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Abstract
In general, the performance of parallel graph processing is

determined by three pairs of critical parameters, namely syn-

chronous or asynchronous execution mode (Sync or Async),

Push or Pull communication mechanism (Push or Pull), and

Data-driven or Topology-driven traversing scheme (DD or

TD), which increases the complexity and sophistication of

programming and system implementation of GPU. Existing

graph-processing frameworks mainly use a single combina-

tion in the entire execution for a given application, but we

have observed their variable and suboptimal performance.

In this paper, we present SEP-Graph, a highly efficient

software framework for graph-processing on GPU. The hy-

brid execution mode is automatically switched among three

pairs of parameters, with an objective to achieve the short-

est execution time in each iteration. We also apply a set of

optimizations to SEP-Graph, considering the characteristics

of graph algorithms and underlying GPU architectures. We

show the effectiveness of SEP-Graph based on our inten-

sive and comparative performance evaluation on NVIDIA

1080, P100, and V100 GPUs. Compared with existing and rep-

resentative GPU graph-processing framework Groute and

Gunrock, SEP-Graph can reduce execution time up to 45.8

times and 39.4 times.

CCS Concepts • Computing methodologies → Paral-
lel programming languages; • Software and its engi-
neering→ Parallel programming languages; Massively par-

allel systems.
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1 Introduction
Graph analysis along with many data mining and machine

learning algorithms are playing important roles in differ-

ent disciplines of science, from social networks to Inter-

net of Things, from biology to bioinformatics, etc. The re-

search and development in this area have driven the de-

sign and implementation of parallel graph-processing frame-

works on multicore CPUs and distributed environments, e.g.,

Pregel [31], GraphLab [30], PowerGraph [16], PowerLyra

[9], GraphX [17], Ligra [42], Galois [36], Gemini [54], etc. On

the other hand, due to the massive parallelism, high memory

bandwidth, and energy-efficiency of GPU over CPU, GPUs

have also become important platforms for graph-processing

frameworks, e.g., Medusa [53], CuSha [25], Gunrock [46],

Groute [3], Frog [41], Gluon [10], etc.

Many aforementioned software frameworks adopt the

"think like a vertex" philosophy [31] to implement the vertex-

centric programming model. In this way, programmers im-

plement the computation on vertices, while the frameworks

implement communication between vertices along edge and

process vertices in parallel at runtime. In general, a parallel

graph-processing framework must consider three basic com-

ponents for the purpose of high performance and scalability.

First, the execution of a graph algorithm can be either in a

synchronous mode or in an asynchronous mode, a.k.a. Sync

and Async. In the sync mode, the whole execution of a pro-

gram is divided into multiple iterations. An explicit barrier

between two successive iterations is required to synchronize

the execution. A vertex can see the updates from others only

after the end of previous iteration. In contrast, the async

mode doesn’t need any explicit barrier. A vertex is allowed

to see the updates from others as soon as possible. Second,

the communication between vertices can be implemented

either in a push way or in a pull way. Once a vertex has

updates for destination vertices, the vertex can actively push

the updates to the destinations, or passively let the destina-

tion vertices pull the updates. Third, the vertex traversing

can use either a data-driven mechanism or a topology-driven

mechanism, a.k.a. DD and TD. DD distinguishes active ver-

tices from inactive vertices, and only those active vertices
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will be traversed. TD treats active and inactive nodes equally,

and all vertices will be traversed.

In practice on GPU, a combination of these three parame-

ters can be used in an implementation, aiming to best utilize

the massive parallelism of GPU and the high memory band-

width, to achieve load balancing and other high performance

goals. However, the combination variations may cause execu-

tion and performance dynamics, increasing the complexity

and sophistication of programming and system implementa-

tion for high performance. In addition, in each of the existing

systems [3, 25, 46, 53], a single and fixed combination is used

in the entire execution for a given application, which may

lead to variable and suboptimal performance. In order to

address our uncertainty and doubt, we have looked into the

execution of two graph-processing systems by tracing and

measuring the execution time at each iteration.
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Figure 1. The execution time (in milliseconds) of PageRank from Gunrock

and Groute running on an NVIDIA 1080 GPU for different datasets.

Fig. 1 illustrates the per iteration execution time of PageR-

ank from Gunrock [46] and Groute [3] on an NVIDIA 1080

GPU. Both Gunrock and Groute are high-performance graph-

processing frameworks on GPUs. The major difference be-

tween them is Gunrock uses the sync model and Groute uses

the async model. Additionally, Gunrock PageRank adopts

Push for the communication and TD for vertex traversing

(Sync + Push + TD), while the equivalent of Groute adopts

Push and DD (Async + Push + DD).
1
As shown in Fig. 1(a)

for the road_usa dataset, although requiring more iterations

to converge, Groute has better overall performance than

Gunrock (356.5 ms vs. 523.4 ms), due to much less execution

time in each iteration. However, in Fig. 1(b) for the kron

dataset, Gunrock shows better overall performance than

Groute (3346.8 ms vs. 3931.1 ms). These figures also show

that Gunrock has consistent execution time in each itera-

tion, because TD traverses all vertices in each iteration. In

contrast, Groute has significantly variable execution time,

primarily because DD maintains and updates the worklist

of active vertices in each iteration. DD also leads to higher

1
The asynchronous framework Groute has iterations, because its data-

driven model is implemented on top of a worklist for active vertices and

the worklist is updated by a GPU kernel function, as an implicit barrier. An

iteration corresponds to an update, and inside an iteration, a vertex can be

scheduled multiple times in an asynchronous way.

execution time in the first several iterations of Groute, as

shown in Fig. 1(b).

We have shown a fixed combination in the entire exe-

cution may be problematic because execution time in each

iteration can be dramatically different. This motivates us

to develop an adaptive and hybrid software framework for

graph processing, where the execution mode is adaptively

and automatically changed with different combinations, aim-

ing for the best overall performance. We will first answer the

following two questions to lay a foundation for our system

framework.

• Can we find the root causes that lead to variable execution

time for a given graph algorithm and its dataset, consider-

ing the combinations of execution mode, communication

mechanism, and traversing scheme on GPUs?

• After we reveal the root causes and obtain the insights

to switch from one alternative to another one, can we

implement a lightweight mechanism to switch the solution

at runtime, for ensuring the system-level overhead will

not offset the benefit of hybrid?

In this paper, we present the design and implementation of

SEP-Graph, a highly efficient software framework for graph

processing on GPU. The hybrid execution mode is switched

among three pairs of parameters (Sync/Async, Pull/Push, and

DD/TD), with an objective to minimize the execution time

in each iteration. We also apply a set of optimizations to SEP-

Graph to optimize performance of algorithms, considering

the characteristics of graph algorithms and underlying GPU

architectures. We evaluate SEP-Graph with Gunrock and

Groute on three types of GPUs with a set of graph algorithms

and datasets. The experimental results show the effectiveness

of our framework.

2 Background
2.1 Sync vs. Async
Fig. 2(a) compares the different execution modes of Sync

and Async. In this figure, we assume thread 0 is scheduled

to process vertices 0, 1, 2; and thread 1 is responsible for

vertices 3, 4, 5. With Sync, the execution of a program is

divided into multiple iterations. To coordinate the multiple

threads and ensure the updates on vertices detectable at the

end of each iteration, the Bulk Synchronous Parallel (BSP)

mode [44] is usually adopted, introducing a barrier between

any two successive iterations. With Async, the update on a

vertex can be seen by others as soon as possible. As shown

in the bottom half of this figure, vertex 0 is scheduled twice

in the schedule sequence (0, 1, 0, 1) of thread 0, and the

updates are sent to vertex 4 twice. Note that, an algorithm

that can be executed synchronously may not be executed

correctly in the async mode. Several studies [15, 52] have

provided the theoretical foundations for the conditions that

sync graph algorithms can be transformed to async ones.

These studies guarantee each sync algorithm used in our
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Figure 2. Comparisons of Sync and Async, Push and Pull, and DD and TD. The left-most subfigure is the input graph dataset.

work has an async equivalent with a correctness proof. The

transformable problem of sync-to-async is out of the scope

of this paper.

There are two major reasons that Async is believed to

converge faster than Sync. First, since Async can propagate

the update of a vertex to its neighbors as soon as possible,

the most up-to-date updates can be used in computations

on neighbors. Second, because the fast worker threads can

move ahead without waiting for the stragglers, there is no

waiting cost. However, on GPUs, there are three structural

limits of Async. First, compared to Sync, where a vertex only

generates the update once in an iteration, Async can generate

updates of a vertex multiple times in a nondeterministic way,

incurring more irregular data communication. On GPUs,

this may significantly reduce the performance of memory

accesses. Second, althoughAsync doesn’t require fast threads

to wait for the stragglers, this potential benefit may be offset

on GPU, because a group of GPU threads are intended to

execute the same code at the same time for high performance.

Third, Async may incur excessively stale computations [19],

because many up-to-date messages can make a computation

become stale soon. The redundant stale computations lead to

unnecessary computations and higher communication costs.

2.2 Push vs. Pull
Fig. 2(b) compares Push and Pull in graph processing. When

vertex 0 has the update for its neighbors, i.e., vertices 1, 3, 4,

vertex 0 can push updates to the neighbors; or let vertex 1,

3, 4 pull updates from vertex 0.

Push may lead to the write-write conflict on a destina-

tion vertex from multiple sources. For example, vertex 0 and

vertex 1 can write updates to vertex 4 simultaneously. Such

a write-write conflict exists in both Sync and Async mode.

In contrast, Pull doesn’t have the write-write conflict when

combined with Sync; while it has the read-write conflict

when combined with Async: when a source vertex is updat-

ing its local buffer for updates, a destination vertex is pulling

the update in the same address. Modern hardware architec-

tures provide instructions, e.g., Fetch-and-Add (FAA) and

Compare-and-Swap(CAS), to implement atomic read and

write. On CPUs, the variable performance of using atomics

in graph algorithms has been explored [4, 18, 54]. On GPUs,

the overhead of using Push and Pull is also discussed with a

few graph algorithms [1, 29]. Most GPU graph-processing

frameworks use Push for communication.

2.3 Data-driven vs. Topology-driven
Fig. 2(c) shows the process of vertex traversing in Breadth-

First Search (BFS) starting from vertex 0 when using DD and

TD, respectively. The shadowed cycles represent the active

vertices and the bright cycles represent those inactive. DD

will traverse vertex 0 in the first round, then vertices 1, 3, 4

in the second round, and vertices 2 and 5 in the third round;

while TD will traverse all vertices in each round no matter

they are active or inactive.

DD is usually implemented with a worklist- or queue-

based method. Some graph-processing frameworks with

Sync [25, 46, 53] use two worklists, one for active vertices

in the current round and the other for active vertices in

the next round. In each iteration, the active and inactive

worklists are swapped. The active vertices are also called

"frontiers" in some proposals using DD [29, 33, 47]. When

integrated with Async, DD only needs one worklist to store

active vertices. Each thread will independently manipulate

the worklist to dequeue a vertex and enqueue new discov-

ered vertices. However, such a combination of Async and DD

is opposite to the GPU preference, which prefers all threads

to do the same thing at the same time. As a result, a bet-

ter solution for GPUs is to schedule GPU threads together

for the worklist management and allow threads to execute

asynchronously between two times of worklist updates. We

adopt this method to combine Async and DD.

In contrary, TD doesn’t distinguish active vertices from

inactive ones, simplifying the implementation of systems.

Although TD has unnecessary computations on inactive ver-

tices, TD doesn’t always underperform, when compared to

DD. First, the performance of DD is affected by the overhead

of worklist management and the saved computation after

getting rid of inactive vertices. Second, the redundant com-

putation induced by TD may be offset by the large number

of GPU threads.

3 Rationale of Performance Dynamics
In this section, we design and implement two typical graph

algorithms by using different combinations of Sync or Async,

Push or Pull, and DD or TD with a set of optimizations

on GPU. Through analyzing the variable performance of
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algorithms on different datasets, we provide the insights of

when a specific combination can obtain good performance.

3.1 Algorithms and Datasets
Based on their behaviors, graph algorithms can be put into

two categories [4]. Iterative algorithms try to derive some

properties of the whole graph and satisfy: (1) starting from all

vertices of the graph; (2) processing vertices in iterations un-

til some convergence condition is hit. PageRank and Triangle

Counting belong to this category. Traversal algorithms try

to derive some properties for a subgroup of graph and usually

require: (1) starting from one or few vertices; (2) processing

vertices along a direction until the end condition is hit. BFS

and SSSP belong to this category. We select PageRank and

SSSP to explore the reasons of variable performance.

PageRank: PageRank is an algorithm to rank websites

based on the number and quality of their links. Since the

original algorithm [7] cannot be executed correctly with

Async [52], we use the Delta-based PageRank [48, 52] that

has both sync and async implementations. This algorithm

allocates buffers PR j and ∆R j on a vertex j to record the

PR value and receive updates. The computation on a vertex

is to accumulate ∆R j . When ∆R j is added to PR j , the delta

message d
∆Rj
|N (j) | (d is the damping factor and |N (j)| is the

outdegree of j) is sent to neighbors of j and ∆R j is reset to 0.

With Sync, a vertex will receive updates produced in the pre-

vious iteration, accumulate updates, and send delta messages

to neighbors. Async will do these steps independently.

SSSP: SSSP is an algorithm to find a shortest path from a

given vertex s to all other vertices j ∈ V − {s} in the graph.

∆-stepping SSSP [34] is a generalization of the Dijkstra’s

algorithm and the Bellman-Ford algorithm. ∆-stepping SSSP
allocates bufferD j and∆D j on a vertex j to record the current
shortest distance and the received smallest distance from its

neighbors. A vertex will send its current shortest distance

to the outgoing neighbors. The ∆D j of its neighbors will be

updated with the smallest received distance, and theD j of its

neighbors will be updated asD j =min{D j ,∆D j }.∆-stepping
SSSP can be optimized by processing a set of vertices with

shortest distances (i.e., smallest D j ) in a mini-batch (where

the batch size is ∆). The vertices with the updated shortest

distances are enqueued in the mini-batch, and the vertices

in the mini-batch are processed again and again until no

vertex’s D j changes. ∆-stepping SSSP can be implemented

synchronously where the synchronization is required after

a round of computation on each mini-batch; while in Async,

the threads process mini-batches independently. We use the

Near-Far optimization [11], which is a practical design of

∆-stepping SSSP on GPU.

Datasets: We use road_usa and kron_21 datasets in the

experiments of this section. The former is a typical sparse

graph having the high diameter; while the latter is a graph

whose in- and out-degree obey the power-law distribution.

3.2 Analysis of Iterative Algorithms
We analyze PageRank, a representative iterative algorithm,

by profiling all possible combinations of execution variables,

as shown in Fig. 3(a, b) and Fig. 4(a, b).

Data-driven or Topology-driven: Overall, TD outperforms

DD, because iterative algorithms often start from all vertices

and only a few vertices might satisfy convergence condi-

tions at the beginning stages. DD has the worklist/queue

management overhead. Such overhead cannot be offset by

removing the converged vertices in the first several itera-

tions when very few vertices can converge. This observation

holds for different datasets. Fig. 4 (a, b) show TD is always

preferred over DD when the execution mode and communi-

cation mechanism stay the same.

Push or Pull: The choice depends mainly on the graph

structure. For example, Push works well for high-diameter

graphs, e.g., road_usa, and Pull is better for scale-free graphs,

e.g., kron_21, when combined with Sync. For high-diameter

graphs, Push generates less overhead in its atomics and

shows consistently better performance, thanks to the rel-

atively low in/out degree of all vertices. In contrast, the high

in-degree vertices in scale-free graphs could form a bottle-

neck for such an atomic-based push mechanism. Pull, how-

ever, is favorable in this case by assigning working threads

to actively pull the updates from in-neighbors one by one

without the write-write conflict in Push. Note that the up-

dates should be synchronized; otherwise, the pull will cause

the read-write conflict.

Sync or Async: Async is slightly better than Sync, if they

exhibit the similar performance trends. One main reason is

the faster convergence speed of Async. Thus, in our hybrid

implementation for iterative algorithms, Async is given a

higher priority than Sync.

Considering all these factors, we choose "sync-pull-td",

"async-push-td", and "async-push-dd" as the candidates for it-

erative algorithms in our experiments, expecting the runtime

system can switch these methods adaptively and rapidly.

3.3 Analysis of Traversal Algorithms
We have the following observations for the representative

traversal graph algorithm SSSP.

Data-driven or Topology-driven: DD outperforms TD in

most cases, because DD matches the traversal nature of this

type of algorithm. Specifically, DD only tracks a small frac-

tion of vertices for high-diameter graphs.

Push or Pull: Push and Pull have their own best scenarios,

especially for the scale-free graph, as shown in Fig. 3(c). We

have to include both Push and Pull as the candidates for the

hybrid solution. The intuition of switching is related with

the number of current active vertices, the total out-edges of

current active vertices, and the number of untouched edges.

Sync or Async: By using DD, Async and Sync show similar

trends of performance dynamics, regardless of input graphs.
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Figure 3. Execution time comparisons of PageRank and SSSP with 8 combinations running over road_usa and kron_21 datasets on an NVIDIA 1080 GPU.
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One reason is the async implementation with DD on GPU. As

mentioned in Sec. 2.3, Async-DD needs to swap the worklists

for active vertices, as an implicit barrier. Another reason for

the close performance is the characteristics of traversal algo-

rithms. For example, SSSP traverses the graph along multiple

paths and updates distances along them. The threads work-

ing on the same path will touch the same vertices and do the

same computations, no matter in which implementation.

Considering all these observations, traversal algorithms

on GPU will benefit from Async-DD-based implementations

with Push and Pull hybrid for scale-free graphs. However,

for the high-diameter graph, as shown in Fig. 3 (d), the tra-

versal algorithm will execute over 10,000 iterations. That

indicates the GPU kernel fusion [45] and GPU utilization in

each iteration is more important for such scenarios.

4 System Design and Implementation
4.1 Overview of System Design
SEP-Graph is a runtime system that executes graph algo-

rithms in a hybrid way on GPU. From the point of view of

programmers, SEP-Graph is yet another vertex-centric pro-

gramming model. SEP-Graph provides a set of interfaces for

programmers. Once the programmer defines the necessary

computation function, communication function, and con-

vergence function on vertices, SEP-Graph can schedule the

program to be running on GPU in a hybrid way.

The core of SEP-Graph includes a hybrid engine running

on GPU and a controller running on CPU. Fig. 5 shows the

GPU part. At runtime, the controller running on CPU will

iteratively collect the monitoring data on GPU and switch

the execution path of a graph algorithm on GPU. The hybrid

engine on GPU includes the basic implementations of eight

execution paths of Sync or Async, Push or Pull, and DD

or TD. These implementations are built on top of built-in

sparse data structures, e.g., Compressed Sparse Row (CSR)

and Compressed Sparse Column (CSC). The runtime monitor

inside the hybrid engine monitors and records the changes of

parameters, e.g., the number of active vertices, the numbers

of accumulated in- and out-degree of active vertices, etc.

These parameters will be used in Alg. 1 and Alg. 2 by the

controller running on CPU to determine the execution path.

The hybrid engine also includes a set of optimizations to

optimize algorithm themselves and the mapping on different

GPU architectures.

Figure 5. Overview of SEP-Graph hybrid engine on GPU.

4.2 Programming Interfaces
Tab. 1 describes some programming interfaces of SEP-Graph

that programmers need to implement. In our model, each

vertex has two buffers: one is the value buffer of the vertex

and the other is the update(message) buffer of the vertex.

Programmers implement the functions InitValue() and

InitBuffer() to initialize this pair of buffers on each ver-

tex. For example, for PageRank, one can do "return 0;" in

InitValue() and "return (1 - ALPHA);" in InitBuffer(),
where ALPHA is the damping factor. The framework will

call these functions to initialize the graph at the beginning

of execution.

The computation function ComputeBuffer() is to com-

pute updates in the message buffer and apply to the value of

the vertex. For PageRank, one can do "buf = atomicExch
(buffer, 0);" and "*value += buf;". After that, one
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Table 1. SEP-Graph Programming Interfaces

API Summary
Initialization APIs
TValue Return an initial value for every vertices. If a vertex

InitValue(...) id is given, operate on a vertex.

TBuffer Return an initial value for the buffer on every vertices.

InitBuffer(...) If a vertex id is given, operate on a vertex.

Computation and Communication APIs
Pair<TBuffer, bool> Compute updates in the buffer and apply to the ver-

ComputeBuffer(...) tex. Return a new TBuffer for the communication.

Int Pass messages from the source to the destination, and

AccumulateBuffer() accumulate the update in the source buffer to the

destination. If the source and destination are not

given, operate on all vertices with their neighbors.

Convergence APIs
bool Determine if vertices are converged or not (active

IsActive(...) or inactive). If a vertex id is given, operate on a vertex.

should set the temporary variable "buf", as "buf = ALPHA
* buf / out_degree;", which will split the ∆ value of a

vertex for neighbors; and return "buf" to the framework as

"return utils::pair<TBuffer, bool>(buf, true);".
After the computation function, the framework will use the

pull or push for the user defined communication function

AccumulateBuffer() to accumulate updates, as "atomic
Add(buffer, buf);". With Push, "buffer" is the message

buffer of each destination vertex and "buf" is the return value

of the current vertex; while with Pull, "buffer" is the message

buffer of the current vertex and "buf" is the return value of

each source vertex. No matter in which mode, one provides

the same implementation of this communication function

and the framework will handle the communication correctly.

Note that there is no data-race problem. First, the accesses

on the global variable "buffer" are atomic. Second, our shared

queue design guarantees only one thread is scheduled to pro-

cess one vertex once a time, and thus only that thread can

access the global variable "value". We also would like to men-

tion that instead of implementing one for each combination

of Sync or Async, Push or Pull, and DD or TD, users only

need to implement these interfaces once and the system will

call the corresponding low-level implementation at runtime.

4.3 Runtime Switch
We design two switching mechanisms for two types of graph

algorithms. Once a programmer points out the type of a

graph algorithm, SEP-Graph will run Alg. 1 for the iterative

type and Alg. 2 for the traversal type.

For iterative algorithms, any combination may lead to

the max efficiency in the next round. Therefore, we run the

candidates one by one at the beginning to get their exe-

cution time; and for the remaining rouds, we predict the

execution time and choose the one resulting in the shortest

execution time for the next iteration. Alg. 1 shows how SEP-

Graph makes decisions for iterative graph algorithms over

a graph G(V,E). The candidates are contained in GPUGA,
e.g., sync_push_dd(·), sync_pull_td(·), etc. outDegree(·) and

inDegree(·) calculate the out degree and in degree of a given

set of vertices, respectively. normalizeTime(·) attempts to

normalize the execution time of a given graph algorithm

based on the statistics of active vertices A in current round,

and predictTime(·) predicts the execution time of next round

according to the normalized execution time and the statistics

of latest active vertices. It is worth noting that the imple-

mentations of normalizeTime(·) and predictTime(·) for high

accuracy vary towards different graph algorithms. For ex-

ample, a reliable implementation of normalizeTime(·) for a

DD-Push-based algorithm could be T n = t
outDegree(A) , where

t is the measured execution time over A, and predictTime(·)

can be implemented as T p = outDegree(A′) ·T n
, where A′

is the active vertices for the next round. At the beginning of

Alg. 1, the active vertices A are composed of V. In the first N
rounds, SEP-Graph executes the available algorithms in turn

to initialize T n
i . Until the program ends, which is indicated

by "isConverged(G) , true", SEP-Graph always predicts how

long a candidate needs for the next round based on the nor-

malized execution timeT n
and the statistics of active vertices,

and selects the shortest one to execute. After each round,T n
i

is updated based on the real execution time.

Algorithm 1 SEP-Graph for iterative graph algorithms

1: procedure SEP-Graph-Iterative(G(V, E))
2: Input: outDegree(·), inDegree(·), isConverged(·)

3: GPUGA← { sync_push_dd(·), sync_pull_td(·), . . . }
4: N ← |GPUGA |
5: A← V
6: for i in 1 . . . N do
7: outcur ← outDegree(A)
8: incur ← inDegree(A)
9: ▷ A is updated by GPUGA(·)
10: t ← GPUGAi (G, A)
11: T ni ← normalizeTime(t, outcur , incur , )
12: end for
13: while isConverged(G) , true do
14: outcur ← outDegree(A)
15: incur ← inDegree(A)
16: T p ← predictTime(T n, outcur , incur )
17: i ← indexOf(min(T p ))
18: t ← GPUGAi (G, A)
19: T ni ← normalizeTime(t, outcur , incur )
20: end while
21: end procedure

For traversal algorithms, the framework only selects the

policy between Push and Pull with Async-DD (See the anal-

ysis in Sec. 3.3). Alg. 2 illustrates how the framework makes

the decision, in which vs is the source vertex in the input

graphG(V,E). α , β ,γ , and δ are constants, and all of them are

predefined to assist making the determination. neighbor(·) is

the function to calculate all neighbors of a given set of ver-

tices. For a specific algorithm like SSSP, an edge is likely to

be visited more than once, so that E ′ is scaled by a constant

γ ≥ 1.

This algorithm is initialized with Push, because there is

only one active vertex vs in the worklist, and no duplicate

messages are generated. Before the algorithm stops (there

are no active vertices in the worklist), the determination

43



SEP-Graph PPoPP ’19, February 16–20, 2019, Washington, DC, USA

will be made that if the current policy should switch to

the alternative. The best opportunity switching to Pull is

when the framework discovers the out degree of the ver-

tices in the worklist accounts for a large proportion of the

untouched edges, which is defined as
E′
α ,α ≥ 1. The basic

idea of switching from Push to Pull is that: a large amount of

out-degree of the active nodes implies Push is likely to gen-

erate plenty of duplicate messages, while a small number of

untouched edges indicates relatively small overhead of using

Pull. Only if the active vertices lowers than a small number

represented by
|V |
β , where β ≥ 1, the framework switches

back to Push without worrying the duplicate messages. This

idea of switching between Pull and Push is similar to the

direction-optimizing BFS [1]. Moreover, the switch only oc-

curs in a dense graph (with the scale-free characteristics);

and SEP-Graph always use Push for sparse graphs, if the

average edges to a vertex
|E |
|V | is less than a threshold δ .

Algorithm 2 SEP-Graph for traversal graph algorithms

1: procedure SEP-Graph-Traversal(G(V, E), vs , α, β, γ , δ )
2: Input: outDegree(·), neighbor(·)

3: GPUGA← { push(·),pull(·) }
4: A← {vs }
5: E′ ← |E | · γ
6: policy ← push

7: if |E|
|V| < δ then

8: GPUGA(G, A, policy)
9: else
10: while A , ∅ do
11: ▷ A is updated by GPUGA(·)
12: GPUGA(G, A, policy)
13: if policy = push then
14: E′ ← E′− outDegree(A)
15: if outDegree(A) > E′

α then
16: policy ← pull

17: end if
18: else if policy = pull and |A | < |V|

β then
19: policy ← push

20: end if
21: end while
22: end if
23: end procedure

4.4 Optimizations
A set of optimizations have been implemented in SEP-Graph.

We introduce three of them.

4.4.1 CTA Scheduling
SEP-Graph adopts Cooperative Thread Array (CTA) sched-

uling [23, 26] to ensure the load balance and improve the

data locality in the communication. When a working thread

pushes the update of a vertex to its out-neighbors or pulls

the updates from its in-neighbors, the out-degree and in-

degree may be significantly diverse, thus resulting in load

imbalance between GPU threads. This is observed in most

scale-free graphs. SEP-Graph uses a warp of threads or a

block of threads to keep balance: if the degree is larger than

the block size, the work on the vertex will be processed by a

CTA and via the shared memory; if the degree is larger than

the warp size, the work will be processed by a warp and via

the register; and otherwise, threads will process different

vertices independently.

In addition, CTA scheduling can improve the data locality,

if thread blocks working on the same group of vertices are

scheduled on the same SM to share L1 cache. We can achieve

this goal by manipulating the CTA indices and leveraging

the round-robin manner of GPU hardware scheduling [28].

With it, SEP-Graph can obtain better data locality in the

push- and pull-based communication.

4.4.2 Warp Appending
Because multiple threads may write active vertices to the

shared queue for the next iteration, the atomic write is usu-

ally required and may harm the performance. The warp

appending [21] is used to reduce the number of atomic oper-

ations as below.

First, a warp of threads call the warp voting instruction

__ballot() and population counting instruction __popc()
to count the number of threads that have updates, i.e., active

vertices, and then call the data shuffle instruction __shfl()
to broadcast the counting result in the warp. Second, the

first thread of each warp coordinates to get the warp offset

in the shared queue via atomic operations. Third, threads

write their updates to the queue in parallel with the offsets.

This process is called iteratively until all updates are written

to the shared queue. We also notice that a recent study [43]

can reduce the overhead of atomics on GPU with the relaxed

atomics. We will investigate this new memory consistency

model and integrate it into our framework.

4.4.3 Priority Scheduling
Priority scheduling can optimize graph algorithms by priori-

tizing some vertices to be executed first after distinguishing

these vertices from others. In ∆-based PageRank, the condi-

tion to determine a vertex active or inactive is based on the

∆ value. Scheduling the vertices having larger ∆ values first

can accelerate the convergence speed, since the ∆ value is

decreased by the damping factor in the propagation.

SEP-Graph has different implementations of priority sched-

uling for iterative algorithms and traversal algorithms. The

difference is in the method of calculating a proper threshold.

Because iterative algorithms operate on the whole graph

through all iterations, the threshold of the priority schedul-

ing, e.g., the ∆ value of PageRank, should consider all active

vertices. We use the random sampling to get current val-

ues of priority scheduling variable on sampled vertices, and

then calculate the threshold. In PageRank as an example, we

sample 1000 vertices, sort them on the ∆ value, and use the
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200th ∆ value as the threshold. This method has been suc-

cessfully adopted by distributed graph-processing systems,

e.g., Maiter [52] and PowerSwitch [50], and has much less

overhead on GPU. Calculating the threshold for a traver-

sal algorithm is simpler, because we only need to consider

the traversed vertices along the path, instead of the whole

graph. For example, in ∆-stepping SSSP, we can pre-define a

value of distance as the threshold and put the active vertices

having shorter distances to the source to be scheduled first.

5 Evaluation
In this section, we evaluate SEP-Graph with four algorithms.

Besides PageRank and SSSP, other two algorithms are:

• Breadth-First Search (BFS): BFS traverses a graph from

a given source vertex, and outputs the hops from the source

to traversed vertices.

• Betweenness Centrality (BC): BC measures the central-

ity of a graph by calculating the centrality of each vertex.

The centrality of a vertex is the number of the shortest

paths that pass through the vertex. We use the algorithm

proposed by Brandes [6] due to its fast speed and general-

ity. In the evaluation, we compute the centrality of a given

vertex.

We compare SEP-Graph with two GPU graph-processing

frameworks. Gunrock (version 0.4) [14] is a sync-based frame-

work. In contrast, Groute [13] is an async-based framework.

We carry out our experiments on three types of compute

nodes.

The first server has an NVIDIA GTX 1080 GPU, which has

20 SMs (2560 CUDA cores) and 8 GB GDDR5 memory. This

server also has an Intel i7-3770K CPU running on 3.5GHz

(4 cores) and 32 GB memory. The second server has two

Intel Xeon E5-2680v4 CPUs running on 2.4GHz (28 cores in

total), 512 GB memory, and two NVIDIA P100 GPUs. Each

P100 GPU has 60 SMs (3840 CUDA cores) and 12 GB HBM2

memory. The third server has two Intel Xeon Gold 6136

CPUs running on 3.0GHz (24 cores in total), 256 GB memory,

and two NVIDIA V100 GPUs. Each V100 GPU has 5120m

CUDA cores and 16 GB HBM2 memory. The GPUs are con-

nected to the host via PCIe Gen3 on all systems. The software

environments, e.g., CUDA, GCC, Linux kernel, etc., will be

introduced in the artifact evaluation.We compare SEP-Graph

with Gunrock and Groute on a single GPU on these systems.

Tab. 2 lists out the used datasets. "kron_g500-logn21",

"soc-LiveJournal1", and "road_usa" are downloaded from the

Suite Sparse Matrix Collection [12], and "soc-orkut" and "soc-

twitter-2010" are downloaded from Network Data Reposi-

tory [40]. As mentioned earlier, "road_usa" is a typical high-

diameter graph. The threshold is set to 5, which means if

the average degree of a graph (#Edдes/#Vertices) is smaller

than 5, the graph is detected as a high-diameter graph. We

also use this value for Gunrock and Groute for the fair com-

parison. Other graphs in the table are scale-free graphs. In

the evaluations, we run each experiment multiple times and

report the average time, and the pre- and post-processing

time is excluded.

Table 2. The list of graph datasets

Name #Vertices #Edges Avg. Degree Max Degree
kron_g500-logn21 2.1M 182.1M 86.7 213.9K

soc-LiveJournal1 4.8M 68.9M 14.4 20.3K

soc-orkut 3M 106.3M 35.4 27.5K

soc-twitter-2010 14.8M 265.0M 17.9 302.7K

road_usa 23.9M 57.7M 2.4 9

5.1 Comparisons On NVIDA 1080 GPU
Fig. 6 shows the performance comparisons of SEP-Graph,

Groute, and Gunrock on the node having an NVIDIA 1080

GPU. As shown in the figure, SEP-Graph is thewinner, except

Gunrock BFS on the scale-free graphs.

5.1.1 PageRank
Fig .6(a) shows the performance comparisons of PageRank.

SEP-Graph can get up to 2.9x and 1.8x speedups over Groute

and Gunrock for scale-free graphs, both on kron; and obtain

1.9x and 2.5x speedups over Groute and Gunrock for the

high-diameter graph road_usa.

For this iterative algorithm, SEP-Graph runs Alg. 1 to

switch the execution path. The log file shows SEP-Graph

switches the execution path of PageRank from "sync-pull-td"

to "async-push-dd" for the scale-free graphs, including kron,

liveJournal1, orkut, and twitter; and switch the path from

"async-push-td" to "async-push-dd" for the high-diameter

graph usa_road. On the contrary, the PageRank implementa-

tions of Groute and Gunrock always work on "async-push-

dd" and "sync-push-td", respectively. As mentioned earlier

in Fig. 3(a), compared to "sync-pull-td", neither "async-push-

dd" nor "sync-push-td" is a good candidate for the iterative

algorithm running on the scale-free graphs. First, compared

to Pull, using the atomic operation in Push leads to non-

negligible performance penalty on the scale-free graph. Sec-

ond, the overhead of worklist management makes DD not

suitable for the iterative algorithm, until most vertices of

the graph are converged. SEP-Graph can identify "sync-pull-

td" to be the best start in the inspection stage of Alg. 1,

and switch to "async-push-dd" when active vertices become

very few. On the high-diameter graph, SEP-Graph detects

"async-push-td" is best in the inspection and will switch to

"async-push-dd" in the final iterations.

Fig. 7 shows the switched execution path and execution

time of SEP-Graph PageRank on kron and usa_road, respec-

tively. The monitoring parameters, including the number

of active vertices, the number of in-degree of all vertices,

and the number of out-degree of active vertices, are also

shown in the figure at the switching points. As we choose

"sync-pull-td", "async-push-td", and "async-push-dd" as the

candidates for the iterative type algorithm, SEP-Graph will
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Figure 6. Performance comparisons of SEP-Graph with Groute and Gunrock on an NVIDIA GTX 1080 GPU.

Figure 7. SEP-Graph PageRank execution path on an NVIDIA 1080 GPU.

run the candidates one by one in the first three iterations, and

record the execution time per iteration (78 ms, 182 ms, 180

ms). At the end of third iteration, SEP-Graph observes "sync-

pull-td" has the shortest execution time, and then switch to it

at the forth iteration. At the end of each following iteration,

SEP-Graph updates the monitoring data and predicts the ex-

ecution time of these three methods. Because the execution

time of "sync-pull-td" and "async-push-td" is nearly stable

in the iterative algorithm, SEP-Graph only needs to predict

the execution time of "async-push-dd" with Alg. 1. As men-

tioned in Sec. 4.3, the predicted execution time of a Push-DD-

based iterative algorithm is linear with the number of out-

degree of active vertices. At the end of iteration 34, the pre-

dicted execution time of "async-push-dd" can be simplified as

its_inspect_time ∗(curr_out −deдree/inspect_out −deдree),
180 * (64970229 / 176622425) = 66.2 ms, which is smaller than

the inspection time of "sync-pull-td" and "async-push-td",

i.e., 78 ms and 182 ms. The execution path will switched

to "async-push-dd" after the iteration 34. We skip the de-

tailed analysis of switched execution path of PageRank on

usa_road in Fig. 7(b) for the space limitation.

5.1.2 Single-Source Shortest Path
Before running SSSP algorithms, we use the pre-processing

tool from Gunrock to assign the weight to each edge in the

graph. Like SEP-Graph, we also enable the priority schedul-

ing in Groute and Gunrock for their best performance.

In traversal algorithms, SEP-Graph running with Alg. 2

can switch the execution path between "async-push-dd"

and "async-pull-dd" for the scale-free graphs, and always

use "async-push-dd" for the high-diameter graphs. In con-

trast, Groute and Gunrock work on "async-push-dd" and

"sync-push-dd" for the entire execution of SSSP, respectively.

Figure 8. SEP-Graph SSSP execution path for the twitter dataset on an

NVIDIA 1080 GPU.

Although Gunrock provides a hybrid implementation us-

ing Push and Pull for BFS [39], so far it is not enabled for

other algorithms like SSSP. Fig. 6(b) shows the performance

comparisons of SSSP. For the scale-free graphs, SEP-Graph

can get up to 6.5x and 2.1x speedups over Groute and Gun-

rock on kron and orkut datasets, respectively. For the high-

diameter graph road_usa, SEP-Graph can deliver 1.1x and

39.4x speedups over Groute and Gunrock.

Fig. 8 illustrates the switching points of SEP-Graph SSSP

on twitter. In this figure, the y1 axis and y2 axis represent the

variation of
E′

outDegree(A) and
|V |
|A | along iterations. The black

solid line indicates the execution path between "async-push-

dd" (lower) and "async-pull-dd" (upper). The dash lines mean

the constants of α (green) and β (yellow), which are set to 15

and 2, respectively. During execution, SEP-Graph compares

E′
outDegree(A) to α to determine if switching from push to pull

and compares
|V |
|A | to β to determine if switching from pull to

push. The rules are shown in Alg. 2. We can clearly observe

that as
E′

outDegree(A) (the green solid line) becomes lower than

α at the end of the 5th round, and SEP-Graph changes to the

pull mode in the next iteration for higher performance. Once

|V |
|A | (the yellow solid line) is higher than β at the end of the

8th round, SEP-Graph switches back to the push mode in

the 9th round.

For the high-diameter graph road_usa, SEP-Graph uses

"async-push-dd" for the entire execution as Groute does.

The better performance of SEP-Graph comes from the op-

timizations of sorting and de-duplication in SEP-Graph for

the Push-DD mode, and the additional overhead of worklist
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management in Groute for supporting multiple GPUs. The

significant overhead of Gunrock is related with the GPU

SM utilization and the kernel fusion. The kernel fusion in

Gunrock only fuses the advance operator and the filter oper-

ator in successive iterations [39], leading to multiple times

of kernel launch. While, in Groute and SEP-Graph, the SSSP

kernel is only launched once for the high-diameter graph.

The GPU SM utilization will be discussed in Sec. 5.2 with the

performance numbers on NVIDIA P100 and V100 GPUs.

5.1.3 Breadth-First Search
Fig. 6(c) shows the performance comparisons of BFS. SEP-

Graph has 7.0x speedup over Gunrock on the high-diameter

graph road_usa; while Gunrock has the best performance for

the scale-free graphs, having up to 2.4x speedup over SEP-

Graph. There are twomajor reasons for the best performance

of Gunrock. First, Gunrock optimizes the forward traversal of

BFS by using bitmasks in the recent work [38], which is not

implemented in SEP-Graph yet. Second, because Gunrock

has implemented the Push and Pull optimization for BFS on

scale-free graphs, Gunrock BFS has the same execution path

of SEP-Graph. Therefore, compared to Gunrock, SEP-Graph

has additional overhead of running the switching algorithm,

which is relatively higher in BFS (3.8 56 ms, occupying 6%

to 20% of total execution time) than other algorithms.

Compared to Groute, SEP-Graph has up to 45.8x speedup

(kron) on the scale-free graphs, and very similar performance

on the high-diameter graph road_usa. This also indicates

the importance of Push and Pull hybrid for the traversal

algorithms on scale-free graphs.

5.1.4 Betweenness Centrality
The BC implementation includes two stages. The first stage

is to run the BFS algorithm from the source vertex, and the

second stage is a trace back that computes the centrality from

traversed vertices to the source. As Groute doesn’t provide

a BC implementation, we use the Groute BFS and the trace

back of SEP-Graph to implement Groute BFS. Therefore,

the BC performance comparisons between SEP-Graph and

Groute illustrates the same trend of BFS comparisons. Fig.

6(d) shows the SEP-Graph has 2.2x to 2.5x speedups over

Groute on the scale-free graphs, and very close performance

on the high-diameter graph road_usa. Compared to Gunrock,

SEP-Graph has 1.8x to 2.4x speedups on the scale-free graphs,

and 5.8x speedup on the high-diameter graph.

5.2 Comparisons on NVIDIA P100 and V100 GPU
We also conduct the same experiments on NVIDIA P100

and V100 GPUs, where the same trend of performance com-

parisons has been observed. On P100, SEP-Graph has up to

2.8x, 4.1x, 20.2x, and 2.6x speedups over Groute when run-

ning PageRank, SSSP, BFS and BC; and the speedup numbers

change to 1.6x, 12.7x, 2.4x and 2.1x when comparing to Gun-

rock. As Groute doesn’t support the newly released V100

yet, so that we only measure the performance of Gunrock

and SEP-Graph on V100. The speedups of our framework

over Gunrock are 2.8x (PageRank), 8.4x (SSSP), 3.9x (BFS)

and 3.5x (BC).

We observe that compared to SEP-Graph and Groute, Gun-

rock exhibits more variable performance on different GPUs.

For example, for SSSP with the road_usa dataset, Gunrock

needs 8699.5 ms, 4216.4 ms, 1676.5 ms on the nodes having

1080, P100, and V100 GPUs, respectively; while SEP-Graph

needs 220.8 ms, 332 ms, and 199.9 ms. The significantly vari-

able performance of Gunrock is related with the numbers of

SMs of different GPUs. Once we set the grid size of Gunrock

on V100 to 20, which is the number of SMs of 1080, the exe-

cution time of Gunrock SSSP changes to 5955.8 ms. Another

reason is related with the kernel launch overhead. Once SEP-

Graph detects a high-diameter graph in a traversal algorithm,

SEP-Graph will launch the kernel once with "async-push-dd".

In contrast, Gunrock still launches the kernel multiple times.

For this case, Gunrock uses 6791 iterations to launch GPU

kernels. The kernel launch overhead and the consequent

throughput drop in the launch can not be ignored [37, 51].

6 Related Work
A lot of studies focus on accelerating a single graph algo-

rithm on GPU. Bisson et al. [5] use the sparse linear algebra

for implementing the PageRank algorithm on GPU, and fur-

ther optimize it by overlapping the kernel computation and

the data communication between CPU and GPU. Merrill et

al. [33] optimize BFS on GPU by using a fast scan implemen-

tation for the frontier computation and a multi-granularity

scheduling for load balancing. Liu and Huang [29] optimize

BFS on GPU by implementing the direction optimization [1].

Pan et al. [38] optimize BFS on multiple GPUs by combining

the direction optimization and the efficient data communi-

cation between multiple GPUs. Davidson et al. [11] propose

the Near-Far optimization for SSSP on GPU, which is a prac-

tical implementation of ∆-stepping SSSP. McLaughlin and

Bader [32] propose a hybrid betweenness centrality on GPUs,

which can switch between the work-efficient mode and edge-

parallel mode based on the change of vertex frontiers.

Many efforts have been devoted to the study of graph

algorithms on GPU. Che et al. [8] propose Pannotia, a GPU

benchmark suite for graph algorithms. They also conduct

the benchmark characterization on different GPUs. Wu et

al. [49] analyze the impact of GPU performance factors, e.g.,

synchronization, load balancing, etc., on graph algorithms.

Kaleem et al. [22] investigate several synchronization strate-

gies for graph algorithms on GPUs, and conclude there is

no "one-size-fits-all" solution for different datasets and GPU

architectures. Li et al. [27] propose the warp consolidation

to improve the data locality and reduce the synchroniza-

tion overhead on GPU. They show the effectiveness of this
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Figure 9. Performance comparisons of SEP-Graph with Groute and Gunrock on an NVIDIA Tesla P100 GPU.
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Figure 10. Performance comparisons of SEP-Graph with Groute and Gunrock on an NVIDIA Tesla V100 GPU.

technique on several graph algorithms. Nasre et al. [35] inves-

tigate the impact of vertex traversing mechanisms on graph

algorithms on GPUs. Ben-Nun et al. [2] proposeMAPS-Multi,

an automatic multi-GPU partitioning framework for differ-

ent memory access patterns in graph algorithms.

There are also graph-processing frameworks for single-

GPU, multi-GPU, and GPU clusters. Zhong et al. [53] propose

Medusa, a BSP-model-based graph analytics framework on

GPU. Khorasani et al. [25] propose CuSha, a GAS model-

based GPU graph-processing framework, focusing on resolv-

ing the load imbalance and GPU underutilization problems.

Khorasani et al. [24] propose the warp segmentation mecha-

nism to compact graph representations with the vertex re-

finement method to extend CuSha to multiple GPUs.Wang et

al. [46] propose Gunrock, a synchronous graph-processing

system on single-GPU. Pan et al. [39] extend Gunrock to

multi-GPU with a set of optimizations, e.g., the kernel fusion

and direction optimizing traversal. Ben-Nun et al. [3] propose

Groute, an asynchronous graph-processing framework on

multiple GPUs. Hong et al. [20] propose MultiGraph, which

uses multiple graph representations and trades off the data

movement and load balancing among GPU threads. Shi et al.

[41] propose Frog, another asynchronous graph-processing

framework on GPU, which uses graph coloring to deter-

mine the access sequence on neighbors of each vertex and

alleviate the overhead of conflict in the push-base communi-

cation. Dathathri et al. [10] propose Gluon, a communication-

optimizing substrate for graph analytics on GPU clusters.

Gluon allows programmers to write a graph algorithm in

a shared-memory system, and automatically enables it on

GPU clusters.

Compared to these systems, SEP-Graph is a hybrid frame-

work on GPU that can switch the execution path of graph

algorithms with Sync or Async, Push or Pull, and DD or

TD, to achieve the shortest execution time in each iteration.

There exist several CPU-based systems that can switch the

execution path of graph algorithms. Ligra [42] can switch

between Push and Pull, based on the density of active ver-

tices. PowerSwitch [50] can switch between Sync and Async,

based on the vertex computation throughput. Besides target-

ing on a more complicated problem space (Sync or Async,

Pull or Push, and DD or TD) on GPU, SEP-Graph adopts an

inspection-execution method to determine when and how

to switch, by monitoring a set of graph parameters. On GPU,

our method is more efficient than those systems that use a

single factor, i.e., the density of active vertices or the overall

vertex throughput, to determine the switch.

7 Conclusion
We present SEP-Graph, a highly efficient GPU graph pro-

cessing framework by adaptively switching execution path

based on a selection in each of the three pairs of parameters,

namely, Sync or Async, Push or Pull, and DD or TD. This ap-

proach is necessary to achieve the shortest execution time in

each iteration, and consequently and significantly improve

overall performance. Our intensive experiments show the

high effectiveness of SEP-Graph.
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A Artifact Appendix
A.1 Abstract
This artifact contains all executable of SEP-Graph on github.

The shell scripts of running four graph algorithms and com-

paring to Gunrock and Groute are also included. The artifact

will report the execution time of the graph algorithms eval-

uated in the PPoPP’19 paper, which is entitled "SEP-Graph:

Finding Shortest Execution Paths for Graph Processing under

a Hybrid Framework on GPU".

A.2 Artifact check-list (meta-information)
• Algorithm: PageRank, Breadth-First Search, Single-Source Short-
est Path, Betweenness Centrality.

• Program: CUDA and C/C++ code

• Compilation: Use nvcc for CUDA kernels and use gcc and g++

for host code. The compilation flags, e.g., -O3, -std=c++11, etc.,

are set in CMakeLists.txt.

• Binary: One for each algorithm.

• Data set: Publicly available matrix market (.mtx) files.

• Run-time environment: The first server having NVIDIA GTX

1080 GPU is installed Ubuntu 18.04 with CMake 3.10.2, GCC

5.4.0, and CUDA 10.0. The second and third have NVIDIA Pascal

P100 GPU and NVIDIA Volta V100 GPU, respectively. Each has

CentOS Linux release 7.4.1708 with CMake 3.8.2, GCC 5.2.0, and

CUDA 9.1.

• Hardware: CUDA-capable GPUs with compute capability of

at least 3.5, e.g., NVIDIA GTX 1080, NVIDIA Pascal P100, and

NVIDIA Volta V100.

• Output: Program execution time in millisecond, and execution

path and execution time in each iteration of algorithms with

SEP-Graph.

• How much disk space required (approximately)?: 28 GB

(most for the datasets).

• How much time is needed to prepare workflow (approxi-
mately)?: 1 hour
• How much time is needed to complete experiments (ap-
proximately)?: 1.5 hour
• Publicly available?: Yes
• Code/data licenses (if publicly available)?: Apache License
• Archived?: Yes (The tarballs for the source code and artifact

evaluation are placed at Zenodo https://zenodo.org/, with the

DOIs 10.5281/zenodo.2008655 and 10.5281/zenodo.2008653).

A.3 Description
A.3.1 How delivered
SEP-Graph is an open source framework under Apache li-

cense version 2.0. It is hosted with the codes, build instruc-

tions, running scripts, and documentations at Github: https://
github.com/sep-graph. The tarballs are also placed at Zenodo
https://zenodo.org/, with the DOIs 10.5281/zenodo.2008655

and 10.5281/zenodo.2008653.

A.3.2 Hardware dependencies
SEP-Graph requires NVIDIA GPU with the compute capabil-

ity of no less than 3.5.

A.3.3 Software dependencies
SEP-Graph has been tested on Ubuntu 18.04 and CentOS

Linux release 7.4.1708, and is expected to run correctly under

other Linux distributions. The tested CUDA versions include

CUDA 9.1 and 10.0. The tested GCC versions include GCC

5.2.0 and 5.4.0. The scripts in the artifact use Python 2.7.

A.3.4 Data sets
All datasets are either publicly available, including road_usa,
soc-LiveJournal, soc-orkut, and soc-twitter, or generated using
standard graph generation software, e.g., kron_g500-logn21.
Users can run a script provided in the artifact to download

these datasets (Check A.5 Experiment workflow for more

details).

A.4 Installation
To install, follow the instructions below:

• Clone the Git repository recursively from https://github.
com/sep-graph/ppopp19-artifact.git

$ git clone --recursive \

https :// github.com/sep -graph/ppopp19 -artifact.git

• Automatically build SEP-Graph by running the script

"setup_sep.py" under "./bin"

$ cd bin

$ export PATH=${CUDA_HOME }/bin:${GCC_PATH }/bin:$PATH

$ export LD_LIBRARY_PATH=${CUDA_HOME }/ lib64: \

${GCC_PATH }/lib64:$LD_LIBRARY_PATH

$ ./ setup_sep.py

• (Optional) Manually build SEP-Graph with the command

lines below:

$ git clone --recursive \

https :// github.com/sep -graph/ppopp19 -artifact.git

$ cd sep -graph

$ mkdir build && cd build

$ cmake .. -DCMAKE_CXX_COMPILER=${G++ _PATH} \

-DCMAKE_C_COMPILER=${GCC_PATH} \

-DCUDA_TOOLKIT_ROOT_DIR=${CUDA_HOME}

$ make -j 8

A.5 Experiment workflow
To run the experiments, follow the instructions below:

• Clone and build SEP-Graph as mentioned above. The SEP-

Graph’s executables are generated under "/path/to/

ppopp19-artifact/sep-graph/build".

• Prepare the datasets.

$ cd /path/to/ppopp19 -artifact/bin

$ ./ download.py

The "download.py" script will download datasets to "/path/

to/ppopp19-artifact/dataset", including the .mtx and .gr

files for each dataset. Users can also download .mtx files

publicly and generate corresponding .gr files (Check A.7

Notes (1)).
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• Run the script run_sep_${algo}.py for an algorithm:

$ cd /path/to/ppopp19 -artifact/bin

$ ./ run_sep_${algo}.py

$ ./ run_all.py

${algo} can be pr, bfs, sssp, and bc. Each "run_sep_${algo}.py"

script will run an algorithm with SEP-Graph and write its

output to a log file under "/path/to/ppopp19-artifact/log".

The script "run_all.py" calls "run_${arch}_${algo}.py" scripts

to run all algorithms with three frameworks respectively,

where ${arch} can be Gunrock, Groute, and SEP-Graph, and

report corresponding execution time in millisecond with

the CSV format, under "/path/to/ppopp19-artifact/output".

These numbers are used in Figures 6-10 of the paper. Check

A.7 Notes (3) for the setup of Gunrock and Groute.

• (Optional) Users can run the executables of SEP-Graph

separately to check the detail of how SEP-Graph switches

the execution paths of an algorithm at runtime:

$ cd /path/to/ppopp19 -artifact/sep -graph/build

$ ./ hybrid_${algo} -trace \

-graphfile ${path -to-dataset.gr}

The executable will report the execution path and execu-

tion time in each iteration of an algorithmwith SEP-Graph.

• (Optional) SEP-Graph has provided the validation func-

tionality to check the correctness of algorithms. Users

need to use "-check" as the command line parameter in

the script "run_sep_${algo}.py" to enable it.

A.6 Evaluation and expected result
The scripts under "/path/to/ppopp19-artifact/bin" are ex-

pected to report the total execution time of a graph algorithm.

The script "run_all.py" will also report the execution path and

runtime in each iteration of an algorithmwith SEP-Graph, by

calling the executable under "/path/to/ppopp19-artifact/sep-

graph/build".

A.7 Notes
(1) A .gr file is generated from a .mtx file with the tool "graph-

convert" from the Galois project, which can be downloaded

from https://github.com/IntelligentSoftwareSystems/Galois/
tree/master/tools/graph-convert.

(2) The SEP-Graph binaries at "/path/to/ppopp19-artifact/

sep-graph/build" needs the command line parameters for the

tuning purpose, e.g., using "-wl_alloc_factor=0.4" for PageR-

ank when running "hybrid_pr". The scripts under "/path/to/

ppopp19-artifact/bin" have been configured properly.

(3) The script "setup_gunrock.py" and "setup_groute.py"

under "/path/to/ppopp19-artifact/bin" can setup Grunrock

and Groute. Alternatively, these two projects can be down-

loaded from github at https://github.com/gunrock/gunrock
and https://github.com/groute/groute. The Boost library ver-

sion 1.58.0 is used to run Gunrock in this paper.
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