
Distributed Graph Processing:
Techniques and Systems

Yanfeng Zhang(B), Qiange Wang, and Shufeng Gong

Northeastern University, Shenyang, China
zhangyf@mail.neu.edu.cn, {wangqiange,gongsf}@stumail.neu.edu.cn

Abstract. During the past 10 years, there has been a surging interest
in developing distributed graph processing systems. This tutorial pro-
vides a comprehensive review of existing distributed graph processing
systems. We firstly review the programming models for distributed graph
processing and then summarize the common optimization techniques
for improving graph execution performance, including graph partition-
ing methods, communication mechanisms, parallel processing models,
hardware-specific optimizations, and incremental graph processing. We
also present an emerging hot topic, distributed Graph Neural Networks
(GNN) frameworks, and review recent progress on this topic.

Keywords: Graph processing · Distributed systems · Parallel models

1 Introduction

Graphs have been widely used to abstract the relationships between entities for
many applications such as social networks, website connections, collaboration
networks, and co-purchase networks. Making sense of these relational data is
critical for companies and organizations to make better business decisions and
even bring convenience to our daily life. Recent advances in data mining, machine
learning, and data analytics have led to a flurry of graph analytic techniques.
With the magnitude of graph data growing rapidly, many distributed graph
processing systems running on top of a cluster of commodity PCs have been
proposed to perform data analytics and data mining on these massive graphs.

Graph Properties. Graphs are a common data structure to model relationships
between data items. The graph data and the computations on graphs are usually
endowed with the following properties:

– Various Graph Representations. Graphs can be represented by adjacency
matrix, adjacency list, edge list, and so on. To leverage sparsity of graphs and
support efficient access, graphs can be stored with CSR (compressed sparse
row) format and CSC (compressed sparse column) format.

– Complex Relationships. Graphs are used to model the complex relation-
ships between entities. There might be very complex connections between
vertices, which can be used to mine the potential knowledge of graphs.

c© Springer Nature Singapore Pte Ltd. 2021
Q. Chen and J. Li (Eds.): APWeb-WAIM 2020 Workshops, CCIS 1373, pp. 14–23, 2021.
https://doi.org/10.1007/978-981-16-0479-9_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-16-0479-9_2&domain=pdf
https://doi.org/10.1007/978-981-16-0479-9_2


Distributed Graph Processing: Techniques and Systems 15

– Power-law Characteristics. In many real-world graphs, e.g., internet
graphs, biological networks and social networks, the vertex degree distribu-
tion usually follows a power law, which implies that a small subset of the
vertices connects to a large fraction of the graph.

– Many Random Accesses. Since a vertex can connect to any arbitrary
vertex in a graph, graph algorithms usually show erratic access pattern and
involve many random accesses to vertex state.

– Iterative Computations. Many graph mining algorithms require to tra-
verse graph or perform information propagation, which leads to many itera-
tions for refining graph state.

Challenges. The above summarized properties of massive graphs bring several
big graph processing challenges.

– Programming Variations. Due to various graph representations, it is nec-
essary to provide a general and intuitive programming interface for users to
easily implement their graph algorithms.

– Heavy Communication. Graph data are assigned to many workers for
distributed computation, each worker taking charge of a subset of vertices or
edges, where the communication between workers can be very heavy.

– Unbalanced Workload. Due to the power-law degree distribution, it is
difficult to partition the graph with evenly distributed workload.

– Poor Locality. Many random access including long jumps exhibit poor local-
ity, which degrades performance.

– Long Convergence Time. Most of graph mining algorithms involve itera-
tive computation. Given a big graph as input, the iterative computation may
take pretty long running time for convergence.

To address these challenges, researchers have put great efforts on optimizing
large-scale distributed graph processing. In this tutorial, we will briefly review
the popular optimization techniques that are widely used in distributed graph
processing systems and will introduce several representative systems. In addi-
tion, we will also present two emerging hot topics, incremental graph processing
systems and distributed Graph Neural Networks (GNN) frameworks, and review
recent works in these fields.

2 Optimization Techniques

2.1 Programming Models

As mentioned in Sect. 1, different graph representation options lead to the pro-
gramming variations challenge. The graph programming models provide users
unified interfaces to specify their graph algorithms and improve the usability of
graph processing frameworks. Among the existing programming models, vertex-
centric model is the most popular one. Users express their algorithms by “think-
ing like a vertex”. Each vertex contains information about itself and all its out-
going edges, and the computation is expressed at the level of a single vertex.



16 Y. Zhang et al.

The graph computation is defined as a sequence of message exchanges amongst
vertices. A number of popular systems employ vertex-centric model, such as
Pregel [24], PowerGraph [13], and GraphX [14]. On the other hand, X-Stream
[29] leverages edge-centric model to obtain fully sequential access to edges (at
the cost of random access to vertices), which greatly reduces the random I/O
cost for querying specific vertices and is best for disk-based systems. PathGraph
[47] employs path-centric model to maximize sequential access and minimize
random access by clustering highly correlated paths together as tree based parti-
tions. Blogel [44], Giraph++ [36], GRAPE [9] utilizes block-centric model that
extends vertex-centric programming to blocks (i.e., a subgraph) and to exchange
messages among blocks.

Besides, Pegasus [18] first proposes Matrix-Vector Multiplication-based
programming model, which abstracts graph mining operations as a repeated
matrix-vector multiplication. iMapReduce [53] relies on MapReduce interface
(MapReduce-based) to implement a series of graph mining algorithms and
provides iterative optimization for Hadoop MapReduce framework. Maiter [54]
proposes delta-based graph computation, which abstracts the graph compu-
tation as an update accumulation process and can avoid invalid (zero-delta)
updates to improve computation efficiency. SQLoop [10] leverages DBMS to
implement graph iterative computations (DBMS-based) and extends standard
SQL with efficient recursive aggregation support. Socialite [30], BigDatalog [32],
and PowerLog [40] rely on Datalog language to express distributed graph algo-
rithms (Datalog-based) and allow users to use very concise declarative pro-
grams to specify large-scale graph computations.

2.2 Graph Partitioning Methods

Graph partitioning is an essential yet challenging task for massive graph analysis
in distributed computing. Offline methods [19] first load the complete graph into
memory and then divide it into partitions, while streaming graph partitioning
[27] operates online by ingesting the graph data as a stream. Graph can be
partitioned by edge-cut [24,28], vertex-cut [13], or hybrid-cut [5] methods.

Edge-cut partitioning divides the vertices of a graph into equal-sized parti-
tions and cuts edges, such as Metis [19] and PULP [34]. While the vertex-cut
partitioning divides edges of a graph into equal-sized clusters by making vertex
replicas [7], such as SBV-Cut [20], Coordinated [13] and Neighbor Expansion
(NE) [48]. The edge-cut partitioning usually results in replication of edges as
well as imbalanced messages with high contention. The vertex-cut partitioning
incurs high communication overhead among partitioned vertices and excessive
memory consumption [5]. The hybrid-cut partitioning that integrates both edge-
cut and vertex-cut address the major issues on skewed graphs, such as Ginger
[5], Chunk-based partitioning [57] and Application-Driven partitioning [7].

All of the above partitioning methods are designed for synchronous dis-
tributed graph processing systems. They assume that, in each iteration, each
vertex is only processed once and each edge only delivers one message. While in
asynchronous frameworks, vertices can be processed at any time. The number of



Distributed Graph Processing: Techniques and Systems 17

updates on each vertex and the number of messages passed through each edge
are not consistent. Hotness balanced partitioning (HBP) [11,12] is a novel graph
partitioning method designed for prioritized iterative graph processing systems
[52,54]. HBP aims to balance the hotness values of vertices in each partition,
minimizes the variance between hotness distributions of each partition and the
original graph, and at the same time minimizes the communication cost between
partitions.

In order to partition very large graphs that are not fit in main memory, the
distributed graph partitioning methods or stream-based partitioning methods
can offer solutions. The distributed graph partitioning algorithms first randomly
divide graph data into several parts and assign them to distributed workers.
Then they exchange edges/vertices between workers iteratively based on cer-
tain schemes. For example, Sheep [25] utilizes an elimination tree to partition
the large graph distributively. Spinner [25] and XtraPuLP [35] employ label
propagation to move vertices or edges iteratively. Although distributed graph
partitioning algorithms are able to partition extremely large graphs, they suffer
from performance issues since they may require multiple iterations to refine the
partition results. Stream-based methods ingest the vertices or edges as a stream,
and make partitioning decisions on the fly based on partial knowledge of the
graph, such as Fennel [37], HDRF [27] and Pb-HBP [12]. Because only one pass
of the graph data is needed, the stream-based partitioning methods are quite
efficient. However, the quality of partitioning is sensitive to the stream order,
and it is not able to take advantage of parallel partitioning.

2.3 Message Passing Models

Typical vertex-centric model relies on message passing to exchange intermediate
results. Push and pull are two basic message passing operations, which are
suitable for different scenarios [39,42].

A number of popular systems [9,24,54] employ push based message pass-
ing model. Push-based model is flexible, since only the active vertices need to
be processed. Furthermore, push-based model allow more powerful scheduling
strategy to accelerate the convergence. PrIter [52] prioritizes message passing
by distinguishing the important messages from the negligible messages and fre-
quently transferring these important messages, so that the computation/update
is more effective resulting in fast convergence. However, push-based model is
not suitable for parallel processing, since the single-read-multi-write scheme will
cause write-write conflict and may incur atomic overhead.

In contrast, PowerGraph [13] and Pregel+ [45] leverage pull-based model.
With pull-based model, a vertex pull updates from its in-neighbours. Due to
the multi-read-single-write updating scheme, pull-based can be parallel without
atomic operations. However, pull-based model cannot achieve selective process-
ing, all vertices have to be accessed no matter active or not. Therefore, redundant
computation is inevitable when the active set is small.

Existing work demonstrates that, the size of active nodes set might be dif-
ferent in different stages, which implies that different stages may prefer different



18 Y. Zhang et al.

message passing strategies [33,39,57]. Ligra [33] proposed hybrid push-pull
model for shared-memory system, which automatically switches between push
and pull based on the size of active set, to reduce both redundant computa-
tion and atomic overhead. Gemini [57] extends the hybrid model to distributed
environment and adopts similar approach. On the other hand, reducing redun-
dant computation and atomic operation overhead is also critical for efficiently
executing graph algorithm on massive parallel hardware, e.g., SEPgraph [39]
extends hybrid push-pull model on GPUs and supports automatic push-pull
model switch.

2.4 Parallel Processing Models

Graph computation usually exhibits iterative computing nature, where input
data is computed iteratively until a convergence condition is reached. Syn-
chronous parallel model requires all vertex updates completed before starting
next iteration, while asynchronous parallel model does not have this require-
ment. With synchronous parallel processing [9,13,24,57], all workers keep the
same pace The messages can be packed before being sent in order to reduce com-
munication overhead (BSP model). Furthermore, synchronous programs are easy
to write, tune and debug. However, the slowest worker will become the straggler
and dominate the run time. With asynchronous parallel processing, workers do
not need to keep consistent pace. Fast workers can perform more computations
to accelerate the convergence [3,43,54]. Asynchronous parallel processing may
incur irregular and redundant communications [40,43], and may lead to stale
computation [8].

In order to avoid the shortcomings of both synchornous and asynchronous
parallel models, sync-async hybrid parallel processing systems have emerged
in the pass few years. PowerSwitch [43] proposes Hsync, which can automatically
switch between synchronous model and asynchronous model. In PowerSwitch, in
the same time period all workers in the cluster universally use the sync model or
the async model. Grape+ [8] proposes Adaptive Asynchronous Parallel (AAP)
processing, by monitoring the incoming message rate. AAP adaptively tunes the
stale delay to achieve different parallel model (BSP, Staleness Parallel Processing,
Asynchronous Parallel Processing). Different from PowerSwitch, in Grape+, the
workers can use different parallel models, and each worker determines to choose
its own parallel model. In addition, Grape+ is based on block-centric model,
which can help combining messages and reduce communication. PowerLog [40]
proposes that asynchronous parallel model under different message passing rates
can result in different performance. PowerLog proposes a unified sync-async
processing model by monitoring the local update frequency and can adaptively
adjust the asynchronous degree to achieve better performance.

2.5 Hardware-Specific Optimizations

Hardware-specific optimizations are essential and emerging to provide the per-
formance improvement significantly beyond those pure software optimizations



Distributed Graph Processing: Techniques and Systems 19

can offer. GPU is adopted to pursue high performance of graph processing due
to its data parallel capability. A number of graph processing systems with GPUs
have been proposed for high-performance graph processing, such as Medusa [56],
Gunrock [41], and SEP-Graph [39]. FPGA is an integrated circuit that enables
designers to repeatedly configure digital logic in the fields after manufacturing,
also called field-programmable. A number of existing works integrate FPGAs
to support high-performance graph processing, such as CyGraph [2] and Fore-
Graph [6]. Application-specific integrated circuit (ASIC) is usually fabricated
on a wafer composed of silicon or other semiconductor materials that are cus-
tomized for a particular use. Researchers follow vertex-centric model and form
the ASIC circuit to support fast graph processing, e.g., Graphicionado [15].

On the other hand, graph processing can use disks, flashes or other external
storage devices to store extremely large scale graphs. A number of studies aim
to reduce the transmission cost of I/Os to improve performance. GraphChi [21]
and GridGraph [58] are typical out-of-core solutions that reorganize the file
storage structure of graph data to realize sequential disk file accesses and can
process large graph in a single machine. There exist several studies using DRAM
and SSDs to build hybrid graph system which stores vertex state in memory
and edge lists on SSDs, such as MaiterStore [4], FlashGraph [55], and SMaiter
[22]. There are also other studies that are optimized for communication networks.
GraphRex [50] provides specific optimizations for high-performance network and
under cross-rack cluster environment.

3 Emerging Applications

3.1 Incremental Graph Processing

With the continuously evolving nature of real-life graphs, the results of graph
mining become stale and obsolete over time. Incremental processing graph [26,
31,38,51] is a promising approach for refreshing graph mining results. It utilizes
previously saved states to avoid re-computation from scratch.

In order to process graph incrementally, i2MapReduce [51] uses MapReduce
Bipartite Graph (MRBGraph) to model the data flow in MapReduce. Each ver-
tex in the map task represents an individual map function. For the input delta
graph, which contains the added/deleted edges and vertices, the i2MapReduce
engine invokes the Map function for every record in the delta input. The Map
function outputs the Delta MRBGraph that only contains the changes to the
MRBGraph. Then i2MapReduce merges the preserved MRBGraph and the Delta
MRBGraph, and obtains the updated MRBGraph. For each affected key in the
updated MRBGraph, the merged list of values will be used to invoke the Reduce
function to generate the updated final results.

Tornado [31] is an incremental iterative graph processing system that is built
on top of Storm. Tornado contains a main loop and several branch loops. The
main loop continuously gathers incoming data and approximates the results at
the current instant, while the branch loops perform iterations over the snapshot
that is taken when a result query is required. KickStarter [38] builds a set of



20 Y. Zhang et al.

dependency trees based on the dependency relationship between vertices. When
an edge is deleted, KickStarter identifies the set of vertices impacted by the
deleted edge. This can be done simply by finding the subtree rooted at the target
vertex of the deleted edge. Then it resets the value of the impacted vertices
and rebuilds the dependency tree by recomputing the values of the impacted
vertices. GraphBolt [26] proposes a dependency graph for tracking dependency
relationship between vertices. Vertices in the dependency graph maintain their
intermediate values that are produced during the iterative computations. Edges
in the dependency graph capture dependencies among intermediate values. As
the graph changes, GraphBolt corrects the intermediate vertex states iteration-
by-iteration according to the dependency graph.

3.2 Distributed GNN Training

Graph Neural Networks (GNNs) have been emerging as powerful learning tools
for graph data. However, it is challenging to train a GNN for real-world large-
scale graphs. Most of the existing popular deep learning frameworks run a single
machine, which cannot offer much scalability. Therefore, building a scalable GNN
training system for large-scale graphs is desirable [16,17,23,46,49].

A common GNN task contains the forward and backward propagation in
standard deep learning and the iterative graph propagation in graph mining
algorithms. These two distinct computing styles make it difficult to build high
performance GNN systems in distributed environment. Neither existing graph
processing systems nor deep learning systems can support GNN training well.
An intuitive approach is completely partitioning the graph data to avoid com-
munication between subgraphs (subtasks) and leverage the parameter server’s
data parallel model. Aligraph [46] relies on distributed Tensorflow’s parame-
ter server architecture. The graph data are stored in the server side. When
training a K-layer GNN task, each worker pulls the training graph data of one
batch (including its k-hop neighbours and their features) from the PS-server and
locally performs the computation. Euler [1], AGL [49], PSGraph [17] adopt sim-
ilar method. PSGraph builds the GNN training system on top of Hadoop and
Spark ecosystems, which makes it easier to scale.

Acknowledgement. This work was supported by National Key R&D Program of
China (2018YFB1003404), National Natural Science Foundation of China (62072082,
61672141, and U1811261) and Fundamental Research Funds for the Central Universities
(N181605017 and N181604016), and Key R&D Program of Liaoning Province (2020JH
2/10100037).

References

1. Euler 2.0 (2020). https://github.com/alibaba/euler
2. Attia, O.G., Johnson, T., Townsend, K., Jones, P., Zambreno, J.: CyGraph: a

reconfigurable architecture for parallel breadth-first search. Proc. IPDPS 2014,
228–235 (2014)

https://github.com/alibaba/euler


Distributed Graph Processing: Techniques and Systems 21

3. Ben-Nun, T., Sutton, M., Pai, S., Pingali, K.: Groute: an asynchronous multi-GPU
programming model for irregular computations. In: ACM SIGPLAN Notices, vol.
52, no. 8, pp. 235–248 (2017)

4. Chang, D., Zhang, Y., Yu, G.: MaiterStore: a hot-aware, high-performance key-
value store for graph processing. In: Han, W.-S., Lee, M.L., Muliantara, A., San-
jaya, N.A., Thalheim, B., Zhou, S. (eds.) DASFAA 2014. LNCS, vol. 8505, pp.
117–131. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-43984-
5 9

5. Chen, R., Shi, J., Chen, Y., Zang, B., Guan, H., Chen, H.: PowerLyra: differenti-
ated graph computation and partitioning on skewed graphs. ACM Trans. Parallel
Comput. (TOPC) 5(3), 1–39 (2019)

6. Dai, G., Huang, T., Chi, Y., Xu, N., Wang, Y., Yang, H.: ForeGraph: exploring
large-scale graph processing on multi-FPGA architecture. Proc. FPGA 2017, 217–
226 (2017)

7. Fan, W., et al.: Application driven graph partitioning. In: Proceedings of the
2020 ACM SIGMOD International Conference on Management of Data (SIGMOD
2020), pp. 1765–1779 (2020)

8. Fan, W., et al.: Adaptive asynchronous parallelization of graph algorithms. ACM
Trans. Database Syst. (TODS) 45(2), 1–45 (2020)

9. Fan, W., et al.: Parallelizing sequential graph computations. ACM Trans. Database
Syst. (TODS) 43(4), 1–39 (2018)

10. Floratos, S., Zhang, Y., Yuan, Y., Lee, R., Zhang, X.: SQLoop: high performance
iterative processing in data management. In: Proceedings of ICDCS 2018, pp. 1039–
1051 (2018)

11. Gong, S., Zhang, Y., Yu, G.: Accelerating large-scale prioritized graph computa-
tions by hotness balanced partition (online). IEEE Trans. Parallel Distrib. Syst.
32, 746–759 (2020)

12. Gong, S., Zhang, Y., Yu, G.: HBP: hotness balanced partition for prioritized itera-
tive graph computations. In: Proceedings of the 36th International Conference on
Data Engineering (ICDE 2020), pp. 1942–1945 (2020)

13. Gonzalez, J.E., Low, Y., Gu, H., Bickson, D., Guestrin, C.: PowerGraph: dis-
tributed graph-parallel computation on natural graphs. In: Proceedings of OSDI
2012, pp. 17–30 (2012)

14. Gonzalez, J.E., Xin, R.S., Dave, A., Crankshaw, D., Franklin, M.J., Stoica, I.:
GraphX: graph processing in a distributed dataflow framework. In: Proceedings of
OSDI 2014, pp. 599–613 (2014)

15. Ham, T.J., Wu, L., Sundaram, N., Satish, N., Martonosi, M.: Graphicionado: a
high-performance and energy-efficient accelerator for graph analytics. In: Proceed-
ings of the 49th Annual IEEE/ACM International Symposium on Microarchitec-
ture (MICRO 2016), pp. 1–13 (2016)

16. Jia, Z., Lin, S., Gao, M., Zaharia, M., Aiken, A.: Improving the accuracy, scalability,
and performance of graph neural networks with ROC. In: Proceedings of Machine
Learning and Systems (MLSys 2020), pp. 187–198 (2020)

17. Jiang, J., et al.: PSGraph: how Tencent trains extremely large-scale graphs with
spark? In: Proceedings of ICDE 2020, pp. 1549–1557 (2020)

18. Kang, U., Tsourakakis, C.E., Faloutsos, C.: PEGASUS: a peta-scale graph mining
system implementation and observations. In: Proceedings of ICDM 2009, pp. 229–
238 (2009)

19. Karypis, G., Kumar, V.: METIS: a software package for partitioning unstructured
graphs. Partitioning Meshes, and Computing Fill-Reducing Orderings of Sparse
Matrices, Version 4(0) (1998)

https://doi.org/10.1007/978-3-662-43984-5_9
https://doi.org/10.1007/978-3-662-43984-5_9


22 Y. Zhang et al.

20. Kim, M., Candan, K.S.: SBV-Cut: vertex-cut based graph partitioning using struc-
tural balance vertices. Data Knowl. Eng. 72, 285–303 (2012)

21. Kyrola, A., Blelloch, G., Guestrin, C.: GraphChi: large-scale graph computation
on just a PC. In: Proceedings of OSDI 2012, pp. 31–46 (2012)

22. Li, J., Zhang, Y., Gong, S., Yu, G., Gao, L.: Streamlined asynchronous graph
processing framework. J. Softw. 3, 528–544 (2018)

23. Ma, L., Yang, Z., Miao, Y., Xue, J., Wu, M., Zhou, L., Dai, Y.: NeuGraph: parallel
deep neural network computation on large graphs. In: Proceedings of USENIX
ATC 2019, pp. 443–458 (2019)

24. Malewicz, G., et al.: Pregel: a system for large-scale graph processing. In: Proceed-
ings of SIGMOD 2010, pp. 135–146 (2010)

25. Margo, D., Seltzer, M.: A scalable distributed graph partitioner. Proc. VLDB
Endow. 8(12), 1478–1489 (2015)

26. Mariappan, M., Vora, K.: GraphBolt: dependency-driven synchronous processing
of streaming graphs. In: Proceedings of EuroSys 2019, pp. 1–16 (2019)

27. Petroni, F., Querzoni, L., Daudjee, K., Kamali, S., Iacoboni, G.: HDRF: stream-
based partitioning for power-law graphs. In: Proceedings of CIKM 2015, pp. 243–
252 (2015)

28. Reittu, H., Norros, I., Rty, T., Bolla, M., Bazsó, F.: Regular decomposition of large
graphs: foundation of a sampling approach to stochastic block model fitting. Data
Sci. Eng. 4(1), 44–60 (2019)

29. Roy, A., Mihailovic, I., Zwaenepoel, W.: X-Stream: edge-centric graph processing
using streaming partitions. In: Proceedings of SOSP 2013, pp. 472–488 (2013)

30. Seo, J., Park, J., Shin, J., Lam, M.S.: Distributed socialite: a datalog-based lan-
guage for large-scale graph analysis. Proc. VLDB Endow. 6(14), 1906–1917 (2013)

31. Shi, X., Cui, B., Shao, Y., Tong, Y.: Tornado: a system for real-time iterative
analysis over evolving data. In: Proceedings of SIGMOD 2016, pp. 417–430 (2016)

32. Shkapsky, A., Yang, M., Interlandi, M., Chiu, H., Condie, T., Zaniolo, C.: Big data
analytics with datalog queries on spark. In: Proceedings of the 2016 International
Conference on Management of Data (SIGMOD 2016), pp. 1135–1149 (2016)

33. Shun, J., Blelloch, G.E.: Ligra: a lightweight graph processing framework for shared
memory. In: Proceedings of PPoPP 2013, pp. 135–146 (2013)

34. Slota, G.M., Madduri, K., Rajamanickam, S.: PuLP: scalable multi-objective multi-
constraint partitioning for small-world networks. In: Proceedings of 2014 IEEE
International Conference on Big Data, pp. 481–490 (2014)

35. Slota, G.M., Rajamanickam, S., Devine, K., Madduri, K.: Partitioning trillion-
edge graphs in minutes. In: Proceedings of 2017 IEEE International Parallel and
Distributed Processing Symposium (IPDPS 2017), pp. 646–655. IEEE (2017)

36. Tian, Y., Balmin, A., Corsten, S.A., Tatikonda, S., McPherson, J.: From “think
like a vertex” to “think like a graph”. Proc. VLDB Endow. 7(3), 193–204 (2013)

37. Tsourakakis, C., Gkantsidis, C., Radunovic, B., Vojnovic, M.: FENNEL: streaming
graph partitioning for massive scale graphs. In: Proceedings of WSDM 2014, pp.
333–342 (2014)

38. Vora, K., Gupta, R., Xu, G.: KickStarter: fast and accurate computations on
streaming graphs via trimmed approximations. In: Proceedings of ASPLOS 2017,
pp. 237–251 (2017)

39. Wang, H., Geng, L., Lee, R., Hou, K., Zhang, Y., Zhang, X.: SEP-graph: finding
shortest execution paths for graph processing under a hybrid framework on GPU.
In: Proceedings of PPoPP 2019, pp. 38–52 (2019)



Distributed Graph Processing: Techniques and Systems 23

40. Wang, Q., et al.: Automating incremental and asynchronous evaluation for recur-
sive aggregate data processing. In: Proceedings of SIGMOD 2020, pp. 2439–2454
(2020)

41. Wang, Y., Davidson, A., Pan, Y., Wu, Y., Riffel, A., Owens, J.D.: Gunrock: a
high-performance graph processing library on the GPU. In: Proceedings of PPoPP
2016, pp. 1–12 (2016)

42. Wang, Z., Gu, Y., Bao, Y., Yu, G., Yu, J.X.: Hybrid pulling/pushing for i/o-efficient
distributed and iterative graph computing. In: Proceedings of SIGMOD 2016, pp.
479–494 (2016)

43. Xie, C., Chen, R., Guan, H., Zang, B., Chen, H.: SYNC or ASYNC: time to fuse
for distributed graph-parallel computation. In: ACM SIGPLAN Notices, vol. 50,
no. 8, pp. 194–204 (2015)

44. Yan, D., Cheng, J., Lu, Y., Ng, W.: Blogel: a block-centric framework for dis-
tributed computation on real-world graphs. Proc. VLDB Endow. 7(14), 1981–1992
(2014)

45. Yan, D., Cheng, J., Lu, Y., Ng, W.: Effective techniques for message reduction and
load balancing in distributed graph computation. In: Proceedings of WWW 2015,
WWW 2015, pp. 1307–1317 (2015)

46. Yang, H.: AliGraph: a comprehensive graph neural network platform. In: Proceed-
ings of KDD 2019, pp. 3165–3166 (2019)

47. Yuan, P., Xie, C., Liu, L., Jin, H.: PathGraph: a path centric graph processing
system. IEEE Trans. Parallel Distrib. Syst. 27(10), 2998–3012 (2016)

48. Zhang, C., Wei, F., Liu, Q., Tang, Z.G., Li, Z.: Graph edge partitioning via neigh-
borhood heuristic. In: Proceedings of the 23rd ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining (KDD 2017), pp. 605–614 (2017)

49. Zhang, D., et al.: AGL: a scalable system for industrial-purpose graph machine
learning. arXiv preprint arXiv:2003.02454 (2020)

50. Zhang, Q., et al.: Optimizing declarative graph queries at large scale. In: Proceed-
ings of SIGMOD 2019, pp. 1411–1428 (2019)

51. Zhang, Y., Chen, S., Wang, Q., Yu, G.: i2MapReduce: incremental mapreduce for
mining evolving big data. IEEE Trans. Knowl. Data Eng. 27(7), 1906–1919 (2015)

52. Zhang, Y., Gao, Q., Gao, L., Wang, C.: Priter: a distributed framework for prior-
itized iterative computations. In: Proceedings of SOCC 2011, pp. 1–14 (2011)

53. Zhang, Y., Gao, Q., Gao, L., Wang, C.: iMapReduce: a distributed computing
framework for iterative computation. J. Grid Comput. 10(1), 47–68 (2012)

54. Zhang, Y., Gao, Q., Gao, L., Wang, C.: Maiter: an asynchronous graph process-
ing framework for delta-based accumulative iterative computation. IEEE Trans.
Parallel Distrib. Syst. 25(8), 2091–2100 (2013)

55. Zheng, D., Mhembere, D., Burns, R., Vogelstein, J., Priebe, C.E., Szalay, A.S.:
FlashGraph: processing billion-node graphs on an array of commodity SSDs. In:
Proceedings of FAST 2015, pp. 45–58 (2015)

56. Zhong, J., He, B.: Medusa: a parallel graph processing system on graphics proces-
sors. ACM SIGMOD Rec. 43(2), 35–40 (2014)

57. Zhu, X., Chen, W., Zheng, W., Ma, X.: Gemini: a computation-centric distributed
graph processing system. In: Proceedings of OSDI 2016, pp. 301–316 (2016)

58. Zhu, X., Han, W., Chen, W.: GridGraph: large-scale graph processing on a single
machine using 2-level hierarchical partitioning. In: Proceedings of USENIX ATC
2015, pp. 375–386 (2015)

http://arxiv.org/abs/2003.02454

