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a b s t r a c t

Expectation–Maximization (EM) is a popular approach for parameter estimation in many applications,
such as image understanding, document classification, and genome data analysis. Despite the popularity
of EM algorithms, it is challenging to efficiently implement these algorithms in a distributed environment
for handling massive data sets. In particular, many EM algorithms that frequently update the parameters
have been shown to be muchmore efficient than their concurrent counterparts. Accordingly, we propose
two approaches to parallelize such EM algorithms in a distributed environment so as to scale to massive
data sets. We prove that both approaches maintain the convergence properties of the EM algorithms.
Based on the approaches, we design and implement a distributed framework, FreEM, to support the
implementation of frequent updates for the EMalgorithms.We show its efficiency through two categories
of EM applications, clustering and topic modeling. These applications include k-means clustering, fuzzy
c-means clustering, parameter estimation for the Gaussian Mixture Model, and variational inference for
LatentDirichlet Allocation.Weextensively evaluate our framework onboth a cluster of localmachines and
the Amazon EC2 cloud. Our evaluation shows that the EM algorithmswith frequent updates implemented
on FreEM can converge much faster than those implementations with traditional concurrent updates.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

Discovering knowledge from a large collection of data sets is
one of the most fundamental problems in many applications, such
as image understanding, document classification, and genomedata
analysis. Expectation–Maximization (EM) [8] is one of the most
popular approaches in these applications [5,9,32]. It estimates
parameters for hidden variables by maximizing the likelihood. EM
is an iterative approach that alternates between performing an

✩ Part of this work has been published in Proceedings of CLUSTER’12: 2012 IEEE
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Expectation step (E-step), which computes the distribution for the
hidden variables using the current estimates for the parameters,
and a Maximization step (M-step), which re-estimates parameters
to be those maximizing the likelihood found in the E-step.

Due to the popularity, many methods for accelerating EM al-
gorithms have been proposed. Some of them [18,21] show that a
partial E-step may accelerate convergence. Such a partial E-step
selects only a subset of data points for computing the distribution.
The advantage of the partial E-step is to allow the M-step to be
performed more frequently, so that the algorithm can leverage
more up-to-date parameters to process data points and potentially
accelerates convergence. Intuitively, updating the parameters fre-
quentlymight incur additional overhead. However, the parameters
typically depend on statistics of data sets, which can be computed
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incrementally. That is, the cost of computing statistics grows lin-
early with the number of data points whose statistics have been
changed in the E-step. As a result, performing frequent updates
on the parameters does not necessarily introduce considerable
additional cost. We refer to the EM algorithm that updates the
parameters frequently as the EM algorithm with frequent updates.
In contrast, the traditional EM algorithm, which computes the
distribution for all data points and then updates the parameters,
is referred to as the EM algorithm with concurrent updates.

Despite the fact that the EM algorithm with frequent updates
has the potential to speedup convergence, parallelizing it can be
challenging. Although computing the distribution and updating
statistics can be performed concurrently, parameters such as cen-
troids of clusters are global parameters. Updating these global
parameters has to be performed in a centralized location and all
workers have to be synchronized. Synchronization in a distributed
environmentmay incur considerable overhead. Therefore,we have
to control the frequency of parameter updates to achieve a good
performance.

In this paper, we propose two approaches to parallelize the
EM algorithmwith frequent updates in a distributed environment:
partial concurrent and subrange concurrent. In the partial concur-
rent approach, each E-step processes only a block of data points.
The size of a block controls the frequency of parameter updates.
In the subrange concurrent approach, each E-step computes the
distribution in a subrange of hidden variables instead of the whole
range. The subrange size candetermine the frequency of parameter
updates.We prove that both approachesmaintain the convergence
properties of EM algorithms.We control the parameter update fre-
quency by setting the block/subrange size, and provide strategies
to determine the optimal values. Additionally, both approaches can
scale to any number of workers/processors.

We design and implement a distributed framework, FreEM,
for implementing the EM algorithm with frequent updates based
on the two proposed approaches. FreEM eases the process of
programming EM algorithms in a distributed environment. Pro-
grammers only need to specify the E-step and the M-step. The
detailed mechanisms, such as data distribution, communication
among workers, and frequency of M-step, are all handled auto-
matically. As a result, it facilitates the process of implementing
EM algorithms and accelerates the algorithms through frequent
updates. We evaluate FreEM in the context of a wide class of
well-known EM applications: k-means clustering, fuzzy c-means
clustering, parameter estimation for the Gaussian Mixture Model,
and Latent Dirichlet Allocation for topic modeling. Our results
show that the EM algorithm with frequent updates can run much
faster than that with traditional concurrent updates. In addition,
EM algorithms can be implemented on FreEM in a more efficient
way than on Hadoop [13], an open source implementation of the
popular programming model MapReduce [7].

The rest of this paper is organized as follows. Section 2 describes
the EM algorithm with frequent updates. Section 3 exemplifies
frequent updates through EM applications. Section 4 presents our
approaches to parallelize the EM algorithmwith frequent updates.
In Section 5, we present the design, implementation and API of
FreEM. Section 6 is devoted to the evaluation results. Finally, we
discuss related work in Section 7 and conclude the paper in Sec-
tion 8.

2. EM algorithms

In a statistical model, suppose that we have observed the value
of one random variable, X , which comes from a parameterized
family, P(X |θ ). The value of another variable, Z , is hidden. Given
the observed data, we wish to find θ such that P(X |θ ) is the
maximum. In order to estimate θ , it is typical to introduce the

log likelihood function: L(θ ) = log P(X |θ ). Suppose the data
consists of n independent data points {x1, . . . , xn}, and thereby
the hidden variable can be decomposed as {Z1, Z2, . . . , Zn}. Then,
L(θ ) =

∑n
i=1 log P(xi|θ ). We assume that Z has a finite range for

simplicity, but the result can be generalized. Thus, the probability
P(xi|θ ) can be written in terms of possible value (zi) of the hidden
variable Zi as: P(xi|θ ) =

∑
zi
P(xi, zi|θ ).When it is hard tomaximize

L(θ ) directly, an EM algorithm is usually used to maximize L(θ )
iteratively.

The EM algorithm leverages an iterative process to maxi-
mize L(θ ). Each iteration consists of an E-step and a M-step. The
E-step leverages the data points and the current estimates of the
parameters to estimate the distribution of hidden variables. TheM-
step updates the parameters to be thosemaximizing the likelihood
found in the E-step.

One classic example of the EM algorithm is k-means cluster-
ing [16]. It aims to partition n data points {x1, x2, . . . , xn} into k
(k ≤ n) clusters {c1, c2, . . . , ck} so as to minimize the objective
function:

f =

k∑
i=1

∑
xj∈ci

∥xj − µci∥
2, (2.1)

where µci =
1

|ci|

∑
xj∈ci

xj is the centroid of cluster ci.
The E-step of k-means assigns points to the cluster with the

closest mean. That is, a data point xj is assigned to cluster c if c =

argminj∥xi − µcj∥
2. Its M-step updates the centroids (parameters)

for all clusters.

2.1. The EM algorithm with concurrent updates

The EM algorithm with concurrent updates computes the dis-
tribution for all data points in its E-step. Formally, let Qi be some
distribution over zi (

∑
zi
Qi(zi) = 1, Qi(zi) ≥ 0). Such an EM

algorithm starts with some initial guess at the parameters θ (0), and
then seeks to maximize L(θ ) by iteratively applying the following
two steps:

E-step: For each xi ∈ X , set Qi(zi) = P(zi|xi, θ (t−1)).
M-step: Set θ (t) to be the θ that maximizes∑n
i=1EQi [log P(xi, zi|θ )].

Here, the expectation EQi is taken with respect to the distribu-
tion Qi(·) over the range of Z in the E-step.

The vanilla k-means (Lloyd’s algorithm [15]) belongs to this
category. Its E-step performs cluster assignment for each data
point, and it M-step updates the centroids along the direction of
minimizing the objective function.

2.2. The EM algorithm with frequent updates

The EM algorithmwith frequent updates attempts to accelerate
the convergence by frequently updating the parameters. This al-
gorithm can provide more up-to-date parameters to process data
points and to potentially speedup convergence. However, updating
parameters frequentlymay incur significant overhead if the update
is done in the original way. In order to conquer this obstruction,
we introduce a way of updating parameters incrementally. In the
EM algorithm, the distribution influences the likelihood of the
parameters via some sufficient statistics. The statistics is usually
the summation over the statistics on each individual data point,
and a summation can be incrementally updated. As a result, the
cost of computing the sufficient statistics grows linearly with the
number of data points whose statistics have been changed in the
E-step.

Take k-means for instance. Let Si (Si =
∑

xj∈ci
xj) and Wi (Wi =

|ci|) be the statistics. The centroid of one cluster (e.g., i) can be easily
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obtained by µi =
Si
Wi

. If a particular point xi changes its cluster
assignment from c to c ′, the statistics can be incrementally updated
as follows:
Sc = Sc − xi, Sc′ = Sc′ + xi;
Wc = Wc − 1, Wc′ = Wc′ + 1. (2.2)

We can see that the cost of computing Si and Wi grows linearly
with the number of data points whose cluster assignments have
been changed.

Nevertheless, performing frequent updates will incur extra
overhead of deriving the parameters from the statistics. If the
overhead is large, it is reasonable to compute the distribution for a
subset of data points (or compute the distribution in a subrange of
the hidden variable) and then update the parameters.

Updating the parameters frequently in the EM algorithm can
be achieved by two approaches. One is update by block, which
partition data points into mutually disjoint blocks and iterates
through the blocks in a cyclic way. Each iteration processes a
block of data points in the E-step and then perform the M-step
immediately to update the parameters. Its E-step can utilize the
up-to-date parameters to process another block of data points.
Obviously, when selecting the whole set of data points as a block,
the EMalgorithmwithupdate by block is actually the EMalgorithm
with concurrent updates. One iteration of the algorithm can be
described as following:

E-step: Pick a block of data points, Bm (Bm ⊆ X), and for each
xi ∈ Bm,

Set Q (t)
i (zi) = P(zi|xi, θ (t−1)).

M-step: Set θ (t) to be the θ that maximizes∑n
i=1EQi [log P(xi, zi|θ )].
Take k-means as an example. With update by block, it selects a

block of data points to perform the E-step, and followed theM-step.
The E-step for each data point is the same as before, andM-step still
involves all data points. Then, it selects another block to repeat the
steps.

The other one is update by subrange, which computes the dis-
tribution over a subrange of the hidden variable and then updates
the parameters. Its E-step can leverage the up-to-date parameters
to recompute the distribution over another subrange. The EM
algorithm with update by subrange starts with some initial guess
at the parameters θ (0) and some guess at the distribution Q (0)

i , and
then seeks to maximize L(θ ) by iteratively applying the following
two steps:

E-step: Select a subrange of Z , Rsub, for each xi ∈ X ,
Let CRsub =

∑
zi∈Rsub

Q (t−1)
i (zi);

Set Q (t)
i (zi) = P(zi|xi, θ (t−1)) ∗ CRsub .

M-step: Set θ (t) to be the θ that maximizes∑n
i=1EQi [log P(xi, zi|θ )].
Again take k-means as an example. With update by subrange,

its E-step performs cluster assignments among a subset of clusters
(e.g., s clusters, s ≤ k), and its M-step updates of the centroids of
the clusters in this subset. Then, it selects another subset to repeat
the steps.

We can also combine the two approaches to achieve updating
the parameters frequently. Such a combined version selects a sub-
range of Z and computes the distribution for a block of data points
under the subrange in its E-step, and then performs the M-step
to update the parameters. Obviously, either approach is a special
case of the combined version. Furthermore, even the combined
versionmaintains the convergence properties of the EM algorithm,
as stated in the following theorem.

Theorem 2.1. An EM algorithm with frequent updates converges.

The rationale behind Theorem 2.1 is that like an original EM
algorithm, an EM algorithm with frequent updates monotonically
increases the log likelihood function L(θ ) in the sequence of E-steps
and M-steps. The formal proof is provided in Appendix.

3. Applications of the EM algorithm

In this section, we describe two categories of EM applications,
clustering and topic modeling. In the clustering category, we il-
lustrate k-means clustering, Fuzzy c-means clustering, parameter
estimation for the Gaussian Mixture model. In the topic modeling
category, we discuss variational inference for Latent Dirichlet Allo-
cation. We illustrate how to incrementally compute the statistics
and how to derive the parameters from the statistics. By introduc-
ing the statistics, the operations of computing the parameters are
divided into the operations of incrementally updating the statistics
and the operations of deriving the parameters from the statistics.
The cost of updating the statistics through a pass of all data points is
fixed, no matter how frequently the algorithm updates the param-
eters. The frequent updates increase only the cost of deriving the
parameters from the statistics. The more frequently it updates the
parameter, themore cost the algorithmwill incur. Furthermore,we
analyze the time complexity and the space complexity of frequent
updates to show the feasibility and efficiency of frequent updates
from the algorithmic perspective.

3.1. Clustering

Clustering is one of the most important tasks of data mining. It
has been leveraged in many fields, including pattern recognition,
image analysis, information retrieval, and bioinformatics.

3.1.1. K-means
We have illustrated k-means in the above section as a running

example for the EM algorithm. Here we analyze the space com-
plexity and the time complexity of k-meanswith frequent updates.
In order to perform incremental computation, we need to store
cluster assignments for all data points and the statistics Sc and
Wc , which only take O(n + kd) space, where d is the dimension
of a data point (while storing data points in memory takes O(nd)
space). We next analyze the complexity of frequent updates. Take
the update by block method for example. Suppose data points
are equally split into b blocks (with each block having n/b data
points). Performing the E-step on one block takes O(nkd/b) time,
since processing one data point takes O(kd) time. The following
M-step takes O(nd/b + kd) time, in which updating statistics Sc
and Wc needs O(nd/b) time and deriving all centroids from the
statistics (e.g., µi =

Si
Wi

) takes O(kd) time. As a result, process-
ing all data points in one pass (including multiple E-steps and
M-steps) requires O(nkd + bkd) time. Since b ≤ n, the time can
be represented as O(nkd). Furthermore, we can show the original
k-means (i.e., k-meanswith concurrent updates) also needsO(nkd)
time to process all data points in one pass. In other words, with
incremental computation, the update by block approach will not
increase the time complexity no matter how frequent the M-step
is performed. Similarly, the update by subrange approach also does
not increase the time complexity of E-steps, and the time com-
plexity of M-steps can be ignorable compared to that of E-steps.
Therefore, the same conclusion can be obtained for the update by
subrange approach.

3.1.2. Fuzzy C-means
Given a set of data points {x1, x2, . . . , xn}, fuzzy c-means (FCM)

[3,10] aims to assign n data points into C clusters {c1, c2, . . . , ck} so
as to minimize the objective function:

Jm =

n∑
i=1

C∑
j=1

µm
ij ∥xi − cj∥2, (3.1)

where m (m > 1) is the fuzzy factor, µij is the degree of member-
ship of xi belonging to cluster j, and cj is the centroid of cluster j.
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The degree of membership µij and the centroid cj are computed by
the equations:

µij =
1∑C

k=1(
∥xi−cj∥
∥xi−ck∥

)
2

m−1
, cj =

∑N
i=1 µm

ij xi∑N
i=1 µm

ij

. (3.2)

If we describe FCM in the EM setting, its E-step updates the
degree of membership for all data points, and its M-step updates
the centroids (parameters) for all clusters. Let Wj (Wj =

∑n
i=1µ

m
ij )

and Xj (Xj =
∑n

i=1µ
m
ij xi) be the statistics in FCM. The centroid of

one cluster (e.g., j) can be easily obtained by cj =
Xj
Wj

. For a data
point xi, if its membership to cluster j changes from µij to µ′

ij, the
statistics can be incrementally updated as follows:

Wj = Wj − (µij)m + (µ′

ij)
m, Xj = Xj + ((µ′

ij)
m

− (µij)m)xi. (3.3)

We now analyze the space complexity and the time complexity
of FCM with frequent updates. In order to perform incremental
computation, we need to store the degree of membership for all
data points and the statistics Wj and Xj, which take O(kn + kd)
space. Similar to the time complexity analysis for k-means, we can
show that processing all data points in one pass (includingmultiple
E-steps and M-steps) requires O(nkd) time for the update by block
approach. Furthermore, original FCM also needs O(nkd) time to
process all data points in one pass. As a result, FCM with frequent
updates does not increase the time complexity.

The details of fitting Gaussian Mixture Model (GMM) in the EM
setting and incrementally updating the statistics for GMM can be
found in [28], and thus skipped here due to space limitations.

3.2. Topic modeling

An EM algorithm is also a powerful tool for statistical text
analysis, such as topic modeling. Topic modeling provides a way
to navigate large document collections by discovering the themes
that permeate a corpus. In particular, Latent Dirichlet Allocation
(LDA) [4] is a popular topic modeling approach. It provides a gen-
erative model that describes how the documents in a corpus were
produced. First, we denote theM given documents represented as
d1, d2, . . . , dM . Let V denote the number of words in the vocab-
ulary, and let Ni represent the number of words in a document
di. Moreover, we use wj to denote the jth word in the vocabulary
and wi,j to represent the jth word in the i th document. Assume
that the documents are represented as random mixtures over K
topics. A topic is a K dimensional multinomial distribution over
words, and the i th topic is denoted as φi. We use θi to represent
the topic distribution for a document di. Furthermore, assume wi,j
is drawn form topic zi,j. In addition, we use α and β to represent
hyper parameters of the Dirichlet distribution. LDA assumes the
following generative process.

1. For each topic index k ∈ {1, . . . , K }, draw topic distribution
φk ∼ Dir(β).

2. For each document di ∈ {d1, d2, . . . , dM}:

• Draw topic distribution θi ∼ Dir(α).
• For j ∈ {1, 2, . . . ,Ni}

• Draw zi,j ∼ Mult(θi).
• Draw wi,j ∼ Mult(φzi,j ).

In the process, Dir() denotes a Dirichlet distribution, andMult()
represents a multinomial distribution.

There are two widely used approximate inference techniques
for LDA. One is Markov chain Monte Carlo (MCMC) sampling

(e.g., Gibbs sampling) [11], and the other one is variational in-
ference [4]. Even though MCMC is a powerful methodology, the
convergence of the sampler to its stationary distribution is usually
hard to diagnose, and sampling algorithms may converge slowly
in high dimensional models. Variational inference methods have
clear convergence criterion and provide efficiency advantages over
sampling techniques in high dimensional problems [20].

The basic idea of variational inference is to leverage Jensen’s in-
equality to obtain an adjustable lower bound on the log likelihood
of the posterior distribution. We refer interesting readers to origi-
nal LDA paper [4] for more details. The variational inference aims
to maximize the following likelihood (i.e., the objective function)
[4]:

L(γ , φ; α, β) = logΓ

⎛⎝ K∑
j=1

αj

⎞⎠ −

K∑
i=1

logΓ (αi)

+

K∑
i=1

(αi − 1)

⎛⎝Ψ (γi) − Ψ

⎛⎝ K∑
j=1

γj

⎞⎠⎞⎠
+

N∑
n=1

K∑
i=1

φni

⎛⎝Ψ (γi) − Ψ

⎛⎝ K∑
j=1

γj

⎞⎠⎞⎠
+

N∑
n=1

K∑
i=1

V∑
j=1

φniwnj logβij − logΓ

⎛⎝ K∑
j=1

γj

⎞⎠
+

K∑
i=1

logΓ (γi) −

K∑
i=1

(γi − 1)

⎛⎝Ψ (γi) − Ψ

⎛⎝ K∑
j=1

γj

⎞⎠⎞⎠
−

N∑
n=1

K∑
i=1

φni logφni,

(3.4)

where the Dirichlet parameter γ and the multinomial parameters
φn are the free variational parameters, Γ () is the Gamma function
and Ψ () is the first derivative of logΓ ().

One popular method to minimize the Kullback–Leibler diver-
gence (i.e., to maximize the above objective function) is to use
an EM approach. Variational EM alternates between updating the
expectations of the variational distribution q and maximizing the
probability of the parameters given the observed documents. Here
each document is one data point.

The M-step of variational EM updates α using a Newton–
Raphsonmethod. For ease of exposition, we assume all elements of
α are the same unless otherwise stated, and thus α can be simply
a single value in the following updates. Updates are carried out in
log-space [4], as follows:

log(αt+1) = log(αt ) −
∂L
∂α

/

(
∂2L
∂α2 α +

∂L
∂α

)
, (3.5)

∂L
∂α

= M(KΨ (Kα) − KΨ (α))

+

M∑
d=1

⎛⎝ K∑
i=1

Ψ (γdi) − KΨ

⎛⎝ K∑
j=1

γdj

⎞⎠⎞⎠ ,
(3.6)

∂2L
∂α2 = M(K 2Ψ ′(Kα) − KΨ ′(α)). (3.7)

From Eqs. (3.5)–(3.7) we can see that only the second part of
∂L
∂α

depends on each individual document. Therefore, in order to
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incrementally update α, we let

R =

M∑
d=1

⎛⎝ K∑
i=1

Ψ (γdi) − KΨ

⎛⎝ K∑
j=1

γdj

⎞⎠⎞⎠ ,

sd =

K∑
i=1

Ψ (γdi) − KΨ

⎛⎝ K∑
j=1

γdj

⎞⎠ .

(3.8)

When updating a document, i, if its sd changes from s′i to si, we can
incremental update the statistics R in the way, R = R + si − s′i .

Next, we illustrate how to update β incrementally. We have
(with skipping the step of normalizing βi for simplicity) βij =∑M

d=1
∑Nd

n=1φdniwdnj.
One simpleway to perform incremental updates is to cacheφdni.

Then when a document changes φ′

dni to φdni, we can update βij in
theway,βij = βij+

∑Nd
n=1(φdni−φ′

dni)wdnj. However, cachingφdni for
all documents takes O(MKV ) space, which can be huge. In order to
address the space issue, we present a space-efficient incremental
scheme, which is suitable for the update by block approach. We
divide documents into b blocks, {B1, B2, . . . , Bb}. Let

β
(l)
ij =

∑
d∈Bl

Nd∑
n=1

φdniwdnj. (3.9)

Then, we have

βij =

b∑
l=1

β
(l)
ij . (3.10)

When the documents in block l are updated, we compute β
(l)
ij from

scratch with Eq. (3.9), and then recover βij using Eq. (3.10). In this
way, we only need to cache β

(l)
ij , 1 ≤ l ≤ b. When b is small (e.g., a

constant less than 10), then caching only takes O(KV ) space.
Furthermore, we can show that LDA with frequent updates

(e.g., the update by block approach) needs O(KV ) space to cache R,
β

(l)
ij , andβij in order to support incremental computation. Addition-

ally, performing the E-step on one document takes O(IKV ) time,
where I the number of iterations the E-step needs to converge on
the document. With incremental computation, if there are m doc-
uments updated in the E-step, the following M-step takes O(mKV )
time. As a result, LDA with frequent updates requires O(MIKV )
time to process all documents in one pass (including multiple E-
steps and M-steps). Furthermore, original LDA also needs O(MIKV )
time to process all documents in one pass. Consequently, LDAwith
frequent updates does not increase the time complexity.

4. Parallelizing frequent updates

Parallelizing frequent updates in a distributed environment is
challenging. Although computing the distribution and incremen-
tally updating the local statistics can be performed concurrently
in each worker, updating the parameters in the M-step, which is
based on the global statistics, needs to be done in a centralizedway.
When processing the distributed data points, the algorithm has
to synchronize the global statistics frequently. Synchronizing the
global resources in a distributed environment may result in con-
siderable overhead. Therefore, we need to control the parameter
update frequency to achieve a good performance. In this section,
we first briefly illustrates a natural method to parallelize the EM
algorithmwith concurrent updates. Then,we present twomethods
to parallelize the EM algorithm with frequent updates. Both of
them can control the parameter update frequency. Moreover, in all
the parallel methods, the input data is divided into multiple equal
size partitions, and each worker holds one partition. The data is

Fig. 1. Process of the partial concurrent method. The colored box indicates the
picked block of data points for computing the distribution.

kept in the same worker throughout the iterative process to avoid
the expensive data shuffling among workers.

4.1. Concurrent method

In the traditional method of parallelizing concurrent updates,
each worker computes the distribution for its local data points and
updates the local statistics concurrently based on the parameters.
After each worker finishes processing its local data points, all of
them synchronize to derive the parameters from the global statis-
tics. Then, eachworker utilizes the updated parameters to compute
the distribution in the next iteration. We refer to this method as
concurrent method.

4.2. Partial concurrent method

Our first method to parallelize the EM algorithm with frequent
updates is a parallel version of the update by block approach in
Section 2. Recall that the update by block approach selects a block
of data points for computing the distribution and then updates
the parameters. The block size can control the parameter update
frequency. As shown in Fig. 1, our first parallel method allows each
worker to pick a block of its local data points for computing the dis-
tribution and updating the local statistics. After processing the data
points in the picked blocks, all the workers synchronize to derive
the new parameters from the global statistics. Then each worker
leverages the updated parameters to compute the distribution for
another block. All the blocks are of the same size m. Each worker
rotates the block on its local data points in a round-robin fashion
to guarantee each data point has an equal chance to be updated. In
other words, firstm data points are selected as one block, and then
secondm data points, and so on. Since the data points in the picked
blocks can be processed concurrently, we refer to this method as
partial concurrent method. Obviously, the concurrent method is an
extreme case of the partial concurrent method (when each worker
selects all its local data points as one block). Furthermore, either
when each worker works individually to compute the distribution
or when all workers synchronize to derive the new parameters,
the objective function keeps increasing (or decreasing, we assume
‘‘increasing’’ for brevity in this section). Therefore, we have the
following theorem.

Theorem 4.1. The partial concurrent method maintains the conver-
gence property of an EM algorithm.
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Fig. 2. Process of the subrange concurrent method. Each worker recomputes the
distribution among the subrange (Ri) for all of its local data points (Xj).

The size of the block (i.e., m) plays an important role on the
efficiency of the partial concurrent method. It indicates the trade-
off between the gain from computing the distribution with the
frequently updated parameters and the cost from updating the
parameters. Setting the size too small may incur considerable
overhead for updating the parameters. Setting the size too large
may degrade the effect of the frequent updates. Nevertheless, a
quite large range of the block size can improve the performance.
The discussion of the optimal block size can be found in [28]. Our
framework provides a recommended block size.

4.3. Subrange concurrent method

Our second method to parallelize the EM algorithm with fre-
quent updates corresponds to the update by subrange approach
in Section 2. Recall that the update by subrange approach recom-
putes the distribution over the subrange of hidden variables. As
shown in Fig. 2, our second parallel method allows each worker
to recompute the distribution among the subrange for its local
data points and to update its local statistics. After each worker
finishes recomputing the distribution among the subrange for all
of its local data points, all the workers synchronize to compute
the parameters based on the global statistics. Then, each worker
utilizes the updated parameters to recompute the distribution
under another subrange in next iteration. Since all the data points
can be processed concurrently under the subrange, we refer to the
second method as subrange concurrent method. The subrange is
randomly picked from the whole range of hidden variables. The
concurrent method is an extreme case of the subrange concurrent
method as well (when the whole range is picked as the subrange).
Furthermore, either when each worker computes the distribution
among the subrange orwhen all workers synchronize to derive the
new parameters, the objective function keeps increasing. There-
fore, we have the following theorem.

Theorem 4.2. The subrange concurrent method maintains the con-
vergence property of an EM algorithm.

The subrange concurrent method might be more suitable for a
‘‘winner-take-all’’ version of EM application (e.g., k-means), which
constrains that one single value of the hidden variable is assigned
probability 1 and all other values are assigned probability 0 (in k-
means, a data point belongs to its current cluster in probability
1 and belongs to all other clusters in probability 0). In such an
application, if a subrange does not include the value of probability
1, it is not necessary to recompute the distribution among the sub-
range. By avoiding unnecessary computation, a worker may dra-
matically reduce the timeof processing data points in one iteration.
Within the running time of one iteration of the concurrentmethod,

the subrange concurrent method may proceed many iterations.
Therefore, although the subrange concurrentmethodmay increase
the objective function less than the concurrent method in one
single iteration, it still may increase the objective function faster.
Moreover, the distribution for most of the data points usually
will not change after first several iterations under the concurrent
method, and thus the objective function probably increases slowly
after first several iterations. Consequently, the concurrent method
probably does not increase the objective function muchmore than
the subrange concurrent method in one single iteration, which
makes the subrange concurrent method more superior.

Like the block size in the partial concurrent method, the size of
the subrange also impacts the efficiency of the subrange concur-
rent method. The discussion of the optimal subrange size can be
found in [28] as well.

5. FreEM

MapReduce [7] and its variants [12,27] have emerged as popular
distributed frameworks for data intensive computation. However,
MapReduce does not support EM algorithms well, due to its ineffi-
ciency in supporting iterative processes. In this section,we propose
FreEM, a distributed framework for efficient implementation of an
EM algorithm. All the parallel methods mentioned in the previous
section, including concurrent, partial concurrent, and subrange
concurrent, are supported by our framework. FreEM is built on
top of an in-memory version of iMapReduce [30]. The in-memory
version of iMapReduce supports iterative process and loads data
into memory for efficient data access. FreEM also provides high-
level APIs, which are exposed to users for easily implementing EM
algorithms.

5.1. Design of the framework

Our framework consists of a number of basic workers and an
enhanced worker. Each basic worker essentially leverages user-
defined functions to compute the distribution and to update the
parameters. Besides these operations, the enhanced worker also
picks the subrange of hidden variable for all the workers under the
subrange concurrent method. Each worker stores a partition of the
data points, the distribution of the corresponding hidden variables,
the local statistics (the statistics for a worker’s local data points)
and the parameters in memory. The partition of data points and
the distribution are maintained in a key–value store, point-based
table. Also, the local statistics and the parameters is maintained in
a key–value store, parameter-based table.

5.2. Implementation of the framework

Each worker in our framework has one pair of map and reduce
tasks. In general, themap task performs theM-step, and the reduce
task performs the E-step. The map task of the enhanced worker
takes charge of picking the subrange of hidden variables. Both the
point-based table and the parameter-based table of each worker is
maintained by its reduce task. To implement an EM algorithm, a
user only needs to override several APIs. FreEM will automatically
convert the EM algorithm to iMapReduce jobs. More details of the
implementation of the framework and its APIs can be found in [28].

5.3. Setting parameters for parallel methods

The size of the block in the partial concurrent method and
the size of the subrange in the subrange concurrent method can
significantly effect the performance of the algorithm. For the par-
tial concurrent method, we use an empirical approach to find
the partial concurrent method, which minimizes the workload of
reaching a convergence point. We use the same idea to figure out
the optimal subrange size. More details of determining the optimal
block size and the optimal subrange size can be found in [28].
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Table 1
Data sets for clustering.

Algorithm Data set # Points Dim (# attributes)

k-means/FCM Covtype 581,012 54
KDDCUP 4,898,431 42

GMM Synth-M 400,000 60
Synth-L 1,000,000 60

Table 2
Data sets for topic modeling.

Data Set # Documents # Unique words # Total words

KOS 3,430 6,906 467,714

Enron 39,861 28,102 6,400,000

NYTimes 300,000 102, 660 100,000,000

6. Evaluation

In this section, we evaluate the effectiveness and efficiency of
EM algorithms with frequent updates on a single machine and in
a distributed environment. All the applications described in Sec-
tion 3 are tested. For the distributed environment, all the parallel
methods, including concurrent, partial concurrent, and subrange
concurrent, are evaluated on FreEM. We also compare the concur-
rent method on FreEM with that on Hadoop.

6.1. Experiment setup

We build a small-scale cluster of local machines and a large-
scale cluster on Amazon EC2 [1]. The small-scale cluster consists
of 4 machines, and each one has a dual-core 2.66 GHz CPU, 4 GB
of RAM, 1TB of disk. These 4 machines are connected through a
switch with a bandwidth of 1 Gbps. The Amazon cluster consists of
40 medium instances, each of which having 2 EC2 compute units,
3.75 GB of RAM, and 400 GB of hard disk.

Real-world data sets from UCI Machine Learning Repository
[22] and synthetic data sets are leveraged. The synthetic data sets
are generated in such a way: each dimension (i.e., attribute) of one
data point follows a Gaussian distribution with random mean and
standard deviation 1.0. The data sets are summarized in Tables 1
and 2.

6.2. Single machine experiments

We first demonstrate the advantages of the EM algorithm with
frequent updates on one single machine. The update by block
approach is used as an example. All the EM applications described
in Section 3 are implemented. It is worthy to note that k-means
and FCM aim to minimize their objective functions, while GMM
and LDA aim to maximize their objective functions. All the four
objective functions have been shown in either Section 2 (k-means)
or Section 3 (FCM, GMM, LDA).

First, we perform the three clustering applications, k-means,
FCM, and GMM, with various block size (m). For a fair comparison,
each application runs on one data set with the same initial start.
Data sets sampled from the original data sets are used to evaluate
the clustering applications. Each data set consists of 60,000 data
points. We sample the data sets since a single commodity ma-
chine cannot hold the whole data set in memory. Figs. 3(a)–3(c)
presents the convergence speed. As shown, the EM algorithmwith
frequent updates (m < 60k) converges faster and may achieve
a better convergence point, compared to that with concurrent
updates (m = 60k). These figures also demonstrate the update
frequency (determined by the block size) has a significant impact
on the performance. Then, we perform LDA on the KOS data set.
Fig. 3(d) plots the convergence speed with different block sizes.

(a) K-means on Covtype.

(b) FCM on Covtype.

(c) GMM on Synth-M.

(d) LDA on KOS.

Fig. 3. Convergence speed on the single machine. For K-means, FCM, and GMM,
m = 60k corresponds to concurrent updates; for LDA, m = 3430 corresponds to
concurrent updates.

They further show that the EM algorithm with frequent updates
converge faster than that with concurrent updates (m = 3430)
and that the update frequency effects the performance.

6.3. Small-scale cluster experiments

FreEM allows the EM algorithm to frequently update the pa-
rameters in a distributed environment and leverage the up-to-date
parameters in its E-step. Therefore, the EMalgorithmwith frequent
updates has the potential to reach the convergence point with less
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(a) K-means on Covtype.

(b) FCM on Covtype.

(c) GMM on Synth-M.

(d) LDA on Enron.

Fig. 4. Convergence speed on the small-scale cluster.

workload, compared to that with concurrent updates. To evaluate
the effect of frequent updates, we compare the convergence speed
of the partial/subrange concurrent method with that of the con-
current method. In addition, since Hadoop is a popular framework,
we utilize the convergence speed of the concurrent method on it
as the base line.

The convergence speed evaluation is first performed on the lo-
cal cluster. All themethods startwith the same initial setting,when
compared on the samedata set.We set the number of clusters as 80
for all experiments of clustering applications. Figs. 4(a)–4(c) show
the performance comparison. Note that the vertical axes not start-
ing at 0 is because we zoom out to focus on the performance close

to the convergence point. First, we examine the improvement from
the algorithmic perspective.We can see that the partial concurrent
method converges 1.3x–1.7x faster than the concurrent method
for all the three clustering applications. The subrange concurrent
method converges 3.4x faster and converges to amuch better point
than the concurrent method for k-means. Unfortunately, the sub-
range concurrent method is slower than the concurrent method
on FCM and GMM. Then, we examine the improvement from the
framework perspective. The convergence speed of the concurrent
method on FreEM is 1.4x–1.6x faster than that on Hadoop. The
reasons are twofold. One is that our framework maintains data in
memory and thus avoids repeatedly loading data. The other is that
FreEM is built on top of iMapReduce, which is more efficient in
supporting iterative process than Hadoop by using persistent map
and reduce tasks. For example, iMapReduce is more efficient than
Hadoop in supporting graph based iterative algorithms [30,31].
Additionally, according to the experimental results, it seems that
the subrange concurrent method is suitable for ‘‘winner-take-all’’
version of EM applications and the partial concurrent method is
suitable for the other (‘‘soft’’) version of applications. For LDA,
we set the number of topics as 100. From Fig. 4(d), we can see
that the partial concurrent method converges 1.4x faster than the
concurrent method.

6.4. Large-scale cluster experiments

In order to validate the scalability of FreEM, we also evaluate
it on the Amazon EC2 cloud. We first show the performance com-
parison when all the 40 instances are used. From Fig. 5, we can see
that the partial concurrent method converges faster than the con-
current method for all the EM applications and that the subrange
concurrent method converges 1.2x–1.4x faster and converges to a
much better point than the concurrent method for k-means.

We then evaluate the scaling performance of FreEMas the num-
ber of workers increases from 10 to 40. The speedup is measured
relative to the running time of 10 workers. Here the running time
means the wall clock time that an EM application takes to reach
a pre-defined threshold. The speedup of the partial concurrent
method is tested on GMM, and that of the subrange concurrent
method is measured on k-means. The speedup of the concurrent
method is also evaluated to be a reference point.

Figs. 6 and 7 show that both the concurrent method and the
partial concurrent method exhibit good speedups. The former one
demonstrates a better speedup, since it updates the parameters
only once through one pass of all data points and thus incurs
less synchronization overhead. Note that the bases of computing
speedups for bothmethods are different, and thus a better speedup
does not necessarily mean a shorter running time. As shown in
Fig. 6(b), the partial concurrent method still converges faster than
the concurrent method even on 40 workers. Since it has a better
speedup, the concurrent method will obtain the same conver-
gence speed as the partial concurrent methodwhen the number of
workers reaches some point. At that point, the partial concurrent
methodwill degrade to the concurrent method by setting the right
block size. For similar reasons, the concurrentmethod also exhibits
a better speedup than the subrange concurrent method, as plotted
in Fig. 7(a). However, the subrange concurrent method still runs
much faster than the concurrent method even on 40 workers, as
shown in Fig. 7(b).

7. Related work

The EM algorithm has been applied very widely. Due to the
popularity of the EM algorithm, many approaches for accelerating
it have been proposed. For example, Dempster et al. [8] and Meng
et al. [17] present a partial M-step may accelerate the algorithm
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(a) K-means on KDDCUP.

(b) FCM on KDDCUP.

(c) GMM on Synth-L.

(d) LDA on NYTimes.

Fig. 5. Convergence speed on the Amazon EC2 cloud.

when maximizing the likelihood in the M-step is inefficient. Such
a partial M-step attempts to find the new estimates for the param-
eters improving the likelihood rather than maximizing it. In con-
trast, our work focuses on how to frequently perform the M-step
to accelerate the algorithm. As the most relevant works, the works
of Neal et al. [18] and Thiesson et al. [21] also show a partial E-step
which selects a block of data points for computing the distribution
may accelerate the EM algorithm in the single machine setting.
Neal et al. [18] prove that such a variant of the EM algorithm
converges. Thiesson et al. [21] provide an empirical method to
figure out the near optimal block size. Our proof is inspired by

(a) Speedup.

(b) Performance comparison.

Fig. 6. Scaling performance of the partial concurrent method.

(a) Speedup.

(b) Performance comparison.

Fig. 7. Scaling performance of the subrange concurrent method.

the work of Neal et al., but goes further. Specifically, we prove
that not only selecting a block of data points for computing the
distribution but also computing the distribution under a subrange
of hidden variables can guarantee the convergence. Compared to
the work of Thiesson et al., which is in the single machine setting,
our work considers the scenario of a distributed environment.
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We propose a distributed framework for efficiently implementing
the EM algorithm with frequent updates. Furthermore, these two
pieces of work demonstrate the power of frequent update through
only one EM application, parameter estimation for a finite mixture
model, whereas our work covers much broader applications.

There are a number of efforts targeted on parallelizing the EM
algorithm as well. Araújo et al. [2] present a parallelized imple-
mentation of GMM on GPUs. Plant et al. [19] introduces a parallel
variant of the EM algorithm which allows asynchronous model
updates. Cui et al. [6] investigate implementations of GMM on dif-
ferent distributed frameworks. There are also a group of researches
focusing on efficiently updating the parameters in the M-step.
For examples, Wolfe et al. [23] propose an approach to distribute
both the E-step and the M-step based on MapReduce. Kowalczyk
et al. [14] present a gossip-baseddistributed implementation of the
EM algorithm for GMM. Zhai et al. [29] introduce a MapReduce-
based implementation of the EM algorithm for LDA. While our
work has a different focus: we study how to frequently update
the parameters to speed up convergence for a wide class of EM
algorithms.

Frequent updates also show promising results in other algo-
rithms, such as nonnegative matrix factorization [24]. More gen-
erally, frequent updates can be considered as one form of iterative
computation transformation, which aims to accelerate large-scale
data processing. Iterative computation transformation can be ap-
plied to a wide range of algorithms, such as belief propagation [25]
and graph algorithms [26].

Part of this work has been published in a conference [28]. Com-
pared to the previous version, this paper extends the EM algorithm
with frequent updates to one essential and complex application in
data mining, LDA for topic modeling. In this paper, we introduce
the new challenge of applying frequent updates to LDA and present
our solution. Furthermore, we implement LDA on FreEM and eval-
uate it with real-word data sets on both a local cluster and the
Amazon EC2 cloud.We also analyze the time space complexities of
frequent updates for EM applications in this paper. By doing this,
we can show the feasibility and efficiency of frequent updates from
the algorithm-wise view. Moreover, we add the complete proof
which shows an EM algorithm with frequent updates converges
and add the proof that shows ourmethods of parallelizing frequent
updates in a distributed environment maintain the convergence
properties.

8. Conclusion

Motivated by the observations that the EM algorithm perform-
ing frequent updates is much more efficient than it performing
concurrent updates, we propose two approaches to parallelize the
EM algorithm with frequent updates in a distributed environment
so as to scale to massive data sets. Furthermore, we formally prove
that the EMalgorithmwith frequent updates converges. To support
the efficient implementation of frequent updates for the EM algo-
rithm, we design and implement a distributed framework, FreEM.
Wedeploy FreEMonboth a local cluster and theAmazonEC2 cloud,
and evaluate its performance in the context of two categories of EM
applications, clustering and topic modeling. The evaluation results
show that the EM algorithm with frequent updates can run much
faster than the one with traditional concurrent updates. In addi-
tion, since FreEM is on top of iMapReduce which is more efficient
thanMapReduce in supporting iterative algorithms, FreEM ismore
efficient than MapReduce in supporting the EM algorithm.
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Appendix

The following is the proof for Theorem2.1.We first consider the
following derivation:

L(θ ) =

n∑
i=1

log P(xi|θ ) =

n∑
i=1

log
∑
zi

Qi(zi)
P(xi, zi|θ )
Qi(zi)

≥

n∑
i=1

∑
zi

Qi(zi) log
P(xi, zi|θ )
Qi(zi)

.

(A.1)

The last step of this derivation is given by Jensen’s inequality.When
Qi(zi) = P(zi|xi, θ ) for any i, the last step of the derivation holds
with equality. Let

J(Q , θ ) =

n∑
i=1

∑
zi

Qi(zi) log
P(xi, zi|θ )
Qi(zi)

, (A.2)

then we have L(θ ) ≥ J(Q , θ ). We assume that P(xi, zi|θ ) is a
continuous function of θ .We can show that if the localmaximumof
J(Q , θ ) occurs at Q ∗ and θ∗, the local maximum of L(θ ) occurs at θ∗

as well. Hence, if a variant of the EM algorithm gradually increase
J(Q , θ ), it will converge to a local maximum (or a saddle point)
of L(θ ). For simplicity, we ignore the possibility that it converges
to a saddle point. Next, we will prove that each iteration of the
EM algorithm with frequent updates either improves J(Q , θ ) or
leaves it unchanged, and thus it converges a localmaximumof L(θ ).
For this purpose, we are going to introduce Lemmas A.1–A.3, and
Theorem A.4.

Lemma A.1. Given a fixed value of θ , for each i, there is a unique
distribution, Qi(·), that maximizes J(Q , θ ), achieved by Qi(zi) =

P(zi|xi, θ ). Moreover, the Qi(zi) varies continuously with θ .

Proof of Lemma A.1. We need to prove that for any i, Qi(zi) =

P(zi|xi, θ ) maximizes
∑

zi
Qi(zi) log

P(xi,zi|θ )
Qi(zi)

with respect to Qi(·). We
know

∑
zi
Qi(zi) = 1. Therefore, the maximum can be found using

a Lagrange multiplier. At such a maximum, we will have Qi(zi) ∝

P(xi, zi|θ ). Note that
∑

zi
Qi(zi) = 1. We have the unique solution

Qi(zi) =
P(xi,zi|θ )∑
zi
P(xi,zi|θ )

= P(zi|xi, θ ). Consequently, given a fixed value
of θ , for each i, if Qi(zi) = P(zi|xi, θ ), J(Q , θ ) is maximized. Since
P(zi|xi, θ ) varies continuously with θ , Qi(zi) varies continuously
with θ .

Lemma A.2. If Qi(zi) = P(zi|xi, θ ) for each i, L(θ ) = J(Q , θ ).

Using Jensen’s inequality, it is straightforward to prove
Lemma A.2, so we skip the formal proof here.

Lemma A.3. If J(Q , θ ) has a local maximum at Q ∗ and θ∗, then a
local maximum of L(θ ) occurs at θ∗ as well.

Proof of Lemma A.3. From Lemmas A.1 and A.2, we see that
if Qi(zi) = P(zi|xi, θ ) for each i, then L(θ ) = J(Q , θ ) for any θ .
Therefore, L(θ∗) = J(Q ∗, θ∗), where Q ∗ means Qi(zi) = P(zi|xi, θ∗)
for each i. To show that a local maximum of L(θ ) occurs at θ∗, we
need to show that there is no θ ′ near to θ∗ which lets L(θ ′) > L(θ∗).
If such a θ ′ existed, we would have J(Q ′, θ ′) > J(Q ∗, θ∗), where Q ′

means Qi(zi) = P(zi|xi, θ ′) for each i. From Lemma A.1, we know
that Q varies continuously with θ . Therefore, Q ′ must be near to
Q ∗. However, it contradicts that J(Q , θ ) has a local maximum at Q ∗

and θ∗.

Theorem A.4. The EM algorithm with frequent updates converges to
a local maximum of L(θ ).
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Proof of Theorem A.4. Let Fi(xi,Qi, θ ) =
∑

zi
Qi(zi) log

P(xi,zi|θ )
Qi(zi)

,
then J(Q , θ ) =

∑n
i=1Fi(xi,Qi, θ ). In the E-step of the EM algorithm

with frequent updates,we change the value of Fi(xi,Qi, θ ) for a sub-
set of data points (e.g., Sm) through changing Qi(·). If we can show
Fe(xe,Q

(t)
e , θ ) ≥ Fe(xe,Q

(t−1)
e , θ ) for any xe ∈ Sm, then we prove

the E-step increase J(Q , θ ). Assume that we wish to maximize∑
ze∈BQe(ze) log P(xe,ze|θ )

Qe(ze)
respect toQe.We also know

∑
ze∈BQe(ze) =

cB (cB is constant number). The maximum can be found using a
Lagrange multiplier (maximize

∑
ze∈BQe(ze) log P(xe,ze|θ )

Qe(ze)
, subject to∑

ze∈BQe(ze) = cB). At such a maximum, we will have Qe(ze) ∝

P(xe, ze|θ ) (for ze ∈ cB). Note that
∑

ze∈cB
Qe(ze) = cB. We have

the unique solution Qe(ze) =
P(xe,ze|θ )∗cB∑

ze P(xe,ze|θ )
= P(ze|xe, θ ) ∗ cB (for

ze ∈ cB). Therefore, the E-step increases Fe(xe,Qe, θ
(t−1)) by setting

Qe(ze) = P(ze|xe, θ (t−1)). Consequently, it increases J(Q , θ ). The
M-step of the EM algorithm with frequent updates obtain θ (t)

by maximizing J(Q , θ ). Therefore, the M-step increases J(Q , θ ) as
well. Since both its E-step and its M-step increase J(Q , θ ), the EM
algorithm with frequent updates converges to a local maximum
of J(Q , θ ). By combining with Lemma A.3, we know that the EM
algorithmwith frequent updates converges to a local maximum of
L(θ ).
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