
GDPC: A GPU-Accelerated Density
Peaks Clustering Algorithm

Yuxuan Su, Yanfeng Zhang(B), Changyi Wan, and Ge Yu

Northeastern University, Shenyang, China
{yuxuansu,wanchangyi}@stumail.neu.edu.cn, {zhangyf,yuge}@mail.neu.edu.cn

Abstract. Density Peaks Clustering (DPC) is a recently proposed clus-
tering algorithm that has distinctive advantages over existing cluster-
ing algorithms. However, DPC requires computing the distance between
every pair of input points, therefore incurring quadratic computation
overhead, which is prohibitive for large data sets. To address the effi-
ciency problem of DPC, we propose to use GPU to accelerate DPC. We
exploit a spatial index structure VP-Tree to help efficiently maintain the
data points. We first propose a vectorized GPU-friendly VP-Tree struc-
ture, based on which we propose GDPC algorithm, where the density
ρ and the dependent distance δ can be efficiently computed by using
GPU. Our results show that GDPC can achieve over 5.3–78.8× acceler-
ation compared to the state-of-the-art DPC implementations.

1 Introduction

Density Peaks Clustering (DPC) [6] is a novel clustering algorithm proposed
recently. Given a set of points, DPC computes two metrics for every point p:
(i) the local density ρ and (ii) the dependent distance δ. The local density ρi of
data point pi is the number of points whose distance to pi is smaller than dc.

ρi = |{pj

∣
∣dij < dc}| (1)

where dij is the distance from point pi to point pj , and dc is called the cutoff
distance. The dependent distance δi of point pi is computed as

δi = min
j:ρj>ρi

(dij) (2)

It is the minimum distance from point pi to any other point whose local
density is higher than that of point pi. Suppose point pj is point pi’s the nearest
neighbor with higher density, i.e., pj = argminj:ρj>ρi

(dij). We say that point pi

is dependent on point pj and name point pj as the dependent point of point pi.
Figure 1 illustrates the process of DPC through a concrete example. Figure

1a shows the distribution of a set of 2-D data points. Each point pi is depicted
on a decision graph by using (ρi, δi) as its x-y coordinate as shown in Fig. 1b.
By observing the decision graph, the density peaks can be identified in the top
right region since they are with relatively large ρi and large δi. Since each point

c© Springer Nature Switzerland AG 2020
Y. Nah et al. (Eds.): DASFAA 2020, LNCS 12112, pp. 305–313, 2020.
https://doi.org/10.1007/978-3-030-59410-7_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-59410-7_21&domain=pdf
https://doi.org/10.1007/978-3-030-59410-7_21

306 Y. Su et al.

Fig. 1. An illustrative example of density peaks clustering.

is only dependent on a single point, we can obtain a dependent tree [2] rooted by
the absolute density peak as shown in Fig. 1c. The height of each point implies
the density. The length of each link implies the dependent distance. For each
point there is a dependent chain ending at a density peak. Then each remaining
point is assigned to the same cluster as its dependent point.

Compared with previous clustering algorithms [5], DPC has many advan-
tages. 1) Unlike Kmeans, DPC does not require a pre-specified number of clus-
ters. 2) DPC does not assume the clusters to be “balls” in space and supports
arbitrarily shaped clusters. 3) DPC is more deterministic, since the clustering
results have been shown to be robust against the initial choice of algorithm
parameters. 4) The extraction of (ρ, δ) provides a two dimensional representa-
tion of the input data, which can be in very high dimensions.

While DPC is attractive for its effectiveness and its simplicity, the application
of DPC is limited by its computational cost. In order to obtain the density values
ρ, DPC computes the distance between every pair of points. That is, given N
points in the input data set, its computational cost is O(N2). Moreover, in
order to obtain the dependent distance values δ, a global sort operation on all
the points based on their density values (with computational cost O(Nlog(N)))
and N(N−1)

2 comparison operations are required. As a result, it can be very
time consuming to perform DPC for large data sets. The recent advance of
GPU technology is offering great prospects in parallel computation. There exist
several related works [1,4] having been devoted to accelerate DPC using GPU’s
parallelization ability. However, these methods only consider utilizing GPU’s
hardware features to accelerate DPC without paying attention to parallelizable
index structures that can maximize GPU performance.

In this paper, we exploit a spatial index structure vantage point tree (VP-
Tree) [7] to help efficiently maintain clustering data. With VP-Tree, data points
are partitioned into “hypershells” with decreasing radius. Comparing with other
spatial index structures, VP-Tree is more appropriate in DPC algorithm, because
the decreasing-radius hypershell structure can well support the point density
computation (that obtains a point’s nearby points within a pre-defined radius)
and the dependent distance computation (that obtains the distance to a nearest
neighbor with higher density). More importantly, the construction and the search

GDPC: A GPU-Accelerated Density Peaks Clustering Algorithm 307

of VP-Tree can be well parallelized to adapt to GPU’s structure. Based on the
GPU-based VP-Tree, we propose GDPC algorithm, where the density ρ and the
dependent distance δ can be efficiently calculated. Our results show that GDPC
can achieve over 5.3–78.8× acceleration compared to the state-of-the-art DPC
implementations.

Fig. 2. VP-Tree

2 Vectorized VP-Tree Layout

In DP clustering, the calculations of the density value ρ and the dependence
value δ for each data point are the two key steps, which take up most of the
computation time. According to Eq. (1), the computation of the density values
requires a huge amount of nearest neighbors (NN) search operations, especially
for big data clustering. According to Eq. (2), the computation of a point’s depen-
dence value also requires to access the point’s NNs since the point’s dependent
point is likely to be close. A common approach for speeding up NN search is to
exploit spatial index.

Based on our observation and analysis, Vantage Point Tree (VP-Tree) [7] is
the best spatial index candidate. Each node of the tree contains one of the data
points, and a radius. Under the left child are all points which are closer to the
node’s point than the radius. The other child contains all of the points which are
farther away. The construction of VP-Tree can be explained with an illustrative
example. As shown in Fig. 2, point 28 is firstly chosen as the vantage point (vp)
as it is far away from other points. Point 28 is also picked as the level-0 vp (root
node) of the VP-Tree as shown in Fig. 2b. We then draw a ball centered at point
28 with carefully computed radius r such that half of the points are in the ball
while half are outside. All the points in the ball are placed in the root node’s
left subtree, while all the points outside are placed in the right subtree. The
process is recursively applied for the inside-ball points and outside-ball points
respectively. Finally, we will obtain such a VP-Tree as shown in Fig. 2b. The tree
only requires a distance function that satisfies the properties of a metric space
[3]. It does not need to find bounding shapes (hyperplanes or hyperspheres)
or find points midway between them. Furthermore, the construction and the
search of VP-Tree can be efficiently parallelized with CUDA since only a few
data dependencies are required to handle.

308 Y. Su et al.

Fig. 3. An illustrative example of using VP-Tree (better with color) (Color figure
online)

In the original VP-Tree, a child node reference is a pointer referring to the
location of next level child. Since the memory locations of these tree nodes are
randomly spread out in memory space, it is difficult to utilize the GPU memory
hierarchy to explore the data locality and could result in memory divergence.
Therefore, a vectorized GPU-friendly VP-Tree structure is desired instead of the
pointer-based tree structure. In our approach as shown in Fig. 2c, the VP-Tree
nodes are arranged in a breadth-first fashion in a one dimensional array (or
vector) instead of pointers. The root node is stored at position 0 in the array.
Suppose a node’s position is i, we can obtain its left child position as 2i + 1 and
its right child position as 2i + 2. Since a node’s child position is known, there is
no need to store pointers. This design requires less memory and provides higher
search throughput due to coalesced memory access.

3 GDPC Based on VPTree

3.1 Computing Density Values ρ

Our basic idea is to utilize the VP-Tree index to avoid unnecessary distance
measurements. We illustrate the use of existing VP-Tree through an illustrative
example. When computing a point’s density value, it is required to access the
points in point 21’s dc range. Let us compute point 21’s density value (i.e., count
the number of points within the grey circle) based on an existing VP-Tree’s space
partition result as shown in Fig. 3. We first evaluate the distance from point 21 to
the level-0 vantage point 28. Since the grey circle with radius dc is totally inside
the level-0 ball (with green arc line), i.e., |p21, p28| + dc ≤ vantage[0].radius
where | · | is distance measurement, it is enough to search the left child, where
the vantage point is point 27. Vantage point 27’s ball (with orange arc line)
intersects with the grey circle, i.e., |p21, p27| − dc ≤ vantage[1].radius (the grey
circle has a part inside the orange ball) and |p21, p27| + dc ≥ vantage[1].radius
(the grey circle has a part outside the orange ball), so we need to search both
the left child (with vantage point 24) and the right child (with vantage point
26). Similarly, we find the grey circle is totally inside vantage point 24’s ball

GDPC: A GPU-Accelerated Density Peaks Clustering Algorithm 309

Algorithm 1: GDPC Algorithm based on VP-Tree
Input: cut-off distance dc, data array data[], vantage array vantage[], vatange

array length n, and leaf array leaf []
Output: density ρ[], dependent distance δ[], point-cluster assignment cluster[]

1 foreach point pid parallel do
2 Stack S.push(0) ; // push root node id into stack

3 while S is not empty do
4 i ← S.pop();
5 if i ≥ n then
6 cover leafs.append(i − n) ; // this is a covered leaf node

7 if
∣
∣data[vantage[i].id], data[pid]

∣
∣ − dc ≤ vantage[i].radius then

8 S.push(2i + 1) ; // search left child node

9 if
∣
∣data[vantage[i].id], data[pid]

∣
∣ + dc ≥ vantage[i].radius then

10 S.push(2i + 2) ; // search right child node

11 ρ[pid] ← count the number of points in all leaf [l] ∈ cover leafs whose
distance to pid is less than dc

12 peak candidates ← ∅; // initialize the density peak candidates set

13 foreach point pid parallel do
14 dep[pid], δ[pid] ← find the nearest neighbor point that has higher density

than ρ[pid] in all leaf [l] ∈ cover leafs and compute its distance ;
15 if point pid has the highest density among the covered leaf nodes then
16 add pid into peak candidates;

17 foreach point pid ∈ peak candidates parallel do
18 dep[pid], δ[pid] ← find the nearest neighbor point that has higher density

than ρ[pid] among all points and compute its distance ;

19 peak[] ← determine the density peaks which have both larger ρ and larger δ;
20 cluster[] ← assign points to clusters based on peak[] and dep[];

but intersecting with vantage point 26’s ball, so we can locate the covered leaf
nodes, i.e., vantage point 24’s left leaf node (containing point 24, 13, 10, 22),
vantage point 26’s left leaf node (containing point 26, 23, 9, 2), and vantage point
26’s right leaf node (containing point 5, 21, 28). These points are the candidate
points for further distance calculations. We describe the details more formally
in Algorithm 1. Line 1–11 depicts the ρ computation process.

We design a GPU-friendly search algorithm on the vectorized VP-Tree to
achieve high parallelism and coalesced memory access. Specifically, we use several
parallel optimizations: 1) Arrange calculation order (Line 1). During tree
traversal, if multiple threads in a warp execute random queries, it is difficult to
achieve a coalesced memory access because they might traverse the tree along
different paths. If multiple queries share the same traversal path, the memory
accesses can be coalesced when they are processed in a warp. We design our
warp parallelism in terms of VP-Tree properties. Because the points assigned
to the same leaf node share the same traversal path, we assign the threads in

310 Y. Su et al.

the same warp to process the points in the same leaf node. That is, we execute
warp-parallelism between leaf nodes and execute thread-parallelism within each
leaf node. By this way, we can mitigate warp divergence. 2) Ballot-Counting
optimization (Line 11). CUDA’s ballot function takes a boolean expression and
returns a 32 bit integer, where the bit at every position i is the boolean value
of thread i within the current thread’s warp. The intrinsic operation can enable
an efficient implement of the per-block scan. By combining the ballot() and
popc() intrinsics, we can efficiently count the number of points within dc.

3) Fully contained leaf nodes. In original VP-Tree, the points in vantange
node might be not contained in leaf nodes. That means, we have to check internal
vantage nodes in order not to miss dc range points. In our implementation, the
vantage points also have their copies in leaf nodes to avoid memory divergence.

3.2 Computing Dependent Distances δ

Given the computed density values, we can calculate the dependent distance
values as shown in Line 12–18 in Algorithm 1. Recall that the dependent distance
of a point is its distance to the nearest neighbor with higher density as shown
in Eq. (2). We can again leverage the VP-Tree index. Since a point’s nearest
neighbor with higher density is highly likely to be in its leaf nodes, we first
locally search among its leaf nodes (Line 14). If such a point does not exist (when
the point has the highest density among its leaf nodes), we sort the candidate
points in the descending order of their density values and then search globally
by checking all the other points with higher density (Line 18).

3.3 Assigning Points to Clusters

After picking a set of density peaks (Line 19), we should assign each point to
a certain cluster. We perform this by tracing the assignment chain till meeting
a certain density peak. The assignment dependency relationship (as shown in
Fig. 1c) is recorded when computing δ (Line 14, 18). To adapt to GPU’s paral-
lelization ability, we need to build a reverse index of the assignment chain. Then,
the point assignment is similar to a label propagation process starting from a
number of density peaks in a top-down manner (Line 20), where the label is a
certain density peak’s id and the reversed dependencies can be regarded as the
underlying graph edges. This label propagation process can be easily parallelized
since the propagations on different sub-trees are totally independent.

4 Experiments

Preparation. We conduct all experiments on an 8-core server with an NVIDIA
RTX2080Ti GPU. Our implementation is compiled by CUDA 10 along with
nvcc optimization flag -O3. Table 1 lists the data sets used in our experiments.
These include two small sized 2D data sets, and four real world large high-
dimensional data sets, all of which are available online. To obtain clustering

GDPC: A GPU-Accelerated Density Peaks Clustering Algorithm 311

Table 1. Data sets

Data set No. instances No. dimensions

Aggregation 788 2

S2 5,000 2

Facial 27,936 300

KDD 145,751 74

3Dspatial 434,874 3

BigCross500K 500,000 57

result in a reasonable time period, we construct a smaller BigCross500K data
set by randomly sampling 500,000 points from the original data set.

Performance Comparison with State-of-the-Art DPC Methods. We
first compare with the state-of-the-art GPU-based DPC algorithm CUDA-DP
[1] on smaller datasets, which returns out-of-memory error on larger datasets
3Dspatial, KDD, and BigCross500K. CUDA-DP just optimizes the distance cal-
culations without leveraging spatial index structure. In Fig. 4, we can see that our
GDPC can achieve a 5.3×–17.8× speedup attributed to our vectorized VP-Tree
design and GPU-friendly parallel algorithm. In addition, in order to evaluate
our algorithm on larger datasets, we compare with a state-of-the-art distributed
DP clustering algorithm LSH-DDP [8], which is implemented based on Hadoop

AggregationS2 Facial 3Dspatial KDD BigCross
0.1

1

10

100
152.0

331.0 321.0 327.0

0.8
1.2

15.0

0.1

0.2

1.9

4.2
6.5 7.3

Dataset

R
un

tim
e

(s
)

GDPC CUDA-DP LSH-DDP

Fig. 4. Runtime comparison

Facial KDD 3Dspatial BigCross

0.1

1

10

100

0.78

21.24

189.12 250.00

0.44

10.94

39.31 40.76

0.03

0.21

0.56 0.73

Dataset

#
di

st
an

ce
m

ea
su

re
m

en
ts

(x
10

9) GDPC LSH-DDP All-pair

Fig. 5. Computational cost

Aggregation S2 Facial 3Dspatial KDD BigCross
0.1

1

10

100

1000

Dataset

Ti
m

e
(m

s)

Build VP-Tree
Local Density ρ
Distance δ
Assign Cluster

Fig. 6. Runtime breakdown

213 214 215 216 217 218 219

21

23

25

27

29

211

Number of points

Ti
m

e
(m

s)

Local density ρ
Build VP-Tree

Fig. 7. Scaling performance

312 Y. Su et al.

MapReduce and utilizes locality-sensitive hashing index to improve the ρ and δ
calculations. The distributed LSH-DDP experiments are performed on a cluster
with 5 machines, each equipped with an Intel I5-4690 3.3G 4-core CPU, 4 GB
memory. We can see that our GDPC can achieve 44.8–78.8× speedup.

Computational Cost Analysis. The distance calculations for computing ρ
and δ is the most expensive part, especially for large and high-dimensional data.
GDPC utilizes VP-Tree to avoid large number of unnecessary distance calcula-
tions due to its excellent support for nearest neighbors search. Similarly, LSH-
DDP also leverages LSH index to avoid unnecessary distance calculations. We
evaluate the computational cost of naive all-pair computation, LSH-DDP, and
GDPC by comparing their number of distance calculations during the clustering
process and show the results in Fig. 5. Our GDPC requires significantly fewer
exact distance calculations than prior works, say only 1.4–6.8% of LSH-DDP
and 0.3–3.8% of all-pair calculations.

Runtime Breakdown Analysis. There are four main steps to obtain the final
clustering result, which is VP-Tree construction, density ρ calculation, dependent
distance δ calculation, and point-to-cluster assignment. In Fig. 6, we can see that
for larger dataset, the ρ computation is always the most expensive part since it
requires large number of distance measurements.

Scaling Performance. We randomly choose 213–219 number of points from the
BigCroos500K dataset to generate multiple datasets with different sizes. The
runtime in Fig. 7 exhibits linearly growth when increasing the data size, while
the all-pair distance calculations will exhibit quadratic growth. This experiment
shows our GDPC algorithm can achieve great scaling performance.

Effect of Multi-stream Construction. We leverage CUDA’s multi-stream
optimization to improve the parallelism when constructing left child sub-tree
and right child sub-tree. We can see the results in Fig. 8 that multi-stream opti-
mization can significantly improve the performance by an order of magnitude.

S2 Facial KDD 3Dspatial BigCross
0

200

400

600

800

7

97

237

570

740

1 8 24 30
77

Dataset

Ti
m

e
(m

s)

Multi Streams
Single Stream

Fig. 8. Effect of multi-stream processing

216 217 218 219
0

1000

2000

3000

Number of points

Ti
m

e
(m

s)

Random Order
Leaf Order

Fig. 9. Effect of memory access

GDPC: A GPU-Accelerated Density Peaks Clustering Algorithm 313

Effect of Coalesced Memory Access. To understand the performance
improvement by our optimization, we use the random processing order to see
the advantages by using the leaf-based processing order. In Fig. 9, our approach
shows significant better performance especially when increasing the data size.

5 Conclusion

In this paper, we propose a parallel density peaks algorithm named GDPC, which
can fully utilize the powerful computation resources of GPU. It leverages a GPU-
friendly spatial index VP-Tree to reduce the unnecessary distance calculations.
The VP-Tree construction process and the DP clustering process are greatly
improved by utilizing GPU’s parallel optimizations. Our result show that GDPC
can achieve 5.3–78.8× speedup over the state-of-the-art DPC implementations.

Acknowledgements. This work was partially supported by National Key R&D
Program of China (2018YFB1003404), National Natural Science Foundation of
China (61672141), and Fundamental Research Funds for the Central Universities
(N181605017, N181604016).

References

1. Ge, K., Su, H., Li, D., Lu, X.: Efficient parallel implementation of a density peaks
clustering algorithm on graphics processing unit. Front. Inf. Technol. Electron. Eng.
18(7), 915–927 (2017). https://doi.org/10.1631/FITEE.1601786

2. Gong, S., Zhang, Y., Yu, G.: Clustering stream data by exploring the evolution of
density mountain. Proc. VLDB Endow. 11(4), 393–405 (2017)

3. Kramosil, I., Michálek, J.: Fuzzy metrics and statistical metric spaces. Kybernetika
11(5), 336–344 (1975)

4. Li, M., Huang, J., Wang, J.: Paralleled fast search and find of density peaks clus-
tering algorithm on gpus with CUDA. In: SNPD ’2016. pp. 313–318 (2016)

5. Patil, C., Baidari, I.: Estimating the optimal number of clusters k in a dataset using
data depth. Data Sci. Eng. 4(2), 132–140 (2019)

6. Rodriguez, A., Laio, A.: Clustering by fast search and find of density peaks. Science
344(6191), 1492–1496 (2014)

7. Yianilos, P.N.: Data structures and algorithms for nearest neighbor search in general
metric spaces. In: SODA ’93. pp. 311–321 (1993)

8. Zhang, Y., Chen, S., Yu, G.: Efficient distributed density peaks for clustering large
data sets in mapreduce. IEEE Trans. on Knowl. Data Eng. 28(12), 3218–3230 (2016)

https://doi.org/10.1631/FITEE.1601786

