an internal node (vantage point). The first way requires
pdating the whole vp[] array while the second way only needs
o append the new vantage points at the end of vp[]. To reduce
pdate cost, we prefer the second one to increase the capacity of
PU-based VP-Tree.
Algorithm 3 presents the details of our incremental update

ethod for GPU-based VP-Tree. We first check if the free room
f the whole VP-Tree (i.e., maintained in free[0]) is enough to
old the new points (Line 2). If there is not enough space, an
nc_Capacity() function is first invoked to expand the tree
Line(s) 7–18). As discussed above, we choose to extend leaf
odes to increase capacity. We split each leaf by selecting a new
antage point among the points in the old leaf node and assigning
he old points to the left/right new leaf nodes according to their
istances to the new vantage point. As described in Section 3,
he points in each leaf are sorted in ascending order of their
istances to their vantage/parent. Within the leaf node, we select
he last point as the new vantage point (Line 11) and compute
405
he distances from each point to the new vantage point (Line(s)
2–13). We sort the point ids according to the distance values
nd use the medium value of these distances as the new vantage
oint’s radius (Line(s) 14–16). The points within this radius are
ssigned to the new left leaf node, while the points outside this
adius are assigned to the new right leaf node (Line(s) 17–18).
ince there is no dependency between leaf nodes, the leaf nodes
an be split in parallel. After the capacity of the GPU-based VP-
ree is increased, we update the free space array free[] and the
eight of the tree (Line(s) 4–5). Given the free space of all new
eaf nodes, we update each internal node’s free space based on
ts leaf nodes recursively in a bottom-up manner, i.e., free[i] =
ree[2i+ 1] + free[2i+ 2].

As the VP-Tree has enough free space to accommodate the
ew points, the insertion of new points is similar to the con-
truction of the VP-Tree. We first compute the distance from
ach point to the top-level vantage point vp[0]. The points within
p[0]’s radius are assigned to the left subtree, while the points
utside the radius are assigned to the right subtree (Line(s) 21–
5). The same process is applied on the left and right subtrees
ecursively until arriving at the leaf node (Line(s) 28–33). By
his way, the new points targeted at the same leaf nodes are
rouped and processed at the leaf node together, which achieves
atched processing and adapts to parallel execution. If there is not
nough free room to accommodate the points, we will reconstruct
he subtree with all points of this subtree and the assigned
ew points (Line(s) 35–36). The incremental update approach is
arallel-friendly since we arrange the point insertions into groups
ccording to their locations and perform batch processing for
ach group.
Fig. 5 shows an illustrative example, in which ten new points

id 29–38) are added. Fig. 5(a) shows the initial partition layout,
here the gray circles are new points. Fig. 5(b) shows the original
P-Tree structure. Before insertion, we find the free space is not
nough to accommodate ten new points, so we first expand the
eaf nodes to increase the capacity according to Algorithm 3. Then
he new points are inserted into the expanded tree together in a
atch and in a top-down manner as shown in Fig. 5(c). Specially,
ach point is determined to be assigned to the left subtree or
he right subtree of the root vantage point (point 28) according
o its distance to point 28 and root vantage point’s radius. This
ssignment process proceeds recursively layer-by-layer based on
he distance to the level-specific vantage point and the vantage
oint’s radius, and finally we obtain the updated VP-Tree as
hown in Fig. 5(c). Accordingly, we have the updated vantage
oint partition layout as shown in Fig. 5(d).

.2. Incremental update of density values ρ

Based on the updated VP-Tree, we next perform the incremen-
al update of the density values. It requires not only (i) evaluating
values of the newly added points but also (ii) updating the

reviously computed ρ of old points, since a new point p may
hange an old point q’s density value as p falls into q’s dc range.
he evaluation of the new points’ ρ follows the same process as
epicted in Section 4.1. Regarding the update of existing ρ, we
rovide two alternative approaches in the following.

ncidental Method. The idea of the incidental method is that,
hen calculating a new point q’s ρq, the density values of the old
oints that are within q’s dc radius range are incremented by 1
ncidentally. This can avoid another separate pass for updating
ld points’ densities. However, since two threads compute the
ensities of new points q1, q2 may trigger the density update
f the same old point at the same time, there exist write-write
onflicts that should be resolved to ensure correctness. A locking
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Fig. 5. An illustrative example of VP-Tree update.
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echanism that avoids concurrent updates is needed but this can
urt parallel execution performance.

eparate Method. An alternative is to separate new points’
computation from old points’ ρ update. If an old point p’s

over_leafs contain newly inserted points, p is marked as a point
o be updated with a new density value. Because we have counted
ll old points within p’s dc radius, we only need to compute the
istance from p to the newly inserted point in its cover_leafs.
here is no write-write conflict in this method since multiple
hreads update different ρp independently. However, the separate
ethod incurs redundant distance measurements performed by
ultiple threads.
Intuitively, when processing the small number of new points

hat leads to a small conflict probability, the incidental method is
referred. When processing large amounts of incremental data,
he separate method is preferred. In Section 6.2.4, we will empir-
cally show the effects of these two update methods.

.3. Incremental update of dependent distances δ

For newly added points, we should calculate their dependent
istances δ according to their density values. This can be done
ccording to the GPU-friendly method proposed in Section 4.2. On
he other hand, the insertion of new points and the changes of old
oints’ ρ values will result in the changes of old points’ δ values
s well. Therefore, the δ values of old points that are affected
hould be updated accordingly. The δ value of an old point p will
hange only in the following two cases. (i) The density value of p
s updated and becomes larger than that of its dependent point.
ii) The density of a point q that is closer to p than p’s dependent
oint increases to be larger than that of p, i.e., q becomes p’s
ew dependent point. For the first case, we have to recompute
p. For the second case, though the dependent distance of p may
e updated, its old dependent distance, denoted as δ∗, can be
reated as the upper bound of its new δ value. We can update
p by checking p’s neighbors within δ∗ range.

.4. Incremental update of clustering results

After updating ρ and δ values, the clustering results can be
pdated immediately. Following the assignment chain that is
pdated during δ’s incremental update, we rearrange the point-
luster assignment, i.e., some points originally belonging to clus-
er A might be merged to another cluster B. We also check
hether a point p’s updated δ and ρ are large enough to be
ensity peaks (line 19 in Algorithm 2). If so, then p is treated
s a new density peak (cluster center), and all the points in the
ssignment chain ended by p will form a new cluster centered at
, i.e., a cluster is split into two clusters.
406
.5. Deleting

When updating the clustering results, the operation of point
eletion is similar to that of addition.
For the updates of VP-Tree, as shown in Fig. 5(c), we divide the

eletion points into different batches from top to bottom, locate
he leaf nodes where they are, and then delete them.

For the updates of density values, similar to point insertion, we
lso provide two update methods, the Incidental Method and the
eparate Method (Section 5.2). When deleting a point, the main
dea of the Incidental Method is to update the density of points
ithin the dc range of the deletion point (density ρ is updated to
e ρ-1). This method has write-write conflicts, we need to lock
he points where the density is updated to ensure the accuracy
f the density. The Separate Method first checks whether the
eaf nodes within the dc range of each point pi (cover_leaves)
ontain the deletion points, if so, updates the density of point
i by subtracting the number of deletion points contained in the
over_leaves from the original density. This method is suitable for
larger number of deletion points.
For the updates of the delta, the delta values need to be

pdated only when the following two conditions meet. (1) The
ensity of p’s dependent point becomes smaller than that of p.
2) There is a point q whose distance to p is less than the old delta
alue of p, and the density of q becomes larger than that of p due
o the p’s density value decreasing. For the first case, we have to
ecalculate the delta of point p. For the second case, we take the
ld delta of point p as the upper bound, and then look up the
earest neighbors with higher density within the upper bound.
inally, we update the clustering results based on the updated
ensity and delta.

. Experiments

This section evaluates GDPC and its incremental variant on
eal-world datasets to verify their benefits.

achine Configuration. We conduct all experiments on two 8-
ore servers (Intel Xeon CPU Silver 4110 @ 2.1 GHz, 32 logical
PUs and 64GB host memory) with an NVIDIA RTX2080Ti GPU. It
as 68 SMs and 11 GB GDDR6 memory with a peak bandwidth
f 616 GB/s. Our implementation is compiled by CUDA 10 along
ith nvcc optimization flag -O3.

ataset. Table 1 lists the data sets used in our experiments. These
nclude two small and medium sized 2D data sets, and seven real
orld large high-dimensional data sets Facial, 3DSpatial, KDD,
igCross, Household, PAMAP, and Airpline. all of which are avail-
ble online [32–35]. The data set, BigCross, contains 11.6 million
ata points, each with 57 dimensions. To obtain clustering result
n a reasonable time period, we construct a smaller BigCross500K
ata set by randomly sampling 500,000 points from the original
igCross data set.
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Algorithm 3: Incremental Update of VP-Tree
Input: data array data[], vantage array vp[], leaf array leaf [][],

free space array free[], and new point data array
new_data[]

Output: updated vantage array vp[] and updated leaf array
leaf [][]

1 new_ids[] ← initialize with new point ids;
2 while new_ids[].length > free[0] do
3 Inc_Capacity();
4 update free space array free[];
5 h = h+ 1; // tree height

6 Recur_Insert(new_ids[], 0);

7 Function Inc_Capacity():
8 n← vp[].length;
9 oldleaf [] ← leaf []; leaf [] ← empty;

10 foreach oldleaf i parallel do
// the last point in leaf as new vp

11 vp[n+ i] = oldleaf [i][oldleaf [i].length− 1];
12 foreach id in oldleaf [i] do
13 ⟨id, dist[id]⟩ ← compute distance from oldleaf [i][id]

to vp[n+ i];
14 sort_ids[] ← sort ids in ascending order of dist[id];
15 len← sort_ids[].length; mid← ⌊len/2⌋;
16 vp[n+ i].r = dist[sort_ids[mid]];

// extend leaf array
17 leaf [2i] ← sort_ids[0,mid];
18 leaf [2i+ 1] ← sort_ids[mid+ 1, len− 1];

9 Function Recur_Insert(new_ids[], i):
20 if new_ids[].length > 0 then

// assign points to left/right subtree
21 foreach id in new_ids[] parallel do
22 if |data[id], data[vp[i].id]| ≤ vp[i].r then
23 L[].append(id);
24 if |data[id], data[vp[i]]| > vp[i].r then
25 R[].append(id);

26 l = 2i+ 1; r = 2i+ 2;
27 if L[].length <= free[l] and R[].length <= free[r] then

// free space is enough
28 if l >= 2h

− 1 then
// append to leaf nodes

29 leaf [l− (2h
− 1)].append(L[]);

30 leaf [r − (2h
− 1)].append(R[]);

31 else
// this is an internal node

32 Recur_Insert(L[], l);
33 Recur_Insert(R[], r);

34 else
// rebuild subtree with new points

35 S[] ← Combine all points of the subtree identified by
vp[i] and new_ids[];

36 Recur_Build(S[], i);

6.1. Results of GDPC

We evaluate GDPC by comparing it with the state-of-the-art
PC implementations, including GPU-based DPC (CUDA-DP [18]),
istributed DPC (LSH-DDP [3]), and multicore-based DPC (S-
pprox-DPC [13]).

.1.1. Performance comparison with state-of-the-arts
We compare the runtime of our proposed GDPC with other

PC implementations as shown in Fig. 6. We first compare with
407
Fig. 6. Runtime comparison.

Fig. 7. Computational cost.

Table 1
Data sets.
Data set No. instances No. dimensions

Aggregation 788 2
S2 5,000 2
Facial 27,936 300
KDD 145,751 74
3Dspatial 434,874 3
BigCross500K 500,000 57
Household 2,075,257 4
PAMAP 3,252,226 12
Airpline 5,277,086 3

CUDA-DP [18] on smaller datasets Aggregation, S2, and Facial.
CUDA-DP returns out of memory error on larger datasets 3Dspa-
tial, KDD, and BigCross500K. This is because CUDA-DP just opti-
mizes the distance calculations without leveraging spatial index
structure. We can see that our GDPC can achieve 5.3X–17.8X
speedup over CUDA-DP attributed to our vectorized VP-Tree de-
sign and GPU-friendly parallel algorithm.

We then compare GDPC with S-Approx-DPC on low-
dimensional datasets Aggregation, S2, and 3DSpatial. S-Approx-
DPC uses KD-Tree to index data, which only work well on
low-dimensional datasets (see Section 3.1), so it cannot run on
high-dimensional datasets. Our results show that GDPC achieves
a 43–148.9x speedup over S-Approx-DPC, since our GDPC can
benefit from GPU’s parallelism.

In addition, to evaluate our algorithm on larger and higher di-
mensional datasets (including Facial, 3Dspatial, KDD, and
BigCross500K), we compare with a state-of-the-art distributed DP
clustering algorithm LSH-DDP [3], which is implemented based
on Hadoop MapReduce and utilizes locality-sensitive hashing
index to improve the ρ and δ calculations. The distributed LSH-
DDP experiments are performed on a cluster with 5 machines (1
master and 4 slaves), each equipped with an Intel I5-4690 3.3G
4-core CPU, and 4 GB memory. We can see that our GDPC can
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Fig. 8. Runtime breakdown.

Fig. 9. Scaling performance.

Fig. 10. Effect of multi-stream processing.

achieve 44.8–78.8X speedup. We found that LSH results in an
unbalanced workload and suffers from extensive communication
overhead and synchronization overhead.

6.1.2. Computational cost analysis
In DPC algorithm, the distance calculations for computing ρ

and δ is the most expensive part, especially for large and high-
dimensional data. The naive implementation requires to evalu-
ate all-pair distances, which results in significant computational
overhead. GDPC utilizes VP-Tree to avoid the large number of
unnecessary distance calculations due to its excellent support for
nearest neighbors search. Similarly, LSH-DDP also leverages LSH
index to avoid unnecessary distance calculations. We evaluate
the computational cost of naive all-pair computation, LSH-DDP,
and GDPC by comparing their number of distance calculations
during the clustering process and show the results in Fig. 7. We
can see that our GDPC requires significantly fewer exact distance
calculations than prior work, say only 1.4–6.8% of LSH-DDP and
0.3–3.8% of all-pair calculations.
 i

408
Fig. 11. Effect of coalesced memory access.

6.1.3. Runtime breakdown analysis
In the GDPC algorithm, there are four main steps to obtain

the final clustering result, which is VP-Tree construction, density
ρ calculation, dependent distance δ calculation, and point-to-
cluster assignment. We break down the total runtime and see the
runtime of each particular phase. The runtime of each phase is re-
ported in Fig. 8. We can see that for the larger dataset, the ρ com-
putation is always the most expensive part since it requires large
number of distance measurements. While the point-to-cluster
assignment is relatively fast.

6.1.4. Scaling performance
We also evaluate the scaling performance of GDPC when in-

creasing data size. We first randomly choose 213
−219 number of

oints from the BigCroos500K dataset to generate multiple same-
istribution datasets with different sizes. We then record the
untime for the VP-Tree construction phase and the runtime for
he ρ calculation phase when clustering different-size datasets.
he results are reported in Fig. 9. The runtime exhibits linear
rowth when increasing the data size, while the runtime of
ll-pair distance calculations will exhibit quadratic growth. This
xperiment shows our GDPC algorithm can achieve great scaling
erformance.

.1.5. Effect of CUDA multi-stream optimization
As presented in Section 3.3, during the VP-Tree construction

rocess, we leverage CUDA multi-stream optimization to improve
he parallelism when constructing the left child sub-tree and
he right child sub-tree. We study the effect of multi-stream
ptimization empirically by comparing with single-stream imple-
entation. The results of GDPC with and without multi-stream
ptimization are depicted in Fig. 10. We can see that the multi-
tream optimization can significantly improve performance, say
.73X–19.12X improvement.

.1.6. Effect of coalesced memory access
Regarding GPU-based algorithm design, coalesced memory ac-

ess is a key optimization technique that utilizes the properties
f GPU memory hierarchy. In our GDPC implementation, a very
mportant coalesced memory access optimization is the arrange-
ent of point calculation order when locating the covered leaf
odes. As discussed in Section 4.1, we assign the threads in
he same warp to process the points in the same leaf node.
hat is, processing points according to their belonging leaves. In
his way, we can achieve coalesced memory access because the
oints in the same leaf node share the same traversal path. To
nderstand the performance improvement of our design, we use
he random processing order to see the advantages of using the
eaf-based processing order. The results are shown in Fig. 11, we
an see our approach shows better performance, say 1.07X–1.82X

mprovement.
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Fig. 12. The response time comparison of incremental clustering algorithms.
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.2. Results of incremental GDPC

We evaluate Incremental GDPC by comparing with performing
DPC from scratch (named as GDPC-restart). We also compare
ith another incremental DPC algorithm EDMStream [12]. For
ach dataset, we choose 10% of the original dataset as the base
ata and add data in batches with each batch containing 1000
andom points from the original dataset.

.2.1. Response time
With constantly incoming data, we separately run GDPC-

estart, EDMStream, and Incremental GDPC to update clustering
esults and record their response time to cluster update for
ach incoming batch of data. Fig. 12 shows the response time
f GDPC-restart, EDMStream, and Incremental GDPC for each
ncremental batch. As the base data size is larger and larger, all
lgorithms require a longer response time, which is under expec-
ation. Compared with EDMStream, Incremental GDPC achieves
ignificant speedup, say 2–61.3X speedup, thanks to our GPU-
riendly algorithm design. Compared with GDPC-restart, Incre-
ental GDPC achieves 1.2–81.5X speedup. This can be attributed

o our incremental algorithm design that can effectively reduce
he cost of rebuilding VP-Tree and avoid the redundant distance
easurements when updating ρ and δ values.

.2.2. Update time of each phase
We also compare Incremental GDPC with GDPC-restart on

he update time of each phase to verify the efficiency of in-
remental updates. The δ update time in Incremental GDPC is
imilar to that in GDPC-restart, so we only show the runtime
f tree update and ρ update in Incremental GDPC and GDPC-
estart as shown in Fig. 13. We can see that the Incremental GDPC
utperforms the GDPC-restart in both phases. Incremental GDPC
erforms incremental updates based on the previous clustering
esult rather than restarting clustering on the updated dataset.
he incremental approach saves a large amount of redundant
omputation costs. Especially in the ρ update phase (the most
ime consuming phase as illustrated in Fig. 8), the runtime of
he GDPC-restart approach increases steeply as data evolve and
inally reaches up to 2,235 ms to complete the ρ update. While
ur incremental approach only needs at most 163 ms.

.2.3. Incremental update of VP-Tree: GPU-friendly vs. CPU-friendly
In order to verify the efficiency of our proposed incremental

P-Tree update method, we compare our method with the in-
remental update method proposed in [30]. Rather than batching
409
nsertions, the method adopted in [30] processes insertions se-
uentially, which is CPU-friendly and not suitable for GPU archi-
ecture. For fairness, we have parallelized and implemented this
ethod on GPU. As described in [30], we first insert the points

ocated in leaf nodes with free space into VP-Tree in parallel. For
he remaining points that are located in leaf nodes without free
pace, we adjust the VP-Tree by the method proposed in [30] in
arallel. Then the remaining points can be inserted into VP-Tree
n parallel. Fig. 14 shows the update time of our approach (GPU-
riendly) and the parallelized sequential method (CPU-friendly)
n two datasets, KDD and BigCross. Our batched method always
pends less time updating the tree, because it does not need
o backtrack to traverse the search path and search the nearest
ncestor node that has enough space. It can be seen that our
ethod is more simple and more effective.

.2.4. Incremental update of ρ: Incidental vs. Separate
As discussed in Section 5.2, we provide two alternative ρ

pdate methods. Each method has its own advantage and dis-
dvantage (we use the incidental method by default). In this
xperiment, we compare them by varying different incremental
ata size |∆D| (from 1% to 16%) on KDD and BigCross datasets.
he results are shown in Fig. 15. We can see that if the incremen-
al data size |∆D| is smaller (e.g., |∆D| < 4% · |D|), the incidental
method outperforms the separate method, otherwise the separate
method performs better. This is because that when |∆D| is small,
there are fewer write-write conflicts in the incidental method,
and when |∆D| becomes larger, the lock-based conflict resolution
occupies a very large computational overhead.

6.3. Bottleneck Analysis and Optimizations

We use the Nsight Compute CLI to analyze the utilization of
GPU during the density computation (which is the most time con-
suming part, as shown Fig. 8). The density computation of point p
mainly includes: (a) Obtaining the leaf nodes that may contain p’s
neighbors whose distance to p is smaller than dc . (b) Traversing
the points in these leaf nodes to find the points whose distance
to p is smaller than dc . (c) Calculating the density values by
summing up these qualified points. In our naive implementation,
each thread randomly processes a point in the data set, and these
threads do not communicate with each other. For our naive GPU
implementation, we show the profiling results on several metrics
in Table 3, including the Achieved Occupancy, the Warp Execution
Efficiency, the Branch Efficiency, and the Global Memory Load
Efficiency. The detailed descriptions of these metrics are shown
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Fig. 13. Runtime comparison of VP-Tree update phase and ρ update phase.
Fig. 14. Runtime comparison for updating VP-Tree: batched vs. sequential.
Fig. 15. Runtime comparison for updating ρ: incidental vs. separate.
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n Table 2. From Table 3, we can see that the utilization of GPU
s less than 55.5% without optimizations. Therefore, we focus on
mproving the utilization of GPU.

The reasons for low GPU utilization in naive implementation
ithout optimizations in Table 3 are as follows:

• Warp divergence. Warp divergence is a major performance
bottleneck that prevents data-intensive applications from
achieving high performance in GPU. Our naive implemen-
tation is that one thread processes a random point in the
data set, which causes multiple threads in a warp to perform
random queries resulting in warp divergence as they may
traverse the tree along different paths. Warp divergence can
seriously impact GPU performance.
• Load imbalance. The number of points in different

cover_leaves varies. When the size of the cover_leaves be-
tween threads differs greatly within the same warp, the load
imbalance problem will arise and impact GPU performance.
• Low bandwidth and high latency. Since the data are all

stored in global memory, the programs have to frequently
access global memory to get the data. If all threads of a warp
execute a load instruction, and these threads access contigu-
ous memory units of global memory, the access efficiency is
the highest at this time, which is close to the peak of global
memory bandwidth. However, the naive implementation
method uses multiple threads to execute random queries,
which may cause memory addresses requested in the same
410
warp to fall into different GPU cache lines. In this case,
multiple memory transactions are required to process these
requests, which seriously impacts the loading efficiency and
throughput.

o address the above problems, we mainly propose the following
ptimizations:

• We let each leaf node contain 32 data points. A warp gener-
ally contains 32 threads that execute the same instructions.
We use a warp to process a leaf node, that is, 32 threads
process the corresponding 32 data points. This method en-
sures that threads in a warp execute the same instructions
and alleviates warp divergence. This optimization plays an
important role in computing (Section 4.1) and updating
density values (Section 5.2).
• We use the Shuffle instruction to reduce the latency of

memory accesses when calculating density values (
Section 4.1), updating density values (Section 5.2), calcu-
lating delta values (Section 4.2), and updating delta values
(Section 5.3). The Shuffle instruction allows the current
thread to directly read the values in the registers of other
threads, which reduces the communication latency between
threads, and performs data exchange between threads with-
out additional memory. We also use the shuffle instruc-
tion to achieve cooperation between threads to balance the

loads.
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Table 2
Description of performance parameters.
Parameters Instructions

Achieved Occupancy Refers to the ratio of active warps to the total warps, enough active warps can
ensure full execution of parallelism (conducive to delay hiding)

Warp Execution Efficiency Execution efficiency of threads in a warp

Branch Efficiency The ratio of the number of non-divergent branches to the number of all
branches, the higher the value, the stronger the parallel execution ability

Global Memory Load Efficiency The ratio of the requested global load throughput to the desired global load
throughput, a measure of the application’s utilization of device memory bandwidth

Global Load Throughout Check the memory read efficiency of the kernel

Number of Transactions Evaluate the number of global memory requests
Table 3
Performance comparison with and without optimizations.

Without optimizations With optimizations

Achieved Occupancy 48.34% 96.8%
Warp Execution Efficiency 55.5% 99.84%
Branch Efficiency 48.3% 99.9%
Global Memory Load Efficiency 21.22% 75.23%
Global Load Throughout 162.08 GB/sec 527.42 GB/sec
Number of Transactions 251.2x106 142.5x106
• In addition, we also use the CUDA Stream to improve the
performance of the building (Section 3.3) and updating VP-
Tree (Section 5.1).

Table 3 shows the GPU utilization and performance com-
arison with and without optimizations. It can be found that
he Achieved Occupancy, the Warp Execution Efficiency Global,
nd the Branch Efficiency have all reached more than 90% after
ptimizations, so the parallelism has been greatly improved. The
lobal Memory Load Efficiency has also reached more than 70%,
hich is a significant improvement compared to 21%. We also
easured the Global load Throughout and the Number of Trans-
ctions, the Global Load Throughout is increased by 3.2 times,
nd the Number of Transactions is reduced by half. It means that
he memory access efficiency and bandwidth have been greatly
mproved with optimizations.

. Related work

Parallel clustering makes full use of the resources of multiple
rocessors, makes the clustering algorithm run on multiple pro-
essors at the same time, greatly shortens the execution time of
he clustering algorithm, and provides an effective solution for
arge-scale data clustering analysis.

In recent years, general-purpose graphics processing units
GPGPU) have been widely used to facilitate processing-intensive
perations for their parallel processing ability. There exist a
umber of studies aiming to use GPU to accelerate data clus-
ering. Cao et al. [36] exploit the high computational power
nd pipeline of GPUs for distance computing and comparison,
nd has sped up the k-means algorithm substantially. Farivar
t al. [37] propose the GPU-accelerated k-means algorithm and
as achieved 13x speedup over CPU-based k-means clustering.
utz et al. [38] execute k-means in a single data pass per itera-
ion and allows to perform the point assignment phase and the
entroid update phase efficiently on GPUs. GDBSCAN [39] can be
00 times faster than the sequential version by using graphs to
xplore various parallelization opportunities. BPS-HDBSCAN [40]
s a shared memory hybrid CPU/GPU approach that can perform
lustering on a billion-point scale. Taylor et al. [41] propose a GPU
ccelerated Yinyang k-means [42], GPU-YYS, by exploiting shared
emory and a centroid update scheme to accelerate Yinyang

-means.

411
There also exist several GPU-based approaches for accelerating
DP clustering algorithms. Li et al. [17] accelerate the distance
matrix computation in DPC with GPU. The implementation is
based on JCuda and has only achieved an acceleration about 7
folds. CUDA-DP [18] has redesigned the data structure of the data
point array on the basis of [17]. They do not use the traditional
array of structure (AOS), but the structure of array (SOA) form.
The results of the experiment show that CUDA-DP can achieve a
45-fold acceleration. But the cost of distance matrix calculation
still degrades the performance. Also, it is limited by the memory
size of a single GPU.

On the other hand, several research efforts have focused on
improving DPC by exploring distributed computing power or
introducing efficient data structures. EDDPC [10] leverages dis-
tributed machines to help DPC handle large scale datasets by
filtering unnecessary distance computations. LSH-DDP [3] com-
bines the power of locality sensitive hashing and the advantage of
MapReduce distributed computing to support highly efficient but
approximate DP clustering. FDDP [11] maps multi-dimensional
data points into one-dimensional z-value and employs z-value
index to filter invalid distance evaluation. Amagata et al. [13]
propose three parallel DPC algorithms, Ex-DPC, Approx-DPC, and
S-Approx-DPC. They outperform state-of-the-art DPC by employ-
ing the power of parallel computation. EDMStream [12] improves
DPC by efficiently maintaining a novel in-memory dependent-
tree structure and further supports stream clustering. It is de-
signed based on CPU and processes new insertions sequentially
one by one.

Comparison with the original paper. This paper is an extension
of [43], in which we introduced GPU-accelerated Density Peak
Clustering (GDPC). In the paper, we present the complete work
of GDPC and propose a GDPC-based incremental clustering algo-
rithm to deal with evolving data, providing a broader application
scenario for GDPC.

8. Conclusion

In this paper, we propose a parallel density peaks algorithm
named GDPC, which can fully utilize the powerful computation
resources of GPU. It leverages a GPU-friendly spatial index VP-
Tree to reduce unnecessary distance calculations. The VP-Tree
construction process and the DP clustering process are greatly
improved by utilizing GPU’s parallel optimizations. Our results
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how that GDPC can achieve 5.3–148.9X speedup over the state-
f-the-art DPC implementations and our Incremental GDPC can
chieve 2.3–40.5X speedup over another incremental clustering
lgorithm EDMStream.
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