746 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 32, NO. 4, APRIL 2021

Accelerating Large-Scale Prioritized Graph
Computations by Hotness Balanced Partition

Shufeng Gong", Yanfeng Zhang

,and Ge Yu

, Senior Member, IEEE

Abstract—Prioritized computation is shown promising performance for a large class of graph algorithms. It prioritizes the execution of
some vertices that play important roles in determining convergence. For large-scale distributed graph processing, graph partitioning is
an important preprocessing step that aims to balance workload and to reduce communication costs between workers. However,
existing graph partitioning methods are designed for round-robin synchronous distributed frameworks. They balance workload without
distinction of vertex importance and fail to consider the characteristics of priority-based scheduling, which may limit the benefit of
prioritized graph computation. In this article, to accelerate prioritized iterative graph computations, we propose Hotness Balanced
Partition (HBP). In prioritized graph computation, high priority vertices are likely to be executed more frequently and are likely to pass
more messages, which result in hot vertices. Based on this observation, we partition graph by distributing vertices with distinction
according to their hotness rather than blindly distributing vertices with equal weights, aiming to evenly distribute the hot vertices among
workers. We further provide two HBP algorithms: a streaming-based algorithm for efficient one-pass processing and a distributed
algorithm for distributed processing. Our results show that our proposed partitioning methods outperform the state-of-the-art

partitioning methods, Fennel, HotGraph, and SNE.

Index Terms—Hotness balanced partition, graph partitioning, distributed computing

1 INTRODUCTION

O HANDLE massive graphs, distributed graph processing
Tsystems [1], [2], [3], [4] partition the graph data into mul-
tiple graph partitions and process them on a cluster of
workers, with each worker working on a graph partition.
During the distributed graph computation process, 1) heavy
communication cost between workers due to a large num-
ber of edge/vertex cuts and 2) idle workers due to unbal-
anced workload may exist, which degrade the performance
of distributed computing. In order to reduce the communi-
cation cost and idle workers, many research efforts [5], [6],
[7], [8], [9], [10], [11] have been put on finding smart graph
partitioning methods as a preprocessing step for large-scale
distributed graph processing, aiming at minimizing connec-
tions between graph partitions and making the workload
evenly distributed among partitions.

Prior graph partitioning algorithms all use the assump-
tion that underlying distributed graph mining frameworks
adopt a synchronous parallel processing model. In synchro-
nous parallel model, there is a global synchronous barrier
after each iteration (super step). On each worker, the
assigned vertices are processed in a round-robin manner. In
round-robin scheduling, the vertices are processed in circu-
lar order. All the vertex computations are invoked in each
round without discrimination. Round-robin is widely used

o The authors are with the School of Computer Science and Engineering,
Northeastern University, Shenyang 110819, China.
E-mail: shidashufeng@163.com, {zhangyf, yuge/@mail.neu.edu.cn.

Manuscript received 27 Feb. 2020; revised 8 Oct. 2020; accepted 9 Oct. 2020.
Date of publication 21 Oct. 2020; date of current version 10 Nov. 2020.
(Corresponding author: Ge Yu.)

Recommended for acceptance by A. Sussman.

Digital Object Identifier no. 10.1109/TPDS.2020.3032709

since it is simple, easy to implement, and starvation-free. In
each iteration, each vertex is only processed once, and each
edge only delivers one message. Therefore, the number of
vertices (for vertex-centric frameworks) or edges (for edge-
centric frameworks) of a graph partition indicates the work-
load of a worker, and the number of cutting edges (or vertex
replicas in vertex-cut systems) indicates the communication
cost between workers. If the workload of workers is imbal-
anced, the light loaded worker will wait for the heavy
loaded worker. Furthermore, a large number of cutting
edges (or vertex replicas) will result in significant network
overhead. For this reason, existing graph partitioning algo-
rithms aim to i) balance the vertices (or edges) of each parti-
tion and ii) minimize the number of cutting edges (or vertex
replicas).

Recently, a number of research works pay attention to
asynchronous parallel processing, such as GraphLab [2],
GraphUC [12], Giraph++ [13], GRAPE+ [14] and Maiter [15].
In these asynchronous distributed frameworks, the global
synchronous barriers are removed. Thus there is no waiting
time between workers, and the vertices/edges can be proc-
essed at any time. In other words, there is no such constraint
that each vertex/edge can only be processed once in each
iteration, and some vertices/edges can be processed more
times than the others. Recent studies [2], [16] show that some
of the vertices do play important decisive roles in determin-
ing the final converged outcome. In asynchronous computa-
tion, the importance of vertices is not consistent. In priority
processing, only a subset of vertices (i.e., the important verti-
ces) are selected to be processed in each round, so that these
important vertices are processed more frequently than
others. Compared with round-robin processing, priority
processing tends to filter the inefficient and invalid computa-
tions. As shown in Fig. 1, the prioritized graph processing

1045-9219 © 2020 |IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Northeastern University. Downloaded on April 06,2025 at 06:57:17 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0001-5898-5621
https://orcid.org/0000-0001-5898-5621
https://orcid.org/0000-0001-5898-5621
https://orcid.org/0000-0001-5898-5621
https://orcid.org/0000-0001-5898-5621
https://orcid.org/0000-0002-9871-0304
https://orcid.org/0000-0002-9871-0304
https://orcid.org/0000-0002-9871-0304
https://orcid.org/0000-0002-9871-0304
https://orcid.org/0000-0002-9871-0304
https://orcid.org/0000-0002-3171-8889
https://orcid.org/0000-0002-3171-8889
https://orcid.org/0000-0002-3171-8889
https://orcid.org/0000-0002-3171-8889
https://orcid.org/0000-0002-3171-8889
mailto:shidashufeng@163.com
mailto:zhangyf@mail.neu.edu.cn
mailto:yuge@mail.neu.edu.cn

GONG ETAL.: ACCELERATING LARGE-SCALE PRIORITIZED GRAPH COMPUTATIONS BY HOTNESS BALANCED PARTITION 747

12

1
0.8 -
0.6 -
0.4
0.2 1

0 -

® Priority Scheduling ™ Round-Robin

Normalised runtime

BerkStan
Google
BerkStan
Google
BerkStan
Google
BerkStan
Google
BerkStan
Google

Adsorption cC PageRank PHP ‘ SSSP ‘

Algorithm and Dataset

Fig. 1. Priority scheduling versus round-robin scheduling for asynchro-
nous parallel processing.

(with priority scheduling) is 1.2-10x faster than the round-
robin scheduling for various graph algorithms.

Example 1. Prioritized PageRank [16] is a representative
graph algorithm with priority scheduling. In each itera-
tion, rather than updating the complete set of node rank-
ing scores, prioritized PageRank only selects a small
subset of vertices (e.g., top 1 percent important vertices)
for computation, so that the computation is more effective
and tends to converge faster. However, Without consider-
ation of the characteristics of priority scheduling, the tra-
ditional graph partitioning methods may limit the
performance of prioritized PageRank computation. As
shown in Fig. 2a, Fennel [9] results in longer runtime than
naive Hash partition, even if Fennel has less communica-
tion. This is because that Fennel tries to balance the num-
ber of vertices without considering the execution priority
of vertices. As shown in Fig. 3a, all the high-priority verti-
ces (with red color) that require more computation
resources are assigned to one partition, so that the actual
workload is not really balanced though the number of
vertices is balanced, which results in stragglers and slows
down the convergence process. In addition, as shown in
Fig. 2b, although Fennel provides smaller number of edge
cuts than Hash, Fennel still results in more communica-
tion. Fennel aims to partition the graph to minimize the
number of edge cuts. However, as shown in Fig. 3b,
though the number of edge cuts is minimized, the cuts of
the edges that connect high-priority vertices will lead to
heavy communication traffic between workers and longer
runtime.

Motivation. Although many efforts have been devoted to
graph partitioning, most of them assume the round-robin syn-
chronous graph processing (abbr. round-robin processing).
The prior works are far from ideal for prioritized asynchro-
nous processing (abbr. prioritized processing). To design

Hash mmm Fennel mmmm Hash mmm Fennel mmm

Normalized Value

© o o o h
o N A OO O =~ N

Normalized Value

© o o 9o h
o N B O © =N

edge-cut comm runtime edge-cut comm runtime

(a) 8 partitions (b) 12 partitions

Fig. 2. Hash partition versus Fennel partition for prioritized PageRank on
LiveJournal. Three metrics are shown, the number of cut edges, the
communication cost, and the total runtime.

\
1
|
|
|
T
|
|
|
|
|
|
|
|
|
|
|
|
|
|

/

(b) High communication
volume

(a) Unbalanced workload

Fig. 3. Example partitions. High-priority vertices are with red color. The
width of solid line implies the amount of communication.

graph partitioning method for prioritized processing, we need
to pay attention to the following two key differences between
prioritized processing and round-robin processing.

First, the workload balance does not necessarily imply high
efficiency. With the elimination of synchronous barriers, there
is no waiting time between different machines and no idle
workers. All the workers are busy processing all the time.
However, some vertices play important roles in helping the
convergence of iterative computation [15], [16]. These impor-
tant vertices are worth to be processed with more updates
than the others. The graph partitioning methods should take
this property into account for computation effectiveness.

Second, a small number of edge cuts or vertex replicas do
not necessarily imply less communication cost. Due to pri-
ority scheduling, the number of updates on each vertex is
not consistent, and the number of messages passed through
each edge is not consistent. Even with few edge cuts/vertex
replicas, it may still result in a large amount of communica-
tion cost since the number of messages delivered along each
edge is not identical. If an edge of a high priority vertex is
cut, there still can be a large number of messages delivered
along this edge.

In summary, prioritized graph computation leads to the
distinction of vertex hotness. The states of hot vertices are
updated more frequently, and more messages are propa-
gated from these hot vertices. The existing graph partitioning
methods designed for round-robin processing are not suit-
able for prioritized processing. Thus, a new partitioning
method designed for prioritized graph processing is desired.

Contribution. In this paper, we propose the idea of Hotness
Balanced Partition (HBP), which partitions graph according
to vertex’s hotness. We first estimate each vertex’s hotness
and then propose three objectives of graph partitioning for
prioritized processing. To efficiently solve the multi-objec-
tive optimization problem, we propose a heuristic stream-
ing-based algorithm, SPb-HBP, to partition the graph,
which only requires one pass of the graph data. We further
propose a distributed version of SPb-HBP, DSPb-HBP, to
partition massive graph data.

We perform experiments by comparing hash partition
and two state-of-the-art graph partitioning schemes, Fennel
[9] and HotGraph [17]. Our results show that our SPb-HBP
is much more effective for prioritized iterative graph proc-
essing. Especially, SPb-HBP can reduce 40-50 percent run-
time of that by hash partition, 5-75 percent runtime of that
by Fennel, and 22-31 percent runtime of that by HotGraph.

The rest of this paper is organized as follows. In Section 2,
we introduce a typical distributed prioritized iterative com-

utation model, DAIC. We formalize hotness balanced

Authorized licensed use limited to: Northeastern University. Downloaded on April 06,2025 at 06:57:17 UTC from IEEE Xplore. Restrictions apply.

748 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 32, NO. 4, APRIL 2021

TABLE 1
Notations

G, G; the graph and its ith partition

V,Vj (resp. E, E;) the set of vertices (resp. edges)

in G and G;
the incoming (resp. outgoing)
neighbors of v

IN(v) (resp. OUT (v))

Vo La the value of v and its set in G

My—p the message from u to v

A, the change of y, during iterations

hy the hotness value of v

oMy, 4 the communication cost between u and v

H; the set of vertices whose h,, are in jth hotness bin
Hji the set of vertices in V; N H;;

P, P, the probability distribution of hotness

histogram in G and G;

partition problem in Section 3. In Section 4, we present
the streaming-based partitioning algorithm SPb-HBP. In
Section 5, we further propose a distributed partitioning met-
hod DSPb-HBP. Experimental results are shown in Section 6.
The related work is presented in Section 7. We conclude our
paper in Section 8.

2 PRELIMINARIES

A number of existing frameworks have been proposed to
support asynchronous parallel execution. Among these
frameworks, Maiter [15] and its variants [18], [19], [20]
employ the asynchronous Delta-based Accumulative Iterative
Computation (asynchronous DAIC) model to guarantee cor-
rectness, which is a fully asynchronous model since neither
distributed lock nor global synchronous barrier exists. Fur-
thermore, DAIC supports priority scheduling. In this paper,
we will analyze prioritized graph computation based on the
asynchronous DAIC model. The notations of this paper are
summarized in Table 1.

2.1 Asynchronous DAIC and Prioritized Execution
Let G(V, E) denote a graph, where (u,v) € E is an edge from
vertex u to v, IN(v) = {u| (u,v) € E} is the incoming neigh-
bors set of vertex v, OUT'(v) = {w| (v, w) € E} is the outgo-
ing neighbors set of vertex v, |V|=n is the number of
vertices, and |E| =m is the number of edge. Let I'¢ =
{7, |v € V} denote the vertex states set of all vertices V, e.g.,
¥, is the ranking score value of v in the PageRank algorithm.
The traditional synchronous iterative graph algorithms can
be expressed as an iterative update process.

ré = freh,)

where f is the update function of graph mining algorithm,
and k is the iteration times.

While in asynchronous DAIC model [15], the vertex-
based update can be executed on any vertex at any time.
The update of vertex v at time point ¢ can be formalized as
follows.

receive : AL = AAT m, . (ALY),u € IN(v)
update : y' = A(y AL (2)
send : m,_,(A"),w € OUT(v),

where A’ denotes the “change” from y. ™! to y!, A is an
aggregation function that accumulates the received mes-
sages from neighbors and is used to update y,, and
m,H,,(Af,,) is the message from u to v that is generated based
on A,

By using DAIC model, the computation of any vertex can
be performed at any time point. In other words, the vertex
updates can be scheduled in any order. The scheduling
order is crucial to computation effectiveness. As shown in
Fig. 1, the priority scheduling that selects important vertices
for frequent processing helps algorithms converge faster
than the round-robin scheduling for various graph algo-
rithms. However, it is difficult to find the optimal schedul-
ing order. Recent studies [16], [18] found that some of the
vertices play an important decisive role in determining the
final converged outcome. In [15], the authors pick the vertex
that can maximize the “change” of graph state as the sched-
uling candidate, i.e., v = argmaz,|A(y; ", A’) — y/71|. Since
¥, is monotonically increasing/decreasing, a great “change”
implies a big move to the fixed point that makes the current
state closer to the final state. Therefore, the execution prior-
ity of each vertex is set as the amount of change. Performing
computations on the high priority vertices will accelerate
the convergence, which is referred to as prioritized execution.
In this paper, we focus on optimizing the graph partitioning
for prioritized execution.

2.2 Prioritized DAIC Graph Algorithms
Not all graph algorithms can be converted into DAIC form.
The sufficient conditions for equivalent conversion have
been well studied in [15], [21]. There is a large class of graph
mining algorithms satisfying these conditions that can be
processed in DAIC framework. Next, we take PageRank
[22], Adsorption [23], and Penalized Hitting Probability [24]
algorithms as examples to briefly present how traditional
iterative algorithms are converted into their DAIC forms.
PageRank. PageRank [22] is a popular algorithm initially
proposed for ranking web pages. In DAIC version of Pag-
eRank [15], y, is the accumulated rank value of vertex v, A
is the sum aggregation (i.e., “+”), and m, ., (A!) = d - K)UATit“w
where d is a damping factor (e.g., 0.85). Then the update of
DAIC PageRank can be rewritten as follows.

t—1

receive : AL = A" 4 d- m,u € IN(v)
update : yf/_ = yf}_l + Af)
At
send: d-——"— to vertex w,w € OUT(v).

|OUT (v)]

High execution priority is given to the vertex that has the
largest A, since it can maximize the “change” of graph state.

Adsorption. Adsorption [23] is a graph label propagation
algorithm that provides personalized recommendations for
contents. In DAIC version of Adsorption, y, is the accumu-
lated score of vertex v, A is the sum aggregation (i.e., “+”),
and m, _,(A") =p" - w,, Al where p®" is a constant
associated with each v and w,,, is the weight of edge (u,v).
Then the update of DAIC Adsorption can be rewritten as
follows.

Authorized licensed use limited to: Northeastern University. Downloaded on April 06,2025 at 06:57:17 UTC from IEEE Xplore. Restrictions apply.

GONG ETAL.: ACCELERATING LARGE-SCALE PRIORITIZED GRAPH COMPUTATIONS BY HOTNESS BALANCED PARTITION 749

receive : Af, = Af,_l + M Wy - AZ_17 u € IN(v)
update : y' =yt + Al

oy t
send : pct. Wy - A

w v

to vertex w,w € OUT (v).

Similar to PageRank, high execution priority is given to the
vertex that has the largest A,,.

Penalized Hitting Probability (PHP). PHP [24] is used to
measure the proximity (similarity) between a given source
vertex s and any other vertex v. In DAIC version of PHP
[20], y, is the accumulated score of vertex v, A is the sum
aggregation (i.e., “+”), and m,_,(A') = d- w,, - A, where d
is a damping factor and w,, is the weight of edge (u,v). The
update of DAIC PHP can be rewritten as follows.

A 4 dow,, - AT (v #s)

receive : Al =
0, (v=1s)

update : y' =yt + Al

t—1
send : d-wyy - A

to vertex w,w € OUT (v).

Then high execution priority is given to the vertex that has
the largest A,,.

Besides PageRank, Adsorption, and PHP, there exist
many other DAIC graph algorithms that can be performed
with prioritized execution, such as SSSP, Connected Com-
ponents, SimRank, Katz Metric and so on. Please refer to
[15] for more details.

From the implementation’s point of view, maintaining a
priority queue is expensive due to the frequent update and
sort operations. The existing prioritized graph computation
systems [15], [16] employ an approximate approach. They
achieve the approximate prioritization in a round-by-round
manner. In each round, a subset of vertices with the highest
priority values (e.g., top n%) are selected for computation,
where a sampling-based approach [16] is used to avoid the
expensive global sort. The size of the prioritized subset bal-
ances the trade-off between the gain from accurate priority
scheduling and the cost of frequent extractions for the prior-
itized subset.

3 PROBLEM FORMULATION

As we have discussed in Section 1, the traditional partition-
ing methods fail to meet the requirements of priority sched-
uling frameworks. In priority scheduling frameworks, some
vertices are given higher execution priority, so they become
hot wvertices in priority scheduling execution systems. The
frequency of vertex updates is called vertex’s hotness.

Given a graph with hotness G = (V, E, H) and a partition
number & where each vertex is associated with a hotness
value h, and H = {h,,v € V} is the hotness values of all ver-
tices, an edge-cut graph partitioning aims to find a partition
scheme G = {G1,Gs,...,Gi}, where G; = (V;,E;, H;) is a
partition of G. V; is the set of vertices in G; such that V =
UL,Viand V;V; = @, and E; is the set of edges whose
source vertices are in V;, ie., E; = {(u,v)|u € V;}. Then,
each partition is assigned to a worker for parallel process-
ing. In this section, we first introduce how to estimate the
hotness and then analyze the goals in hotness balanced par-

tition based on the eddge-cut partitioning model.
Authorized license

3.1 Hotness Estimation

The precondition of hotness balance partition is that we
have obtained the hotness of vertices and the communica-
tion cost between two vertices. But these are unknown
before the computation starts. Hence, we first present how
to estimate vertex hotness and communication costs
between vertices.

According to the priority scheduling introduced in
Section 2.1, the priority value of vertices is determined by
their A, value, and A, is collected from its in-neighbors
IN(v). Thus, if vertex v has a strong ability to collect A, vertex
vis likely to be with a higher execution priority and is likely to
be hot. We estimate the hotness of vertex v as follows.

Wy v
o= S 3)
ue%:(v) Zu:eOUT(u) wu,,u:

where w,, is the weight of edge (u, v). If there is no weight
on edges, we assume w,,, = 1.

During the computation, when a vertex is updated, it will
send a message to its outgoing neighbors, so that the num-
ber of messages passed through an edge is proportional to
its source vertex’s update times. In other words, the edge
communication cost can be estimated as its source vertex’s
hotness. Thus, the communication cost of edge (u,v) is esti-
mated as follows.

COMy,y = hu . (4)

Note that, the estimation methods for vertex hotness and
edge hotness are heuristic and can be customized according
to algorithms’ characteristics. It is also possible to perform
dynamic graph partitioning or dynamic workload balancing
during computation since we can obtain the exact vertex
hotness during computation. But our preliminary results
show unsatisfactory performance because dynamic load
balancing could bring significant migration cost as the hot-
ness values are not stable. In this paper, we focus on static
hotness estimation and leave the dynamic graph partition-
ing as future work.

3.2 Partition Goals

In asynchronous frameworks with priority scheduling, the
hotter the vertices are, the more computation resources they
need. We should assign computation resources according to
vertex hotness. Suppose a homogeneous cluster where work-
ers have similar computation power, in order to globally
improve work effectiveness, we should balance the hotness
among partitions, so that the same amount of computation
resources are assigned to each partition. Therefore, our parti-
tioning scheme aims to assign the same amount of vertex hotness to
workers, which is the first goal.

There is an assumption in the above analysis, which is
that a global priority scheduler is used. However in practice,
a global scheduler is very expensive in large scale clusters.
We use a local scheduler that runs on each worker to simu-
late the global scheduler, i.e., the priority scheduling works
in parallel and on a per-worker basis, so that the expensive
global coordination overhead is avoided. As discussed in
Section 2.2, under priority scheduling scheme, a subset of
vertices (more than one vertices) could be scheduled in each

use limited to: Northeastern University. Downloaded on April 06,2025 at 06:57:17 UTC from IEEE Xplore. Restrictions apply.

750 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 32, NO. 4, APRIL 2021

(b) Pamuon scheme 1

(a) Original graph (c) Partition scheme 2

Fig. 4. Hotness based partitioning examples. Red vertices are with
higher hotness values, while blue vertices are with lower hotness values.

round on a worker. For example in Fig. 4, let us suppose the
hottest 2 vertices are selected for computation in each
round. As shown in Fig. 4c, since only one hot vertex is
assigned to worker 2 (with others being cool vertices), there
could always be at least one cool vertex scheduled. With
limited computation resources, this could make the compu-
tation on worker 2 less effective.

Given a hotness values set H, we have its cumulative dis-
tribution function F(z) = P(X < z). Under priority sched-
uling, the subset of vertices with high hotness values, H/,
are likely to be selected for prioritized executlon Let us
assume its proportion to the whole set as n% = ‘H By dis-
tributed computing, we divide H into k disjoint partitions,
Hy, Ho, ..., Hp, where HiUHoU...UHpy=H and H;N
HoN ... ﬂ Hi, = 0. We select the top n% elements with the
highest priority from each partition and obtain k& candidate
subsets H',H,, ..., H) respectively. The following theorem
shows that, if the local hotness distribution on each worker
is consistent with the global hotness distribution, the local
priority scheduling can achieve the same effect as the global
priority scheduling.

Theorem 1. If the local cumulative hotness distribution F;(x) on
each worker j is consistent with the global cumulative hotness
distribution F(x), ie., Vj,y, F;(y)=F(y), we have
H =H UHyU...UH,.

Proof. Because of the definition of H' and 7,
V7, :Z } = “H‘ = n%. Suppose the largest element inset H —
H' is m, ie., max{H —H'} <m <min{H'}, we have
Fj(m) = F(m) = P(X <m) =" =1 —n%. That is, for
any partition j, we have 1 — F;(m) = }Z :, ie., maz{H; —

Hi1 < j <k} <m<min{Hj|]1 <j< k} In other words,

for each 7, all the elements that are larger than m must

be in), and H) does not contain any element that is

smaller than m. Sowe have H' = H{ UH,U---UH). O

we have

We use hotness histogram to describe the hotness distri-
bution. The vertex hotness values are divided into z contin-
uous non-overlap intervals. Each interval corresponds to a
bin H; holding the vertices whose hotness values are in the
jthinterval, then we have max{h,|v € H;_1} < min{h,|v €
H;} and max{h,|v € H;} < max{h,|v € H;;1}. The height
of the histogram bar is the sum of hotness values of vertices
in each bin, i.e,, ZleH hy. Then the probability distribution
of hotness histogram i in original G is defined as

ZUE'H]' hl
E’UEV h’v

Similarly, the probability distribution of hotness histogram
in partition G, is defined as

P(H;) = 5)

)
S

26

[

22

<)
S
5]

o

w

sum of hotness
5

Hl‘ HOH W,

sum ofhomess
sum of hotness

5
oll

|‘H2‘H| z‘

=}
S

H, H,

(a) Original graph (b) Partition scheme 1 (©) Partltlon scheme 2

Fig. 5. Histogram distribution of hotness values corresponding to Fig. 4.

ZUEHﬁ h’L

ZUEV,' h‘“ ' (6)

P(H;) =

where H;; = H;NV,.

Jensen Shannon (JS) distance [25] is a metric that meas-
ures the similarity between two probability distributions.
We use Hotness Jensen-Shannon distance (HJS) to quantify the
variance between hotness distributions of partition G; and
graph G as follows.

1 P(H,)
HIS(PIIP) =3 ZP(H])Z()g(P(HJHPz(H]))
j=1 P
R P)
iU
* ; B(Hi)log(mwmm) >
If P(.) = P(.), i.e., the hotness distribution of G; is consis-

tent }/)\gitl} the glob%t(Hhotness distribution, we have

smaller the H]JS dlstance is, the more consistent the hotness
distributions are.

Example 2. We divided the hotness values of vertices in G
in Fig. 4a into two intervals, i.e., z =2, and H; = {v,8 >
h, > 5}, Ho={v,5 > h, > 1}. Fig. 5shows the corre-
sponding hotness histogram distribution of G, and parti-
tion G; and (5. For the partition scheme in Fig. 4b,
HJS(P||Py) =~ 0.296 and HJS(P||P,) ~ 0.296. For the par-
tition scheme in Fig. 4c, HJS(P||P,) = 0, HJS(P||P,) = 0.

It is noticeable that the number of bins z affects density
estimation. A larger number of bins (wider bins) gives
greater precision to the density estimation but may increase
noise due to sampling randomness. There is no “best” num-
ber of bins. Our results in Section 6.5 show that the perfor-
mance becomes stable when the number of bins is larger
than 4. Therefore, with a fixed z, our second goal is to minimize
the HJS distance between each partition and the original graph.

As known in distributed prioritized iterative computa-
tion, network communication has a great impact on the per-
formance of distributed computing. Heavy network traffic
may lead to message blocking when sending the important
messages that help accelerate prioritized computation.
Therefore, our third goal is to minimize the communication cost
between partitions.

Based on the above discussion, our hotness balanced par-
tition tailored for distributed prioritized graph computation
is defined as follows.

Definition 1. Hotness Balanced Partition. Given a graph G =
(V, E, H) and a partition number k, hotness balanced partition
aims to find a partitioning scheme G = {G, ..., Gy} such that

Authorized licensed use limited to: Northeastern University. Downloaded on April 06,2025 at 06:57:17 UTC from |IEEE Xplore. Restrictions apply.

GONG ETAL.: ACCELERATING LARGE-SCALE PRIORITIZED GRAPH COMPUTATIONS BY HOTNESS BALANCED PARTITION 751

1) the sum of hotness values of each partition is balanced,
e, min Y| [3,0y hy — 2,

2) the variance of hotness distributions between each
partition and original graph is minimized, i.e.,
min YF | HIS(P||B).

3) the communication is minimized, i.e., min Zle Com,,
where Com; =3, cy: ¢ v, (comy, + comyy) — and
comy,, is the amount of messages sent from w to v.

4 SPB-HBP

As an NP-hard problem, it is difficult to find the optimal
partitioning scheme that meets all the three requirements at
the same time. As a multi-objective optimization problem, it
is also very expensive to use some local search-based
approaches to find a local optimal solution. In this section,
we propose an efficient streaming-based heuristic algo-
rithm, Streaming-based Per-Bin Hotness Balanced Partition
(SPb-HBP).

4.1 Per-Bin Hotness Balanced Partition

According to Definition 1, there are three goals we want to
achieve in HBP. We observe that if each bin is partitioned
with balanced hotness, we can achieve both of the first and
second goals at the same time. For example in Fig. 5c, the
vertices in the first bin are approximately evenly partitioned
with regard to hotness, and the vertices in the second bin
are also approximately evenly partitioned. Then the sums
of hotness values in G| and G are identical. HJS(P,||P)
and HJS(P||P) are both very small. The following theorem
states this fact.

Theorem 2. For a given graph G(V, E, H) with z hotness inter-
val bins {H, ..., H.}, if we partition each bin H into k hot-
ness-balanced bin partitions {H;1, ..., H;.} and merge the bin
partitions that have the same partition id into a graph partition
Vi = U j=1Hji, the hotness of each graph partition is balanced

hy
S, = el ®
veV; k
and the HJS distance between G and G; is minimized

HJIS(P||P) = 0. 9)

Proof. Since {H1, ..., H;} is the hotness balanced partition
of H;and V; = U j_, H;i, then we have

z z 21167'(]' hU

’UEVhU
R R N

veV; j=1 ’UEHﬁ j=1

(10)

The probability distribution of hotness histogram in par-
tition G} is

Z’UEH]‘Z‘ h'” _ %Z'UEHJ' h“ _
ZLEV; h'” %ZU€V h’”

By applying Pi(H;) = P(H;) in Equation (7), we have
HJS(P||P;) = 0.]

(11)

P(H;) = P(H;).

Based on the above discussion, the first two HBP goals in
Definition 1 can be reduced to one

Partition2 Partition3

Partitionl

hotness————»

Fig. 6. Pb-HBP graph partitioning.

ZUEH' hl’

UEHji

min i (12)

i=1

Finally, our partition goals become i) balancing the hotness of
bin partitions and ii) minimizing the communication cost. We
call this variant of HBP as Per-Bin Hotness Balanced Parti-
tion (Pb-HBP). The idea of Pb-HBP is also depicted in Fig. 6.
The vertices in various hotness bins (with various levels of
hotness) are partitioned separately, at the same time the
communication cost between partitions is minimized.

4.2 Streaming-Based Heuristic Algorithm

Based on the idea of Pb-HBP, we derive a heuristic stream-
ing algorithm by greedily assigning vertices to clusters. The
greedy assignment is performed as follows. Given that the
current vertex partitions are {Vi,V5,...,V;}, a newly
scanned vertex is assigned to a partition such that the goals
of Pb-HBP are most likely to be satisfied. Suppose our cost
function to be minimized is f, where f(V; U {v}) is the cost
when assigning v to V. Vertex v is assigned to partition 4
such that

fViu{v}) < f(V;u{v}), V1 <j <k (13)

The greedy vertex assignment requires only one pass of the
graph data, which is quite efficient for large graph. How-
ever, the key is to design a cost function that describes the
goals of Pb-HBP.

There are two goals of Pb-HBP, which describe the per-
bin hotness balancing requirement as shown in Equa-
tion (12) and the communication minimization requirement.
We unify them in a single cost function and greedily choose
the best partition 4 that results in the least cost.

o ((hji + ho) = B)

1= arg min

X Zueﬂi ho
i h_,-l-gr T

E COMyy + E comy |,

ug Vi wé

(14)

+(1—a)-

where0 <o <1,7 > 1,8 > 1,and hj; =3, h, denotes
L. VST 11

the current sum of hotness values of partition (; in the jth bin.

In this cost function, the first part describes the imbalance

cost, while the second part describes the communication

cost. Parameter « controls the weight of the workload

Authorized licensed use limited to: Northeastern University. Downloaded on April 06,2025 at 06:57:17 UTC from IEEE Xplore. Restrictions apply.

752 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 32, NO. 4, APRIL 2021

imbalance cost and the communication cost. The imbalance

k
cost is minimized when Hj; = M for each i. Parameter
T is a small constant (r > 1) that defines the tolerance to
hotness imbalance, so that the sum of hotness values in each
partition is prevent from extreme large, ie., >,y by <

T- %}7‘ Parameter B controls how much preference to
assign vertex to low hotness partitions since adding vertex
to high hotness partitions may increase the risk of generat-
ing over-hot partitions, where larger g (8 > 1) results in
higher cost when assigning vertex to higher hotness parti-
tions. The communication cost >, ¢ v, COMyy +
2 w¢ v; COMy,y, is depicted by the increased communication
of cut edges when assigning v to the ith partition. Based on
the cost function depicted in Equation (14), we sequentially
read each vertex v and assign it to the partition ¢ that results
in the minimum cost.

Algorithm 1 summarizes the whole process of Stream-
ing-based Per-Bin Hotness Balanced Partition. We first esti-
mate the hotness values H of all vertices (Line 1) and
initialize z bins {Hi,...,H.} based on the hotness histo-
gram of H (Line 2). Line 3 initializes vertex partitions, and
Line 4 initializes the sum of hotness values in each bin parti-
tion. We then perform the vertex assignment operation. We
measure the increased cost when assigning a vertex to each
partition (Line 13). If a bin partition is over-hot, it will not
be assigned with new nodes (Line 10 - 12). The partition
that results in the minimum increased cost will be selected
for assigning the vertex (Line 15 - 16), and the bin partition’s
hotness is correspondingly increased (Line 17).

Algorithm 1. Streamed Per-Bin Hotness Balanced Partition

Input: Input graph G(V, E), number of partitions k, number of
intervals z;

Output: Graph partitions {V;,..., V. };

1: Estimate hotness values H of all vertices;
2: Init H; based on histogram of 4,1 < j < z;
3: nitV;=0,1<i<k
4In1th,,:0,1§2§k,1§j§2,
5: Assign(V, {V1,..., Vi,});
6: procedure AssignV, {Vi,...,V;}
7. foreachvinV do
8: Find 'H; where v resides;
9: for each V; do
10: if hy; > r~2€7H’then
11: ¢; = +0o0;
12: end if
13: G =a- ((hjj + h,u)’s — hfz) (1-0) <Zu¢ v COMyy
+> ¢ comvyw> ;
14: end for
15: 1 = argmin, ¢;;

16: Vi=V,Uuy;
17: hJ, = hj, + h,;;
18: end for

19: end procedure

In this paper, we focus on edge-cut partitioning for dem-
onstration, but it can be easily extended to vertex-cut parti-
tioning [1], [7]. In vertex-cut partitioning, the edge data are
evenly distributed to workers without copies, and the verti-
ces that span workers with vertex replicas. Since each edge

is stored exactly once, changes to edge data do not need
communication. However, changes to vertex state must be
copied to all the machines it spans, thus the storage and net-
work overhead depend on the number of vertex replicas. In
vertex-cut hotness balanced partition, the edge-centric proc-
essing model is adopted, so that the hotness is measured on
a per-edge basis, which is the communication cost as
defined in Equation (4). On the other hand, the communica-
tion cost in vertex-cut scenario becomes the vertex hotness
as defined in Equation (3). Then the partition goals are rede-
fined as follows. 1) balancing hotness values of edges; 2)
making the edge hotness distributions consistent; 3) mini-
mizing the number of vertex cuts. To achieve these goals,
we can employ a streaming approach similar to [7], where
the input is each edge instead of each vertex, and evaluate
the cost score for each partition by considering the three
optimization objectives. The partition that leads to the least
score is picked for assigning this edge.

Algorithm 2. Local Compression

Input: Initial graph partition G; =
number of intervals z;
Output: Super-vertices set V; and super-edges set E;;

(Vi, E;), compression ratio r,

1: Hj;; =Init z hotness bins, 1 < j < z;

2: v-v-map=Init vertex-to-supervertex map;

3: for each H;; do

4: {v} =Randomly pick (r - |H;;|) super-vertices

5: foreach vin H; do

6: for each super-vertex 7 do

7: com,; = 0;

8: for each vertex u in v do

9 comyy = comyz + comy, + comy, + Y, {OUT(W)NOUT (w)H;}

(comyw);)

10: end for
11: end for
12: Select v that results in maximal com, 3;

13: v =vUwv; hy = hg + hy;

14: Update v-v-map;

15: end for

16: end for

17: 'V, = {v};

18: Broadcast v-v-map to other workers;

19: Receive all u-u-map from other workers;
20: for each vertex v € V; do

21: for each vertex vin v do

22: for each u € OUT'(v) do

23: Lookup @ in u-u-map where u € w;
24: COMpg = COMg g + COMyy;

25: end for

26: end for

27: end for

28: F; = {comzz|v € Vi};
29: Send V; and E; to the global worker;

5 DisTRIBUTED SPB-HBP

The proposed single-pass SPb-HBP algorithm sequentially
processes vertices and their associated edges. This is effi-
cient enough in most cases. However, when graph data is
extremely large, the graph data may be stored distributively
or collected distributively, i.e.,, graph data are initially

Authorized licensed use limited to: Northeastern University. Downloaded on April 06,2025 at 06:57:17 UTC from IEEE Xplore. "Restrictions apply.

GONG ETAL.: ACCELERATING LARGE-SCALE PRIORITIZED GRAPH COMPUTATIONS BY HOTNESS BALANCED PARTITION

Worker 1

Super-vertex level graph |)

753

Worker 2 Worker 2

Fig. 7. Overview of distributed SPb-HBP graph partitioning.

stored on multiple workers. In order to use SPb-HBP to par-
tition the graph, a distributed partitioning algorithm is
desired.

Intuitively, a distributed graph partitioning algorithm
requires a large amount of shuffle communication to exchange
vertex data and edge data. To have a knowledge of neighbor-
hood information, we may need several rounds of data shuf-
fling and synchronizations, which may result in a large
amount of network traffic and degrade the performance.

Our idea is described as follows. Each distributed worker
compresses its assigned graph data into a compact and
informative graph summary (with combined vertices and
combined edges) that uncovers the underlying topology
characteristics and the vertex/edge hotness of the original
graph. These local graph summaries are then sent to a
global worker, where SPb-HBP is performed on these local
summaries to obtain a global partition result. Based on the
global result on graph summaries, the combined vertices
may be migrated from one worker to another worker, where
they are decompressed to their original vertices. Since only
the graph summaries are shuffled between workers, the
resulted communication cost can be greatly saved.

We show the distributed graph partitioning process in
Fig. 7, which contains three phases, including local com-
pression, global partition, and local decompression. We
present the details of the three phases in the following.

Local Compression. Local compression is performed on
each worker in parallel. Based on the initial assigned partial
graph data G;(V;, E;), we will compress the original graph
data G;(V;, E;) into a graph summary G;(V;, E;) where V;
contains - |V;| super-vertices (r is a compression ratio
parameter) and E; represents the super-edges between
super-vertices. We describe the local compression process
in Algorithm 2.

To combine vertices into super-vertex, a few principles
are considered. 1) The vertices that have higher communica-
tion cost should be combined in a super-vertex, in order to
avoid cross-partition communication. 2) The vertices that
have the same neighbor should be combined in a super-ver-
tex, in order to reduce the number of super-edges. 3) Only
the vertices that are in the same hotness bin can be com-
bined, in order to keep the hotness bin information for the
next global partition phase. Based on these principles, Line
(9) of Algorithm 2 evaluates how much communication cost
can be saved by assigning vertex v to super-vertex v. Then
we select the T that results in the maximal communication
cost as vertex v's host super-vertex, and we can finally
obtain the super-vertices set V;.

In order to measure the communication cost between
super-vertices (i.e., super-edges), we need to have knowledge
of the vertex-to-supervertex mapping information from other

I
I
? oo O | ¢ L

K PN ¢ l
—- e—- f 4 e—- ! S | — . —- I

X Ny ry\ I 1Y . |
Local) Sendto | © () Global |/ 1L Migrate g Local I
compression | | * iglobal worker partition super-vertex | "= ! —__decompressio: |

; / Worker 1 | Worker 2 Worker 1 Worker 2

workers. Therefore, each worker broadcasts the computed the
vertex-to-supervertex mapping information to other workers
(Line 18), based on which each parallel worker computes the
communication cost between its super-vertices and other
super-vertices generated by other workers (Line 20-27).
Finally, each worker sends the super-vertices set V; and
super-edges set with communication cost F; to a global
worker for global partition (Line 29).

Global Partition. A global worker is dedicated to perform-
ing global partition based on the collected local compressed
subgraphs G;(V;, E;) from distributed workers. Since the
original large graph has been significantly compressed, we
can use the sequential one-pass SPb-HBP algorithm (Algo-
rithm 1) to efficiently partition the compressed graph. It is
noticeable that after local compression, the hotness values
of super-vertices could be larger than that of their contained
vertices, and the hotness levels of these super-vertices might
be increased. Since we only combine vertices in the same
hotness bin during local compression, we can keep these
super-vertices in their original hotness bins during global
SPb-HBP partition, in order to make the hotness distribu-
tions consistent among partitions.

Local Decompression. After global partition, the super-
vertices with their associated original vertices and edges
data are shuffled among workers to have a hotness balanced
partition with minimum communication cost. These super-
vertices are then decompressed on each worker in parallel.
The vertices and edges are also relabelled with new ids based
on the vertex-to-supervertex map and the supervertex-to-
partition map. The distributed SPb-HBP graph partitioning
is finished at this time. From Fig. 7 we can see that a more
hotness balanced and communication-minimized partition
is achieved.

6 EXPERIMENTAL EVALUATION

In this section, we present the experimental evaluation of
our hotness balance partition.

6.1 Preparation

We first partition input graphs as a preprocessing step and
then distributively run prioritized graph algorithms on
Maiter [15]. Maiter is an implementation of the asynchro-
nous DAIC framework and supports priority scheduling.
We record the runtime of graph computation and the vol-
ume of network traffic to illustrate the effectiveness of dif-
ferent graph partitioning approaches.

Competitors. We compare our proposed SPb-HBP and its
distributed version DSPb-HBP with the state-of-the-art
stream partitioning methods Fennel [9], HotGraph [17],
SNE [10] and Hash partition. Fennel is a vertex balanced

Authorized licensed use limited to: Northeastern University. Downloaded on April 06,2025 at 06:57:17 UTC from IEEE Xplore. Restrictions apply.

754 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 32, NO. 4, APRIL 2021

1.8

14 Hash = HotGraph Hash = HotGraph 1 25 Hash
Fennel == SPb-HBP mmm 1.6 Fennel === SPb-HBP mmm Fennel ==
1.2 SNE = DSPb-HBP m=m 14 SNE 1 DSPb-HBP m=m SNE =
- 2 HotGraph 1
1 1.2 SPb-HBP mm
DSPb-HBP mmm

08 15

Normalized Run Time
Normalized Run Time

Normalized Run Time

W LJ HW GSH

(a) Adsorption

Fig. 8. Runtime comparison with different graph partitioning methods.

partition algorithm. It uses an objective function that com-
bines vertex balance and number of cut edges to determine
which partition a vertex should be assigned. HotGraph is
designed for asynchronous parallel graph processing in
shared-memory multi-core systems. It extracts the backbone
structure of the graph and assigns it to a partition, so that
most of vertex state propagations are occurred with this
partition, which results in the communication overhead
between partitions. SNE is a stream-based variant of the NE
algorithm. NE [10] partitions edges iteratively for k rounds,
where an edge partition is generated that greedily maxi-
mizes edge locality. The traditional iterative graph parti-
tioning methods, such as METIS [26], usually require
multiple passes of the graph data and multiple iterations for
refining the partition result, which result in extremely high
preprocessing cost (the graph partitioning time may be lon-
ger than the runtime of graph algorithms), so we do not
compare with them for fairness.

Workload and Datasets. We perform evaluation on three
representative prioritized graph algorithms, Adsorption,
PageRank and Penalized Hitting Probability (PHP). We also
select four different real graphs with different types, Twitter
(TW) [27], Hollywood (HW) [28], LiveJournal (L]) [29], and
General Shallow Hosts (GSH) [30]. Based on these real
graphs, we assign random weights to edges to construct
weighted graphs. The detail information of these datasets is
shown in Table 2.

Evaluation Metrics. We use the runtime and the communi-
cation cost of Adsorption [23], PageRank [22] and PHP [24]
caused by different partitioning schemes as the metrics to
evaluate the effectiveness of different partitioning methods.
The Adsorption, PageRank and PHP are performed on
Maiter framework to record the runtime. The communica-
tion cost is measured as the total network traffic volume
generated during graph algorithms computation.

Experiment Cluster. Our experiments are conducted on a
cluster of machines on Alibaba Cloud, which consists of 65
ecs.cs.large nodes with one additional node as Master. Each
node runs Ubuntu 14.04 LTS and is equipped Intel Xeon
(Skylake) Platinum 8163 CPU (2.5 GHz, 2 cores), 8 GB of

TABLE 2

Datasets
Graph Vertices Edges Type
™ 456,626 14,855,819 Social Network
HW 1,139,905 116,050,145 Collaboration Networks
LJ 4,847,571 69,555,947 Social Network
GSH 30,809,122 602,119,716 Web Graphs

1
0.8
0.6
- 0.4)
0.2 0.2
ul B H i ‘
0 0 T™W LJ HW GSH 0

(b) PageRank

™ LJ HW GSH
(c) PHP

memory and 40 GB hard disk. The nodes of the cluster are
connected by 1 Gbps network.

Parameters Setup. By default, we set the number of bins z =
2 and the compression ratio r = 0.01, unless otherwise speci-
fied. For fairness, we set T = 1.1 which is the same as that in
Fennel, SPb-HBP and DSPb-HBP. Our HBP’s 8 and Fennel’s

y play the same role, thus we set them both as 1.5. Following
Fennel’s original paper [9], we set a = \/E%,

(u,v)eE Comuy
which depicts the tradeoff between the load imbalance cost
and the communication cost. We set the other parameters of
the competitors by referring to their papers.

6.2 Compare With Other Partition Methods

To test the effectiveness of our proposed hotness balanced
partition methods, we compare SPb-HBP and DSPb-HBP
with other state-of-the-art partitioning methods. We parti-
tion the input graph into 4 partitions by using different par-
titioning methods. We then use 5 workers (1 master and 4
slaves) to perform Adsorption, PageRank and PHP algo-
rithms on these partitions (DSPb-HBP runs distributed par-
tition on 4 nodes).

Fig. 8 shows the normalized runtime comparison on
three graphs (TW, HW, L] and GSH"Y). We use the runtime
of Adsorption, PageRank and PHP caused by Hash parti-
tion as the baselines and draw the normalized runtime
results caused by other partitions. Similarly, we show the
normalized communication cost on these graphs in Fig. 9. It
is noticeable that the runtime and communication cost are
resulted from graph algorithm’s computation but not graph
partitioning.

We can see that SPb-HBP always results in shorter run-
time than other methods no matter for Adsorption, Pag-
eRank or PHP computation. SPb-HBP can reduce 40-90
percent runtime of that by hash partition, 5-75 percent run-
time of that by Fennel, 22-50 percent runtime of that by Hot-
Graph, and 17-65 percent runtime of that by SNE. The
distributed version of SPb-HBP, DSPb-HBP, shows less
effectiveness than SPb-HBP since SPb-HBP compresses the
original big graph into smaller coarse graph for stream par-
titioning. In general, DSPb-HBP results in shorter runtime
than Fennel, HotGraph, and SNE except for the runtime of
Adsorption on TW and PHP on GSH. This is because that
Adsorption and PHP result in more communication cost on
the TW and GSH datasets under DSPb-HBP. Besides,

1. In this experiment, we extracted 20 percent of the GSH to perform
graph algorithms, because the whole GSH requires a too long time to
converge.

Authorized licensed use limited to: Northeastern University. Downloaded on April 06,2025 at 06:57:17 UTC from IEEE Xplore. Restrictions apply.

GONG ETAL.: ACCELERATING LARGE-SCALE PRIORITIZED GRAPH COMPUTATIONS BY HOTNESS BALANCED PARTITION 755

514 Hash " HotGraph) S o Hash 1 HotGraph ! 82'5 Hash HotGraph !

= Fennel | SPb-HBP mmmm B Fennel ! SPb-HBP s 5 Fennel SPb-HBP

£12 SNE = DSPb-HBP mem | 2 SNE =1 DSPb-HBP mem | 2 2 SNE —1 DSPb-HBP ===

g2 1 - - 215 3

1.5

Eos 5 g

o o 1 . - - o

- 0.6 o - 1

2. | ﬂ g (g

3 | i

£ . ‘ £ £

£0.2 | £ E

s MR, |2 mﬁwm; s | HK

W HW GSH TW L] HW GSH TW L] HW GSH
(a) Adsorption (b) PageRank (c) PHP
Fig. 9. Communication cost comparison with different graph partitioning methods.
vy e o o o o oS

Partition Time and Runtime (PageRank) - e ™ epoiiap ﬁ1200 B e 1

Hash Fennel SNE HotGraph SPb-HBP £ £ 800
PT(TW) Os 20s 60s 4.8s 3.0s & 400 2 400
RT(TW) 66.2s 90.2s 55.4s 52.7s 36.4s I
PT(HW) 0Os 14.6s 49.2s 32.0s 11.9s ol Rk 16' 32| A 0
RT(HW) 1327.3s 1142.8s 1266s 998.1s 783.0s # of partitions # of partitions
PT(L]) Os 14.4s 68.3 26.0s 12.6s (a) PageRank on LJ (b) PageRank on GSH
RT(L]) 823.9s 601.8s 786s 646.6s 456.6s

Fennel, HotGraph and SNE even results in longer runtime
and more communication than the naive Hash partition on
the TW and GSH dataset. Based on our analysis, we found
that they cut a large number of heavy traffic edges as it does
not consider edge hotness. In distributed priority schedul-
ing systems, the delayed transmission of important mes-
sages may impact the efficiency of graph algorithms [17].
What's worse, the GSH’s partitions produced by HotGraph,
the Adsorption algorithm fail to convergence in a reason-
able time period.

We also show the partition time (PT) and PageRank run-
time (RT) of these partition methods on different datasets in
Table 3. The partition time only contains the time for com-
puting the vertices assignment information without the
time for deploying these vertices. Comparing with compu-
tation runtime, these partition methods are all efficient and
take much shorter partition time. Hash partition does not
involve any graph structure related computation, so its par-
tition time can be ignored. SPb-HBP and Fennel are both
streaming-based one-pass partition algorithms, so they are
faster than HotGraph. As a stream-based partition algo-
rithm, SNE’s processing unit is edge, i.e., it will compute
the best partition assignment for each edge. Since the num-
ber of edges is much larger than that of vertices, SNE
requires more computation time than the vertex-based
methods. DSPb-HBP is a distributed partition method. It is
not fair to compare it with the single machine partition
method. We will evaluate the partition time of DSPb-HBP
in later experiments.

6.3 Scaling Performance

It is necessary to show the performance when running on
large sized cluster with more partitions. The larger the clus-
ter size (i.e., the greater the number of partitions), the larger
the amount of communications, due to more edge cuts. We
evaluate the effectiveness of these partitioning methods by
running on larger sized clusters (i.e., varying the number of

Fig. 10. Runtime comparison when scaling number of partitions.

,:00 Hash HotGraph ﬁ?oo Hash HotGraph
@700 Fennel mm SPb-HBP mm | 3700) Fennel mm SPb-HEP mm
<600 SNE DSPb-HBP 600 SNE DSPb-HBP
5500 5500
8400 8400
5300 5300
200 £200
3100 3100 I
0 it I 1 0 o P | I
4 8 16 32 64 4 8 16 32 b4
of partitions # of partitions

(a) PageRank on LJ (b) PageRank on GSH

Fig. 11. Communication cost comparison when scaling the number of
partitions.

partitions). With different partitioning methods, we parti-
tion the L] and GSH graphs into 4, 8, 16, 32 and 64 partitions
respectively,” and run PageRank algorithm on the clusters
with 4, 8, 16, 32, and 64 nodes, respectively. Figs. 10 and 11
show the comparison results of runtime and communica-
tion cost, respectively.

In most cases, with the increase of the partition numbers,
the runtime of PageRank is decreasing while the communi-
cation is increasing. But our SPb-HBP and DSPb-HBP parti-
tion methods always result in shorter runtime and less
communication cost than their counterparts when varying
the number of partitions (varying the cluster size). Again,
SPb-HBP and DSPb-HBP exhibit comparable effectiveness.
It is notable that with the graph partitions produced by Fen-
nel, the PageRank algorithm fails to convergence in a rea-
sonable time on the L] dataset when the partition number is
16 or larger. This is because that Fennel may cut the impor-
tant edges and would delay the important message passing,
which will seriously hurt the performance of asynchronous
framework Maiter. With HotGraph partition results, the
runtime of PageRank first decreases then increases with the
increase of the partition numbers. This is because that Hot-
Graph is designed for shared-memory environment and

2. DSPb-HBP runs distributed partition on different sized clusters.

Authorized licensed use limited to: Northeastern University. Downloaded on April 06,2025 at 06:57:17 UTC from IEEE Xplore. Restrictions apply.

756 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 32, NO. 4, APRIL 2021

3000 2576
0 -

2500 2576 DSPb-HBP
< —e—linear scale result (4-
E 2000 worker base)
=

90

5 1500 s
‘g 1000)
o~ 491 644

W
(=3
S

os}

N

4 8 12 16
of workers

Fig. 12. Graph partitioning time of DSPb-HBP when scaling number of
workers (GSH graph).

does not take the cross-worker communication cost into
consideration. With the increase of the partition number,
the communication cost can increase dramatically and over-
weigh the benefit of more computation resources.

6.4 Efficiency of DSPb-HBP

DSPb-HBP is a distributed partition approach, which can be
expensive when partitioning massive graphs on a large clus-
ter. We also test the efficiency of DSPb-HBP on the large GSH
graph dataset. In this experiment, we partition the graph
with different numbers of workers and record the partition
time rather than the runtime of graph algorithms. We set the
compression ratio r of DSPb-HBP as 0.001.

Fig. 12 shows the partition time of DSPb-HBP when the
number of workers varies from 4 to 16. For a given graph,
the partition time should be inversely proportional to the
number of workers. Then, we use the partition time with 4
workers as the baseline and draw the linear scale result, i.e.,
t =14 %, where t;, is the partition time with k& workers. Our
DSPb-HBP shows a better result than the linear scale result.
This is because that there are some high-degree vertices in
GSH, which need long time to compress. With fewer work-
ers, the problem of load imbalance for these high-degree
vertices is more serious. This shows the superiority of
DSPb-HBP on a larger scale cluster (i.e., scalability).

6.5 Parameter Studies
There are two important parameters in our approach, the
number of bins z in Pb-HBP and the compress ratio r in
DSPb-HBP. We study the effects of z and r by partitioning
LJ graph into 4 partitions with different z and r value and
performing the PageRank. Fig. 13a shows the running time
of PageRank when varying the number of bins z from 2 to
64. We can see that the runtime is reduced at the beginning
but is almost stable when z is larger than 4.

Fig. 13b shows the running time of PageRank when vary-
ing the compression ratio 7. With a small compression ratio

500 700

400 M’A‘\x-x 600
z 3500
g 300 @ 400
€ 200 € 300
2 & 200
100 100

0 0

0 10 20 30 40 50 60 70 0 0.2 0.4 0.6 0.8 1

of bins Combression' ratio

(a) Effect of parameter z in HBP (b) Effect of parameter r in
DSPb-HBP

Fig. 13. The effect of parameters.

12 Fennel w. hot 1.2 Fennel w. hot
- [N
£ Fenne| m— e Fennel
= 1 = 1
Sos Sos
" @
206 206
K] ©
£ 4 E0.4
202 202
0 0
T™W LJ HW W LJ HW

(a) PageRank (b) PHP

Fig. 14. Fennel w. hot versus Fennel on running time.

r, the runtime of PageRank prolongs. This is because that a
small compression ratio results in fewer super vertices,
which could result in inaccurate partitioning results. How-
ever, even when r = 0.01, we still can get a better partition-
ing result than other state-of-the-art methods, as shown in
Fig. 8

6.6 Hotness Balanced Versus Vertex Balanced

In order to directly verify the idea of hotness balanced parti-
tion, in this experiment, we extend the Fennel partition to
support hotness balance partition. Basically, in the objective
function of Fennel, we replace the number of vertices with
the sum of vertex hotness values, and replace the number of
cut edges with the sum of communication of cut edges.
With such an extension, the new Fennel partition has been
upgraded to take hotness into account. We then compare
Fennel with the new Fennel with hotness consideration
(Fennel w. hot) to illustrate how much can be achieved by
considering hotness balance. In this experiment, we use the
same parameters as used in [9] and partition the graph into
4 partitions and use 4 workers to run graph algorithms.

Fig. 14 shows the runtime of PageRank and PHP on three
graphs. Fig. 15 shows the traffic volume in cluster. Fennel
partition with hotness consideration reduces the runtime
and communication to about 40-80 percent of original Fen-
nel partition.

6.7 Accuracy of Hotnhess Estimation
A critical work of HBP is to estimate the hotness of vertices
precisely. The hotness cannot be known before the compu-
tation finishes but we need to pre-know the approximate
hotness values in our partition algorithm. We use a light-
weight hotness estimation method in Section 3.1 which only
considers the first-order neighbors. In this experiment, we
evaluate the accuracy of our hotness estimation method.
The real hotness of each vertex can be measured by the
number of updates in a stand-alone single thread environ-
ment. Because in stand-alone single thread environment,
hotter vertices always get updated more frequently with the

_§1_2 Fennel w. hot _§1_2 Fennel w. hot
5] Fenne| m— < Fennel
z 1 c 1

g g

£ .8 g0.8

00.6 Q0.6

o e

S04 S04

© ©

£0.2 £0.2

o o

Z 0 Z 0

™ LJ HW ™ LJ HW
(a) PageRank (b) PHP

Fig. 15. Fennel w. hot versus Fennel on communication cost.

Authorized licensed use limited to: Northeastern University. Downloaded on April 06,2025 at 06:57:17 UTC from IEEE Xplore. Restrictions apply.

GONG ETAL.: ACCELERATING LARGE-SCALE PRIORITIZED GRAPH COMPUTATIONS BY HOTNESS BALANCED PARTITION 757

1.4 Real 1.4 Real
g1'2 Approximate §1'2 Approximate
g1 €1
=1 3
Xosg Xosg
2 B
No6 Nos
© ©
£0.4 go04
o o
Z0.2 Z0.2

0 0
™ HwW W W HWo L
(a) PageRank (b) PHP

Fig. 16. The impact of real hotness versus approximate hotness.

help of priority scheduling, which can avoid the uncertainty
resulted from the parallel execution environment. There-
fore, we record the number of updates of each vertex in a
stand-alone single thread environment as the “real” hotness
of each vertex. We treat the hotness that obtained by our
estimation method as approximate hotness. To test the
effectiveness of our estimation method, we use the “real”
hotness and the approximate hotness to partition the graph.

Fig. 16 shows the normalized runtime PageRank and
PHP on three graphs when we using the real hotness and
the approximate hotness. We can see that our partition
method using the approximate hotness has comparable
effectiveness with that using “real” hotness. It only shows
less than 15 percent difference in runtime.

7 RELATED WORK

Graph partitioning is an essential yet challenging task for
massive graph analysis in distributed computing. The prob-
lem of graph partitioning has been thoroughly studied for a
few decades. In recent years, streaming-based graph parti-
tioning and vertex-cut graph partitioning are two main
directions, which will be discussed in the following.
Streaming-Based Graph Partitioning. As opposed to offline
methods, which first load the complete graph in memory
and then divide it into partitions, streaming graph partition-
ing operates online, while ingesting the graph data as a
stream [8]. Linear Deterministic Greedy partitioning (LDG)
[8] uses a greedy heuristic that assigns a vertex to the parti-
tion containing most of its neighbors while respecting cer-
tain capacity constraints. FENNEL [9] is another streaming-
based partitioning scheme whose heuristic combines local-
ity-centric measures (low edge-cut) with balancing goals.
HDRF [7] and IOGP [31] are streaming-based vertex-cut
partitioning methods. HDRF is designed for distributed
OLAP transactions, while IOGP is designed for distributed
OLTP transactions. IOGP takes the connectivity and the ver-
tex degree changes into account when partitioning graphs.
Degree Based Hashing (DBH) [32] employs hashing for parti-
tioning and prioritizes cutting those vertices that have the
highest degree. Minit [33] is a quasi-streaming graph parti-
tioning method by separating the whole edge stream into a
series of batches where the batch size is a constant multiple of
the number of partitions. LEOPARD [34] and LogGP [35]
both use streaming-based method to dynamically repartition
the massive graphs in accordance with the structural changes.
AKIN [36] exploits the similarity measure on the degree of
vertices to gather structural-related vertices in the same parti-
tion as much as possible, which reduces the edge-cut ratio.

More related works on streaming-based graph partitioning
can be referred to [37], [38].

Edge-Cut and Vertex-Cut. Edge-cuts approach is used by
systems such as GraphLab [2], LEGraph [39], PBE [40] and
Pregel [3]. For systems that utilize edge-cuts, vertices are
assigned to partitions and thus edges can span partitions. In
contrast, in vertex-cuts partitioning scheme, edges are
assigned to partitions and thus vertices can span partitions.
Unlike edges which could be cut across only two partitions,
a vertex can be cut across several replicas as its edges may
be assigned to several partitions. In PowerGraph [1], the
authors first demonstrate that the presence of very high-
degree vertices in power-law graphs present unique chal-
lenges from a partitioning perspective, and motivate the use
of vertex-cuts in such cases. GraphX [41] provides a range
of built-in partitioning functions. For efficient lookup of
edges by their source and target vertices, the edges within a
partition are clustered by source vertex id using a com-
pressed sparse row representation and hash-indexed by
their target id. SBV-Cut [42] presents a structural balance
vertex-cut graph partitioning algorithm, which searches for
vertices where the graph is balanced in terms of distances to
the extremities as well as its connectivity to the rest and cuts
the graph incrementally along these dominant balance
vertices.

Application-Driven Partitioning. The optimal graph parti-
tioning strategy may depends on the application character-
istics, the input graphs and the number of workers [43].
PowerLyra [6] takes a hybrid partitioning approach, which
applies edge-cut to low-degree vertices and vertex-cut to
high-degree vertices, which aims to reduce the replication
factor of low-degree vertices, since high-degree vertices
inevitably need to be replicated on most of the machines.
MDBGP [44] produces balanced partitions according to
multiple user-specified weight functions while maintaining
edge locality. Fan et al. [45] propose an application-driven
(APD) hybrid partitioning strategy to learn a cost model for
different applications, and develop partitioner that refines
an edge-cut or vertex-cut partitioning to fit in with the cost
patterns of applications.

Distributed Graph Partitioning. To distributively partition
large-scale graphs, several distributed graph partitioning
approaches are proposed. Ja-be-Ja [46] swaps the vertices
between partitions based on the number of vertices’ neigh-
bours, such that the locality of partition is improved mean-
while the number of vertices between partitions is balanced.
Sheep [47] transforms the input graph into a strictly smaller
elimination tree via a distributed map-reduce operation.
Spinner [48] and XtraPuLP [49] partition the graph based on
label propagation. XtraPuLP uses weighted label propaga-
tion to achieve the balancing objective. In general, these dis-
tributed graph partitioning methods use an iterative
algorithm to swap the vertices between partitions or con-
struct a distributed structure to help find a better partition.
In addition, it is also feasible to rely on streaming-based par-
titioning and use multi-stream strategy to partition graph in
parallel, e.g., PowerGraph [1].

Prioritized Asynchronous Graph Processing. All the above
graph partitioning algorithms are designed for distributed
synchronous frameworks. They assume that the graph proc-
essing system uses a round-robin scheme to process the

Authorized licensed use limited to: Northeastern University. Downloaded on April 06,2025 at 06:57:17 UTC from IEEE Xplore. Restrictions apply.

758

assigned vertices in parallel. Recently, asynchronous paral-
lel model has attracted more and more researchers for accel-
erating large-scale graph processing since it can avoid the
costly synchronization overhead in a large-scale cluster
environment. Several asynchronous graph processing sys-
tems have emerged, such as GraphLab [2], Maiter [15] and
GRAPE+ [14].

HotGraph [17] is recently proposed for asynchronous
parallel graph processing system. However, HotGraph is
significantly different from our proposed method in the fol-
lowing two aspects. First, it still assumes round-robin
scheduling or FBS [17] scheduling, but not priority schedul-
ing. Second, HotGraph is proposed for shared-memory
environment but not for shared-nothing distributed envi-
ronment. It divides the graph into a single hot partition and
multiple cold partitions, which is unbalanced partitioning
and not suitable for distributed computation.

8 CONCLUSION

The traditional k-balanced graph partitioning fails to work
in prioritized asynchronous iterative frameworks. In this
paper, we propose a novel graph partitioning idea, Hotness
Balanced Partition, tailored to prioritized scheduling frame-
works. We propose the single-pass Pb-HBP algorithm to
efficiently partition graphs and propose a distributed ver-
sion for partitioning large-scale graphs. Our results show
that our proposed graph partitioning scheme can greatly
improve the performance of prioritized graph computations
and at the same time is quite efficient to partition large-scale
graphs.

ACKNOWLEDGMENTS

This work was supported in part by National Key R&D Pro-
gram of China (under Grant 2018YFB1003404), National Nat-
ural Science Foundation of China (under Grants 62072082,
61672141, and U1811261) and Fundamental Research Funds
for the Central Universities (under Grant N181605017 and
N181604016), and Key R&D Program of Liaoning Province
2020JH 2/10100037. A preliminary version of this article has
appeared in ICDE 2020 [50].

REFERENCES

[1] J. E. Gonzalez, Y. Low, H. Gu, D. Bickson, and C. Guestrin,
“PowerGraph: Distributed graph-parallel computation on natural
graphs,” in Proc. 10th USENIX Conf. Operating Syst. Des. Implemen-
tation, 2012, pp. 17-30.

[2] Y. Low, D. Bickson,]J. Gonzalez, C. Guestrin, A. Kyrola, and
J. M. Hellerstein, “Distributed GraphLab: A framework for
machine learning and data mining in the cloud,” Proc. VLDB
Endowment, vol. 5, pp. 716-727, 2012.

[3] G. Malewicz et al., “Pregel: A system for large-scale graph proc-
essing,” in Proc. ACM SIGMOD Int. Conf. Manage. Data, 2010,
pp- 135-146.

[4] Y.Zhang, Q. Gao, L. Gao, and C. Wang, “iMapReduce: A distrib-
uted computing framework for iterative computation,” J. Grid
Comput., vol. 10, pp. 47-68, 2012.

[5] F. Bourse, M. Lelarge, and M. Vojnovic, “Balanced graph edge
partition,” in Proc. 20th ACM SIGKDD Int. Conf. Knowl. Discov.
Data Mining, 2014, pp. 1456-1465.

[6] R.Chen,]. Shi, Y. Chen, and H. Chen, “PowerLyra: Differentiated
graph computation and partitioning on skewed graphs,” in Proc.
10th Eur. Conf. Comput. Syst., 2015, pp. 1-15.

[7]

(8]

[1

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 32, NO. 4, APRIL 2021

F. Petroni, L. Querzoni, K. Daudjee, S. Kamali, and G. Iacoboni,
“HDRE: Stream-based partitioning for power-law graphs,” in
Proc. 24th ACM Int. Conf. Inf. Knowl. Manage., 2015, pp. 243-252.

I. Stanton and G. Kliot, “Streaming graph partitioning for large
distributed graphs,” in Proc. 18th ACM SIGKDD Int. Conf. Knowl.
Discov. Data Mining, 2013, pp. 1222-1230.

C. Tsourakakis, C. Gkantsidis, B. Radunovic, and M. Vojnovic,
“FENNEL: Streaming graph partitioning for massive scale
graphs,” in Proc. 7th ACM Int. Conf. Web Search Data Mining, 2014,
pp. 333-342.

C. Zhang, F. Wei, Q. Liu, Z. G. Tang, and Z. Li, “Graph edge parti-
tioning via neighborhood heuristic,” in Proc. 23rd ACM SIGKDD
Int. Conf. Knowl. Discov. Data Mining, 2017, pp. 605-614.

H. Reittu, I. Norros, T. Raty, M. Bolla, and F. Bazs6, “Regular
decomposition of large graphs: Foundation of a sampling
approach to stochastic block model fitting,” Data Sci. Eng., vol. 4,
pp- 44-60, 2019.

M. Han and K. Daudjee, “Giraph unchained: Barrierless asynchro-
nous parallel execution in pregel-like graph processing systems,”
Proc. VLDB Endowment, vol. 8, pp. 950-961, 2015.

A. Balmin, A. Balmin, S. A. Corsten, S. Tatikonda, and J. Mcpher-
son, “From ”think like a vertex” to ”think like a graph”,” Proc.
VLDB Endowment, vol. 7, pp. 193-204, 2013.

W. Fan et al., “Adaptive asynchronous parallelization of graph
algorithms,” in Proc. Int. Conf. Manage. Data, 2018, pp. 1141-1156.
Y. Zhang, Q. Gao, L. Gao, and C. Wang, “Maiter: An asynchro-
nous graph processing framework for delta-based accumulative
iterative computation,” IEEE Trans. Parallel Distrib. Syst., vol. 25,
no. 8, pp. 2091-2100, Aug. 2014.

Y. Zhang, Q. Gao, L. Gao, and C. Wang, “Priter: A distributed
framework for prioritized iterative computations,” in Proc. 2nd
ACM Symp. Cloud Comput., 2011, pp. 1-13.

Y. Zhang, X. Liao, H. Jin, L. Gu, G. Tan, and B. B. Zhou, “HotGraph:
Efficient asynchronous processing for real-world graphs,” IEEE
Trans. Comput., vol. 66, no. 5, pp. 799-809, May 2017.

J. Yin and L. Gao, “Scalable distributed belief propagation with
prioritized block updates,” in Proc. 23rd ACM Int. Conf. Inf. Knowl.
Manage., 2014, pp. 1209-1218.

J. Yin and L. Gao, “Asynchronous distributed incremental compu-
tation on evolving graphs,” in Proc. Joint Eur. Conf. Mach. Learn.
Knowl. Discov. Databases, 2016, pp. 722-738.

Z.Wang, L. Gao, Y. Gu, Y. Bao, and G. Yu, “A fault-tolerant frame-
work for asynchronous iterative computations in cloud environ-
ments,” in Proc. 7th ACM Symp. Cloud Comput., 2016, pp. 71-83.

Q. Wang et al., “Automating incremental and asynchronous eval-
uation for recursive aggregate data processing,” in Proc. ACM
SIGMOD Int. Conf. Manage. Data, 2020, pp. 2439C-2454.

L. Page, S. Brin, R. Motwani, and T. Winograd, “The PageRank
citation ranking: Bringing order to the web,” Tech. Rep. 1999-66.
S. Baluja et al.,, “Video suggestion and discovery for YouTube:
Taking random walks through the view graph,” in Proc. 17th Int.
Conf. World Wide Web, 2008, pp. 895-904.

Z. Guan, J. Wu, Q. Zhang, A. Singh, and X. Yan, “Assessing and
ranking structural correlations in graphs,” in Proc. ACM SIGMOD
Int. Conf. Manage. Data, 2011, pp. 937-948.

C. Manning and H. Schutze, Foundations of Statistical Natural Lan-
guage Processing. Cambridge, MA, USA: MIT Press, 1999.

G. Karypis and V. Kumar, “A fast and high quality multilevel
scheme for partitioning irregular graphs,” SIAM |. Sci. Comput.,
vol. 20, pp. 359-392, 1998.

J. Leskovec and A. Krevl, “SNAP datasets: Stanford large network
dataset collection,” Jun. 2014. [Online]. Available: http://snap.
stanford.edu/data

P. Boldi, M. Rosa, M. Santini, and S. Vigna, “Layered label propa-
gation: A multiresolution coordinate-free ordering for compress-
ing social networks,” in Proc. 20th Int. Conf. World Wide Web, 2011,
pp. 587-596.

L. Backstrom, D. Huttenlocher, J. Kleinberg, and X. Lan, “Group
formation in large social networks: Membership, growth, and
evolution,” in Proc. 12th ACM SIGKDD Int. Conf. Knowl. Discov.
Data Mining, 2006, pp. 44-54.

P. Boldi, A. Marino, M. Santini, and S. Vigna, “BUbiNG: Massive
crawling for the masses,” in Proc. 23rd Int. Conf. World Wide Web,
2014, pp. 227-228.

D. Dai, W. Zhang, and Y. Chen, “IOGP: An incremental online
graph partitioning algorithm for distributed graph databases,” in
Proc. 26th Int. Symp. High-Perform. Parallel Distrib. Comput., 2017,
pp- 219-230.

Authorized licensed use limited to: Northeastern University. Downloaded on April 06,2025 at 06:57:17 UTC from IEEE Xplore. Restrictions apply.

http://snap.stanford.edu/data
http://snap.stanford.edu/data

GONG ETAL.: ACCELERATING LARGE-SCALE PRIORITIZED GRAPH COMPUTATIONS BY HOTNESS BALANCED PARTITION 759

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[471

[48]

[49]

[50]

C. Xie, L. Yan, W.-]. Li, and Z. Zhang, “Distributed power-law
graph computing: Theoretical and empirical analysis,” in Proc.
27th Int. Conf. Neural Inf. Process. Syst., 2014, pp. 1673-1681.

Q.-5. Hua, Y. Li, D. Yu, and H. Jin, “Quasi-streaming graph parti-
tioning: A game theoretical approach,” IEEE Trans. Parallel Distrib.
Syst., vol. 30, no. 7, pp. 1643-1656, Jul. 2019.

J. Huang and D. J. Abadi, “Leopard: Lightweight edge-oriented
partitioning and replication for dynamic graphs,” Proc. VLDB
Endowment, vol. 9, pp. 540-551, 2016.

N. Xu, L. Chen, and B. Cui, “LogGP: A log-based dynamic graph
partitioning method,” Proc. VLDB Endowment, vol. 7, pp. 1917-1928,
2014.

W. Zhang, Y. Chen, and D. Dai, “AKIN: A streaming graph parti-
tioning algorithm for distributed graph storage systems,” in Proc.
18th IEEEJACM Int. Symp. Cluster Cloud Grid Comput., 2018,
pp- 183-192.

Z. Abbas, V. Kalavri, P. Carbone, and V. Vlassov, “Streaming
graph partitioning: An experimental study,” Proc. VLDB Endow-
ment, vol. 11, pp. 1590-1603, 2018.

A. Pacaci and M. T. Ozsu, “Experimental analysis of streaming
algorithms for graph partitioning,” in Proc. Int. Conf. Manage.
Data, 2019, pp. 1375-1392.

I. Hoque and I. Gupta, “LFGraph: Simple and fast distributed
graph analytics,” in Proc. 1st ACM SIGOPS Conf. Timely Results
Operating Syst., 2013, Art. no. 9.

W. Guo, Y. Li, M. Sha, B. He, X. Xiao, and K.-L. Tan, “GPU-accel-
erated subgraph enumeration on partitioned graphs,” in Proc.
ACM SIGMOD Int. Conf. Manage. Data, 2020, pp. 1067-1082.

J. E. Gonzalez, R. S. Xin, A. Dave, D. Crankshaw, M. J. Franklin,
and L Stoica, “GraphX: Graph processing in a distributed data-
flow framework,” in Proc. 11th USENIX Conf. Operating Syst. Des.
Implementation, 2014, pp. 599-613.

M. Kim and K. S. Candan, “SBV-Cut: Vertex-cut based graph par-
titioning using structural balance vertices,” Data Knowl. Eng.,
vol. 72, pp. 285-303, 2012.

G. Gill, R. Dathathri, L. Hoang, and K. Pingali, “A study of parti-
tioning policies for graph analytics on large-scale distributed
platforms,” Proc. VLDB Endowment, vol. 12, pp. 321-334, 2018.

D. Avdiukhin, S. Pupyrev, and G. Yaroslavtsev, “Multi-dimen-
sional balanced graph partitioning via projected gradient
descent,” in Proc. IEEE Symp. Very Large-Scale Data Anal. Vis.
Endowment, 2019, vol. 12, pp. 906-919.

W. Fan et al., “Application driven graph partitioning,” in Proc.
ACM SIGMOD Int. Conf. Manage. Data, 2020, pp. 1765-1779.

F. Rahimian, A. H. Payberah, S. Girdzijauskas, M. Jelasity, and
S. Haridi, “JA-BE-JA: A distributed algorithm for balanced graph
partitioning,” in Proc. IEEE 7th Int. Conf. Self-Adaptive Self-Organiz-
ing Syst., 2013, pp. 51-60.

D. Margo and M. Seltzer, “A scalable distributed graph parti-
tioner,” Proc. VLDB Endowment, vol. 8, pp. 1478-1489, 2015.

C. Martella, D. Logothetis, A. Loukas, and G. Siganos, “Spinner:
Scalable graph partitioning in the cloud,” in Proc. IEEE 33rd Int.
Conf. Data Eng., 2017, pp. 1083-1094.

G. M. Slota, S. Rajamanickam, K. Devine, and K. Madduri,
“Partitioning trillion-edge graphs in minutes,” in Proc. IEEE Int.
Parallel Distrib. Process. Symp., 2017, pp. 646-655.

S. Gong, Y. Zhang, and G. Yu, “HBP: Hotness balanced partition
for prioritized iterative graph computations,” in Proc. IEEE 36th
Int. Conf. Data Eng., 2020, pp. 1942-1945.

Shufeng Gong received the MS degree in com-
puter science from Northeastern University,
China, in 2016. He is currently working toward
the PhD degree in computer science at North-
eastern University, China. His research interests
include cloud computing, distributed graph proc-
essing, and data mining.

Yanfeng Zhang received the PhD degree in
computer science from Northeastern University,
China, in 2012. He is currently a professor with
Northeastern University, China. His research con-
sists of distributed systems and big data process-
ing. He has published many papers in the above
areas. His paper in SoCC 2011 was honored with
“Paper of Distinction”.

Ge Yu (Senior Member, IEEE) received the PhD
degree in computer science from Kyushu Univer-
sity, Japan, in 1996. He is currently a professor
with Northeastern University, China. His current
research interests include distributed and parallel
systems, cloud computing and big data manage-
ment, blockchain techniques and systems. He
has published more than 200 papers in refereed
journals and conferences. He is the ACM member,
the IEEE senior member, and the CCF fellow.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

Authorized licensed use limited to: Northeastern University. Downloaded on April 06,2025 at 06:57:17 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

