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Abstract—Existing graph partition methods are designed for
round-robin synchronous distributed frameworks. They balance
workload without discrimination of vertex importance and fail to
consider the characteristics of priority-based scheduling, which
may limit the benefit of prioritized graph computation. To
accelerate prioritized iterative graph computations, we propose
Hotness Balanced Partition (HBP) and a stream-based partition
algorithm Pb-HBP. Pb-HBP partitions graph by distributing
vertices with discrimination according to their hotness rather
than blindly distributing vertices with equal weights, which aims
to evenly distribute the hot vertices among workers. Our results
show that our proposed partition method outperforms the state-
of-the-art partition methods, Fennel and HotGraph. Specifically,
Pb-HBP can reduce 40-90% runtime of that by hash partition,
5-75% runtime of that by Fennel, and 22-50% runtime of that
by HotGraph.

Index Terms—Hotness balance partition, Graph partition, Dis-
tributed computing, Prioritized Computation

I. INTRODUCTION

To handle massive graphs, distributed graph processing
systems partition the graph data into multiple graph partitions
and process them on a cluster of workers. During the distribut-
ed graph computation process, 1) heavy communication cost
between workers due to a large number of edge/vertex cuts and
2) idle workers due to unbalanced workload may exist, which
degrades the performance of distributed computing. To reduce
the communication cost and idle workers, many research
efforts [1], [2] have been put on finding smart graph partition
methods, aiming at minimizing connections between partitions
and making workload evenly distributed among partitions.

Recently, a number of research works pay attention to asyn-
chronous parallel processing, such as GraphLab [3], GRAPE+
[4], and Maiter [5]. In asynchronous distributed frameworks,
the global synchronous barriers are removed. Thus there is no
waiting time between workers, and the vertices/edges can be
processed at any time. With the elimination of global barriers,
a smart scheduling can be used during asynchronous iterations.
Recent studies [6], [3] show that some of the vertices do play
important roles in determining the final converged outcome.
During iterations, high execution priorities are assigned to
these important vertices, so that they are processed more
frequently than other vertices, which showed much better
performance for a class of graph algorithms [6].

Motivation. Prior graph partition algorithms [1], [2] are de-
signed based on the synchronous parallel processing model. In
the synchronous parallel model, there is a global synchronous
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Fig. 1: Hash partition vs. Fennel partition for prioritized graph
computation (Pagerank on LiveJournal dataset).

barrier after each iteration (super step). In each super step,
each vertex is only processed once, and each edge only delivers
one message. Prior graph partition algorithms aim at balancing
the workload and minimizing the number of edge/vertex cuts.
While in asynchronous frameworks with priority scheduling,
prioritized graph computation leads to the discrimination of
vertex hotness. Some hot vertices are updated more frequently,
and more messages are propagated from these hot vertices.
The graph partition should take this property into account
for computation effectiveness. Furthermore, due to priority
scheduling, the number of updates on each vertex is not
consistent, and the number of messages passed through each
edge is not consistent. Even with few edge cuts/vertex replicas,
it may still result in a large amount of communication cost. For
example, if an edge of a high priority vertex is cut, there still
can be a large number of messages delivered along this edge.
As shown in Fig. 1, the number of edge cuts by Fennel is much
less than that by hash partitioning, but the communication cost
by Fennel is more than hash partitioning. Thus, a new partition
method designed for prioritized graph processing is desired.

Contribution. In this paper, we propose the idea of Hotness
Balanced Partition (HBP), which partitions graph according
to vertex’s hotness. We first propose three objectives of graph
partition for prioritized processing and then propose a heuristic
stream-based graph partition algorithm, SPb-HBP, which only
requires one pass of the graph data. Our experimental results
show that our SPb-HBP can reduce 40-50% runtime of that by
hash partition, 5-75% runtime of that by Fennel, and 22-31%
runtime of that by HotGraph.

II. PRELIMINARIES

Asynchronous DAIC. Asynchronous Delta-based Accumula-
tive Iterative Computation (asynchronous DAIC) is a typical
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asynchronous computation model, which has been applied
in many distributed frameworks such as Maiter [5] and its
variants [7] [8]. DAIC [5] updates the vertices by accumulating
the “changes” between iterations. By DAIC, we can process
only the “changes” (Δv) of vertices to avoid the negligible
updates. Furthermore, we can perform DAIC asynchronously
to bypass the high-cost synchronous barriers in heterogeneous
distributed environments. In the asynchronous DAIC model,
the vertices accumulate the received messages from neighbors
and can be updated at any time. After being updated, they
send messages to their neighbors immediately.

Prioritized Execution. By using the DAIC model, the com-
putation of any vertex can be performed at any time point. In
other words, the vertex updates can be scheduled in any order.
The scheduling order is crucial to computation effectiveness.
In [5], a heuristic is provided to evaluate the profit of updating
a specific vertex. They pick the vertex that can maximize
the “change” of graph state as the scheduling candidate. In
DAIC, the state values (e.g., the rank value in PageRank) of
vertices are monotonically increasing/decreasing, thus a great
“change” implies a big move to the fixed point that makes the
current state closer to the final state. Therefore, the execution
priority of each vertex depends on the amount of its change.
Performing computations on the high priority vertices will
accelerate the convergence. For the details of DAIC, please
refer to [5].

III. HOTNESS BALANCE PARTITION

As discussed in Section I, the traditional partition methods
fail to meet the requirements of priority scheduling frame-
works. In priority scheduling frameworks, some vertices are
given higher execution priority, so they become hot vertices in
priority scheduling execution systems. The frequency of vertex
updates is defined as vertex’s hotness.

Given a graph with hotness G = (V,E,H) and a partition
number k, where V is vertex set, E is the edge set and H =
{hv, v ∈ V } contains the hotness values of all vertices, an
edge-cut graph partition aims to find a partition scheme G =
{G1, G2, · · · , Gk}, where Gi = (Vi, Ei, Hi) is a partition of
G. Vi is the set of vertices in Gi such that V =

⋃k
i=1 Vi and

Vi

⋂
Vj = ∅, and Ei is the set of edges whose source vertices

are in Vi, i.e., Ei = {(u, v)|u ∈ Vi}. Then, each partition is
assigned to a worker for parallel processing.

A. Hotness Estimation

The precondition of hotness balance partition is that we have
obtained the hotness of vertices and the communication cost
between two vertices. According to the priority scheduling
introduced in Section II, the priority value of a vertex is
determined by its Δv value (“change”), and Δv is collected
from its in-neighbors IN(v). Thus, if vertex v has a strong
ability to collect Δv , vertex v is likely to be with a higher
execution priority and is likely to be hot. We estimate the
hotness of vertex v as follows.

hv =
∑

u∈IN(v)

wu,v∑
w∈OUT (u) wu,w

(1)

where wu,v is the weight of edge (u, v). If there is no weight
on edges, we assume wu,v = 1.

During the computation, when a vertex is updated, it will
send a message to its outgoing neighbors, so that the number of
messages passed through an edge is proportional to its source
vertex’s update times. In other words, the edge communication
cost can be estimated as its source vertex’s hotness. Thus, the
communication cost of edge (u, v) is estimated as follows.

comu,v = hu. (2)

B. Partition Goals

In asynchronous frameworks with priority scheduling, the
hotter the vertices are, the more computation resources they
need. We should assign computation resources according to
vertex hotness. In other words, we should balance the hotness
among partitions so that the same amount of computation
resources are assigned to each partition, and we call this kind
of partition as Hotness Balance Partition (HBP). Therefore,
our partition scheme aims to assign the same amount of vertex
hotness to workers, which is the first goal.

The assumption in the above analysis is that a global priority
scheduler is used. However, in practice, a global scheduler is
very expensive in large scale clusters. Thus, we use a local
scheduler that runs on each worker to simulate the global
scheduler, i.e., the priority scheduling works in parallel and
on a per-worker basis. Note that, it is possible that a few
super hot vertices are in a partition and a lot of cool vertices
are in another partition, though the sums of hotness values are
equal between partitions. Local scheduling will bring troubles
in such a case, since a worker might always schedule cool
vertices. Thus, to maximize the computation effectiveness with
local scheduler, the local hotness distribution on each worker
should be consistent with the global hotness distribution.

We use hotness histogram to describe hotness distribution.
The vertex hotness values are divided into z continuous non-
overlap intervals. Each interval corresponds to a bin Hj hold-
ing the vertices whose hotness values are in the jth interval,
then we have max{hv|v ∈ Hj−1} < min{hv|v ∈ Hj} and
max{hv|v ∈ Hj} < min{hv|v ∈ Hj+1}. The height of
the histogram bar is the sum of hotness values of vertices
in each bin, i.e.,

∑
v∈Hj

hv . Then the probability distribution
of hotness histogram in original G is defined as P (Hj) =∑

v∈Hj
hv

∑
v∈V hv

. Similarly, the probability distribution of hotness

histogram in partition Gi is defined as Pi(Hj) =

∑
v∈Hji

hv
∑

v∈Vi
hv

where Hji = Hj ∩ Vi. We use Hotness Jensen-Shannon
distance (HJS) [9] to measure the variance between hotness
distributions of partition Gi and graph G as follows.

HJS(P ||Pi) =
1

2

[
z∑

j=1

P (Hj)log

(
P (Hj)

P (Hj)+Pi(Hj)
2

)
+

z∑
j=1

Pi(Hj)log

(
Pi(Hj)

Pi(Hj)+P (Hj)
2

)] (3)
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Fig. 2: Pb-HBP graph partition.

Therefore, with a fixed z, our second goal is to minimize the
HJS distance between each partition and the original graph.

As known in distributed prioritized iterative computation,
network communication has a great impact on the performance
of distributed computing. Heavy network traffic may lead
to message blocking when sending the important messages
that help accelerate prioritized computation. Therefore, our
third goal is to minimize the communication cost between
partitions.

C. Per-Bin Hotness Balanced Partition

According to the above discussion, there are three objectives
we want to minimize in HBP. We observe that if each bin is
partitioned with balanced hotness, we can achieve both of the
first and second goals at the same time.

For a given graph G(V,E,H) with z hotness interval
bins H{H1, · · · ,Hz}, if we partition each bin Hj into k
hotness-balanced bin partitions {Hj1, · · · ,Hjk} and merge
the bin partitions that have the same partition id into a graph
partition Vi =

⋃z
j=1 Hji, the hotness of each graph partition

is balanced,
∑

v∈Vi
hv =

∑
v∈V hv

k , and the HJS distance
between G and Gi is minimized, HJS(P ||Pi) = 0.

Based on the above discussion, the first two HBP goals
can be combined into one: balancing the hotness of each bin
partition within each bin

min

k∑
i=1

∣∣∣∣ ∑
v∈Hji

hv −
∑

v∈Hj
hv

k

∣∣∣∣ (4)

We call this variant of HBP as Per-Bin Hotness Balanced
Partition (Pb-HBP). The idea of Pb-HBP is illustrated in Figure
2. The vertices in different hotness bins (with different levels
of hotness) are partitioned separately, at the same time the
communication cost between partitions is minimized.

D. Stream-based Heuristic Algorithm

Based on the idea of Pb-HBP, we derive a heuristic stream-
ing algorithm by greedily assigning vertices to partitions. The
greedy assignment is performed as follows. Given that the
current vertex partitions are {V1, V2, . . . , Vk}, a newly scanned
vertex is assigned to a partition such that the goals of Pb-HBP

are most likely to be satisfied. Suppose our cost function to be
minimized is f , where f(Vi ∪{v}) is the cost when assigning
v to Vi. Vertex v is assigned to partition i such that

f(Vi ∪ {v}) ≤ f(Vj ∪ {v}), ∀1 ≤ j ≤ k. (5)

The greedy vertex assignment requires only one pass of the
graph data, which is quite efficient for the large graph. How-
ever, the key is to design a cost function that describes the
goals of Pb-HBP.

There are two goals of Pb-HBP, which describe the per-bin
hotness balancing requirement as shown in Equation (4) and
the communication minimization requirement. We unify them
in a single cost function and greedily choose the best partition
i that results in the least cost.

i = argmin

i:{hji≤τ

∑
v∈Hj

hv

k }
α · ((hji + hv)

γ − hγ
ji

)

+ (1− α) ·
( ∑

u/∈Vi

comu,v +
∑
w/∈Vi

comv,w

) (6)

where 0 ≤ α ≤ 1, τ > 1, γ > 1, and hji =
∑

v∈Hji
hv

denotes the current sum of hotness values of partition Gi in the
jth bin. In this cost function, the first part describes the imbal-
ance cost, while the second part describes the communication
cost. Parameter α controls the weight of imbalance cost and
communication cost. The imbalance cost is minimized when
Hji =

∑k
i=1 Hji

k for each i. Parameter τ is a small constant
that defines the tolerance to hotness imbalance. Parameter γ
controls how much preference to assign vertex to low hotness
partitions since adding vertex to high hotness partitions may
increase the risk of generating over-hot partitions, where larger
γ results in higher cost when assigning vertex to higher hotness
partitions.

Algorithm 1 Streamed Per-Bin Hotness Balanced Partition

Input: Graph G(V,E), number of partitions k, number of
intervals z;

Output: Graph partitions {V1, . . . , Vk};
1: Estimate hotness values H of all vertices;
2: Init Hj based on histogram of H , 1 ≤ j ≤ z;
3: Init Vi = ∅, 1 ≤ i ≤ k;
4: Init hji = 0, 1 ≤ i ≤ k, 1 ≤ j ≤ z;
5: for each v in V do
6: Find Hj where v resides;
7: for each Vi do

8: if hji > τ ·
∑

v∈Hj
hv

k then
9: ci = +∞;

10: end if
11: ci = α · ((hji + hv)

γ − hγ
ji

)
+ (1 − α) ·(∑

u/∈Vi
comu,v +

∑
w/∈Vi

comv,w

)
;

12: end for
13: i = argmini ci;
14: Vi = Vi ∪ v;
15: hji = hji + hv;
16: end for
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Based on the cost function depicted in Equation (6), we
propose Stream-based Pb-HBP (SPb-HBP), which sequentially
read each vertex v and assign it to the partition i that results
in the minimum cost. The detail of SPb-HBP is shown in
Algorithm 1. We first estimate the hotness values H of all
vertices (Line 1) and initialize z bins {H1, . . . ,Hz} based on
the hotness histogram of H (Line 2). Line 3 initializes vertex
partitions, and Line 4 initializes the sum of hotness values
in each bin partition. We then perform the vertex assignment
operation. We measure the increased cost when assigning a
vertex to each partition (Line 11). If a bin partition is over-
hot, it will not be assigned with the new vertex (Line 8 - 10).
The partition that results in the minimum increased cost will
be selected for assigning the vertex (Line 14), and the bin
partition’s hotness is correspondingly increased (Line 15).

IV. EXPERIMENTAL EVALUATION

Preparation. We first partition input graphs as a preprocessing
step and then distributively run prioritized graph algorithms
on Maiter [5], an implementation of the asynchronous DAIC
framework and supports priority scheduling. We compare our
proposed SPb-HBP with the state-of-the-art stream partition
methods Fennel [2], HotGraph [10] and Hash partition. We
perform the evaluation on two representative prioritized graph
algorithms, PageRank and Penalized Hitting Probability (PH-
P). We select three different real graphs with different types,
Twitter (TW), Hollywood (HW) and LiveJournal (LJ). Our
experiments are conducted on a cluster of machines on Al-
ibaba Cloud, which consists of 4 ecs.cs.large nodes with one
additional node as Master.

Compare with Other Partition Methods. We compare SPb-
HBP with other state-of-the-art partitioning methods. In SPb-
HBP, we simply set the number of bins z = 2. We partition
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Fig. 3: Runtime comparison.
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Fig. 4: Communication cost comparison.

the input graph into 4 partitions by using different partition
methods. We then use 5 workers (1 master and 4 slaves) to
perform PageRank and PHP algorithms on these partitions
(DSPb-HBP runs distributed partition on 4 nodes). Fig. 3
and 4 shows the normalized runtime and communication cost
on three graphs (TW, HW, and LJ). It is noticeable that
the runtime and communication cost are resulted from graph
algorithm’s computation but not graph partitioning. We can
see that SPb-HBP always results in shorter runtime than other
methods no matter for PageRank or PHP computation. SPb-
HBP can reduce 40-90% runtime of that by hash partition,
5-75% runtime of that by Fennel, and 22-50% runtime of that
by HotGraph.

V. CONCLUSION

The traditional k-balanced graph partitioning fails to work
in prioritized asynchronous iterative frameworks. In this paper,
we propose a novel graph partition idea, Hotness Balanced
Partition (HBP), tailored to prioritized scheduling frameworks.
We propose a Stream-based Per-bin Hotness Balance Par-
tition (SPb-HBP) algorithm to efficiently partition graphs.
Our results show that our proposed graph partition scheme
can greatly improve the performance of prioritized graph
computations and at the same time is quite efficient to partition
large-scale graphs.
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