
Efficient Distributed Density Peaks for
Clustering Large Data Sets in MapReduce

Yanfeng Zhang, Shimin Chen, and Ge Yu,Member, IEEE

Abstract—Density Peaks (DP) is a recently proposed clustering algorithm that has distinctive advantages over existing clustering

algorithms. It has already been used in a wide range of applications. However, DP requires computing the distance between every pair

of input points, therefore incurring quadratic computation overhead, which is prohibitive for large data sets. In this paper, we study

efficient distributed algorithms for DP. We first show that a na€ıve MapReduce solution (Basic-DDP) has high communication and

computation overhead. Then, we propose LSH-DDP, an approximate algorithm that exploits Locality Sensitive Hashing for partitioning

data, performs local computation, and aggregates local results to approximate the final results. We address several challenges in

employing LSH for DP. We leverage the characteristics of DP to deal with the fact that some of the result values cannot be directly

approximated in local partitions. We present formal analysis of LSH-DDP, and show that the approximation quality and the runtime can

be controlled by tuning the parameters of LSH-DDP. Experimental results on both a local cluster and EC2 show that LSH-DDP

achieves a factor of 1.7–70x speedup over the na€ıve Basic-DDP and 2x speedup over the state-of-the-art EDDPC approach, while

returning comparable cluster results. Compared to the popular K-means clustering, LSH-DDP also has comparable or better

performance. Furthermore, LSH-DDP could achieve even higher efficiency with a lower accuracy requirement.

Index Terms—Density peaks, distributed clustering, MapReduce
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1 INTRODUCTION

CLUSTERING is a common technique widely used in many
fields, including data mining, machine learning, infor-

mation retrieval, image processing, and bioinformatics.
Density Peaks [1] (DP) is a new clustering algorithm pro-
posed in 2014.

Given a set of points, DP computes two metrics for every
point p: (i) r, the local density, which is the number of points
within a specified distance from p; and (ii) d, the minimum
distance from p to other points with higher densities. It is
observed that the center of a cluster sees the highest local
density among its neighbor points, and has a relatively large
distance from other points with higher densities. Therefore,
cluster centers can be determined by identifying the points
with both high r and high d.

While DP is attractive for its effectiveness and its simplic-
ity, the application of DP is limited by its computational cost.
In order to obtain r and d, DP computes the distance between
every pair of points. That is, givenN points in the input data

set, DP’s computational cost is O(N2). As a result, it can be
very time consuming to performDP for large data sets.

In this paper, we study efficient distributed algorithms
for DP so that this promising clustering algorithm can be
more broadly used. In particular, we design distributed DP

algorithms in MapReduce, which is one of the most popular
big data processing paradigms today.

Why DP Clustering is Promising. Compared with previous
clustering algorithms, DP has the following four advantages.

� First, DP does not require a priori knowledge about
the point distribution. In many well-known algo-
rithms, such knowledge is important for choosing
good algorithm parameters (e.g., the number of clus-
ters in K-means [2], " andminPts in DBSCAN [3]). In
comparison, the clustering results of DP have been
shown to be robust against the initial choice of algo-
rithm parameters.

� Second, DP supports arbitrarily shaped clusters. Its
effectiveness does not rely on the distribution of the
data. This is in contrast to K-means and related algo-
rithmswhich assume the clusters are “balls” in space.

� Third, DP is deterministic. It always computes con-
sistent cluster results, while many clustering algo-
rithms (e.g., K-means and EM clustering [4]) may
converge to different local minimums with different
initial iterative states.

� Last but not least, (r, d) provides a two dimensional
representation of the input point data, which can
be in very high dimensions. It is straightforward to
visualize (r, d) in a 2D decision graph. From the
graph, users can gain new insights into the data dis-
tribution and intuitively determine cluster centers.

Due to its effectiveness and novelty, DP algorithm is
originally published in Science Magazine [1] in June, 2014.
In the past two years since its publication, DP has already
been employed in a wide range of applications, such as neu-
roscience [5], geoscience and remote sensing [6], molecular
biology [7], computational biophysics [8], image processing
[9], time series mining [10], and computer vision [11].
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Challenges for Distributed DP. In a baseline implementa-
tion (Basic-DDP, Basic Distributed DP), we compute r and d

values in two subsequent MapReduce jobs. The two jobs
have similar computation procedures: The Map and the
shuffling stages are mainly used to send and prepare the
input data, while the Reduce stage performs the actual com-
putation of r and d, respectively. However, the algorithm
has to shuffle every point to every other points and compute
distances of all pairs of points, incurring quadratic compu-
tation and communication cost. Such cost will be prohibitive
for large data sets that have millions of points, which are
becoming more and more common in the big data era.

We consider approximate algorithms in order to reduce
the computation and communication cost of distributed DP.
We observe that DP takes advantage of the local characteris-
tics (such as local density) of the data points for clustering.
Therefore, it is natural to employ Locality-Sensitive Hashing
(LSH) [12] to partition the input data so that closer points
are more likely to be assigned to the same partition. Typi-
cally, an LSH-based algorithm performs local computation
within each partition, and then aggregates the local results
from all partitions to obtain the final approximate results.

There are several challenges in employing LSH for DP.
The first challenge is the computation of d. While the local
density r is a local property, d is the theminimumdistance to
other points with higher r. Given a point p, it is possible that
other points with higher r are far away from p and thus do
not reside in p’s local partition. The second challenge is to
provide guarantees for approximation accuracy of d and r. It
would be nice if LSH parameters such as the number of hash
functions and the number of local partitions can be derived
from the approximation accuracy target specified by the
user. Finally, the LSH parameters may also impact the run-
time of the solution. Therefore, it is important to study the
tradeoff between approximation quality and efficiency.

Our Solution: LSH-DDP. To address the above chal-
lenges, we propose an approximate algorithm for DP,
called LSH-DDP (LSH based Distributed DP). Specifically,
we exploit the fact that cluster centers have both high r

and high d. Therefore, given a point p, if we cannot find
another point with higher r in the local partition, then we
will consider p as a candidate cluster center. Moreover, we
analyze LSH-DDP and prove the approximation accuracy
guarantees for r and d. Based on this analysis, we derive
the relationship between LSH parameters and the expected
approximation quality. Finally, we evaluate the accuracy
and performance of LSH-DDP by comparing LSH-DDP
with Basic-DDP using real-world data sets with up to 11.6
million data points. Experimental results show that com-
pared to Basic-DDP, LSH-DDP obtains very similar cluster-
ing results, while achieving up to 70� speedup.

Contributions. The contributions of the paper are three-
fold: First, we propose LSH-DDP, an efficient distributed
algorithm that approximates r and d values in the DP algo-
rithm. Second, we present formal analysis of LSH-DDP.
Given a specific result quality requirement, users can tune
the parameters to balance between effectiveness and effi-
ciency. Finally, We conduct extensive experiments on real
data sets. Experimental results demonstrate that LSH-DDP
achieves a factor of 1.7–70� speedup over the na€ıve Basic-
DDP and 2� speedup over the state-of-the-art EDDPC

approach, while returning comparable cluster results. Com-
pared to the widely used K-means clustering, LSH-DDP has
comparable or better efficiency.

The remainder of the paper is organized as follows.
Section 2 describes background on DP and MapReduce.
Section 3 introduces the basic MapReduce implementation
of DP as baseline. Section 4 proposes and analyzes our LSH-
based approximate solution. Section 5 discusses parameter
tuning. Section 6 reports the experimental results. Section 7
discusses related work and Section 8 concludes the paper.

2 DENSITY PEAKS CLUSTERING PRELIMINARIES

In this section, we review the standard DP algorithm. Density
Peaks Cluster [1] is a novel clustering algorithm recently pro-
posed by Rodriguez and Laio. The algorithm is based on two
observations: (i) cluster centers are often surrounded by
neighborswith lower local densities, and (ii) they are at a rela-
tively large distance from any points with higher local densi-
ties. Correspondingly, DP computes two metrics for every
data point: (i) its local density r and (ii) its distance d fromother
points with higher density. DP uses the two metrics to locate
density peaks, which are the cluster centers.

The local density ri of data point i is computed as

ri ¼
X
j

xðdij � dcÞ (1)

where xðxÞ ¼ 1 if x < 0 and xðxÞ ¼ 0 otherwise, and dc is
called the cutoff distance. That is, ri is equal to the number
of data points within the cutoff distance dc.

The di distance of data point i is computed as

di ¼ min
jjrj > ri

ðdijÞ: (2)

It is the minimum distance from point i to any other point
whose local density is higher than that of point i. Suppose
j ¼ argminjjrj > ri

ðdijÞ. We say that point i is assigned to point

j, and point j is referred to as the upslope point of point i.
If point i has the highest density among all data points,
i.e., i ¼ argmaxtrt, then we set di ¼ maxjðdijÞ. This point is
called the absolute density peak.

Fig. 1 illustrates the process of DP clustering through a
concrete example. Fig. 1a shows the distribution of a set of
data points. Fig. 1b depicts the corresponding density con-
tour view based on the local density r of each point. The
warmer the color, the higher the density. Clearly, the peaks
of the density mountains (a.k.a. density peaks) correspond
to the cluster centers. Then we compute d. For a normal
point i on the slope of a mountain, the closest point that has
higher density than i is the next upslope point on the same
mountain. This holds for all the points except the density
peaks, who will be assigned to points on other higher
mountains. This process forms an assignment chain as
shown in Fig. 1d, where the height of each point indicates
its density r. Therefore, the density peaks are distinguished
from other points as they have the highest local density r and a
large d. A point i is depicted on a decision graph as shown
in Fig. 1c by using (ri, di) as its x-y coordinate. Then the den-
sity peaks can be identified as outliers in the top right region
of the decision graph. Given the selected density peaks
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(cluster centers), it is straightforward to follow the assign-
ment chain of a point to determine the density peak and the
corresponding cluster that it belongs to.

DP requires the computation of pair-wise distances. A
sequential implementation can be improved with the fol-
lowing techniques: (1) For computing r, we can employ the
triangle inequality to filter unnecessary distance computa-
tions. (2) For computing d, we can first sort the points
according to descending r values. To compute di, we only
need to consider i’s distance to the points ahead of point i.
Note that these techniques are orthogonal to our proposed
techniques and can be easily employed in the sub-tasks of
the distributed computation in this paper.

3 BASELINE METHOD

In this section, we describe a basic MapReduce implementa-
tion of distributed DP, Basic-DDP. We analyze its cost and
then discuss improvement opportunities.

3.1 Basic Stategy

In the following, we describe the four steps of Basic-DDP: a
preprocessing step for choosing dc, two key steps for com-
puting r and d values, and the final step for cluster assign-
ment. Table 1 lists the notations used in this paper.

Preprocessing Step: Choosing dc. The cutoff distance dc is a
key parameter in DP. dc specifies the meaning of local in the
computation of the local density r in Equation (1). While the
DP paper [1] shows that varying dc (by a factor of 20) produ-
ces mutually consistent results, we still need to choose a
reasonable dc without a priori knowledge of the input data.
As a rule of thumb, one can choose dc so that the average
number of neighbors is around 1-2 percent of the total
number of points in the data set [1]. Suppose the distances
between all pairs of points DSEQ ¼ fd12; d13; . . . ; d21; . . .g are
known, the 1 or 2 percent position of the ascending ordered
set OrdaðDSEQÞ can be approximately seen as dc

1. Consider-
ing that distributed sorting is an expensive task, we rely on
sampling (where Reservoir Sampling [13] is used to retrieve
a set of sample points) and run a preprocessing MapReduce
job to estimate a reasonable dc

Step 1: Computing r. As shown in Equation (1), the com-
putation of r requires to know the pairwise distance
between all pairs of points. Basic-DDP employs blocking
technique for pairwise distance computation to save the

shuffle cost. The points set S is partitioned into n disjoint
subsets, i.e., S ¼ [1�k�nSk, where Sk \ Sl ¼ ;ð8k 6¼ lÞ and Pk

contains the point ids of Sk. The block partitioning is per-
formed by the map() function. Since only the upper trian-
gular of the symmetric distance matrix is needed, it sends
each subset Sk only to fSljk � l � ng rather than all the sub-
sets. The reduce() function is then applied to each pair of
subsets (Sk; Sl), where k < l � n, or the diagonal subsets Sk.
Based on distance computation, for (Sk; Sl), reduce() out-

puts two sets Vl
k ¼ frlij8i 2 Pkg where rli ¼

P
j2Pl xðdij � dcÞ

and Vk
l ¼ frki j8i 2 Plg where rki ¼

P
j2Pk xðdij � dcÞ. Simi-

larly, for the diagonal subsets Sk, it outputs frki j8i 2 Pkg
where rki ¼

P
j2Pk xðdij � dcÞ. Finally, Basic-DDP runs

another MapReduce job to combine the results of rli for all

1 � l � n, i.e., ri ¼
Pn

l¼1 r
l
i.

Step 2: Computing d. As shown in Equation (2), the com-
putation of d requires to know all points’ density values
V ¼ frij8i 2 Pg as well as the pairwise distance matrix. Sim-
ilar to the blocking method for computing r values, the map
() function dispatchs the block pairs, and the reduce()

function computes the pairwise distance values of two

input blocks (Sk; Sl) and outputs two sets Dl
k ¼ fdlij8i 2 Pkg

where dli ¼ minjj8j2Pl;rj > ri
ðdijÞ and Dk

l ¼ fdki j8i 2 Plg where

dki ¼ minjj8j2Pk;rj > ri
ðdijÞ. Besides, each point i’s upslope

point ul
i ¼ argminuj8u2Pl;ru > ri

ðdiuÞ is also recorded along

with its dli value. Obviously, dli is not the final result. Another

TABLE 1
Notations

Notation Definition

S the set of points
P the set of point ids
V the set of r values, V ¼ frij8i 2 Pg
D the set of d values, D ¼ fdij8i 2 Pg
V̂ the set of approx. r values, V̂ ¼ fr̂ij8i 2 Pg
D̂ the set of approx. d values, D̂ ¼ fd̂ij8i 2 Pg
PðSÞ an LSH partition of S
n the number of subsets
i or j the point id
k or l the subset index
M the number of LSH partition layouts
m the index of LSH partition layout
c the cluster id
ui point i’s upslope point id

Fig. 1. Illustrative figures for DP algorithm.

1. Please refer to the implementation code of [1].
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MapReduce job is required to select the smallest di value

among the candidates dli, i.e., di ¼ minld
l
i, and to record its

corresponding upslope point.
Step 3: Density Peaks Selection and Point Assignment. As

shown in Fig. 1c, the decision graph plays a key role on
density peaks selection. A point i is depicted on the deci-
sion graph by using (ri, di) as its x-y coordinate. The den-
sity peaks are identified as outliers in the top right of
decision graph. However, drawing a visible figure with
millions of points is not feasible. To address this problem,
we combine a set of close points with small (ri, di) as a
supernode but leaving the points with large (ri, di) drawn
separately since only the points with large (ri, di) could be
considered as density peaks. Note that it is possible to
design certain criteria for choosing the peaks automatically.
However, we believe it is better to retain this user-
algorithm interaction, since the visualized reference (i.e.,
decision graph) provides users with an opportunity to bet-
ter understand the data and choose the preferred cluster-
ing result. This is a key feature that distinguishes DP from
other clustering algorithms (e.g., Kmeans and DBSCAN),
which require users to face the challenge of specifying key
algorithm parameters in advance.

Given the chosen density peaks (i.e., cluster centers), we
follow the upslope point for each point to assign it to a clus-
ter as illustrated in Fig. 1d. Each point is embedded with
five pieces of information including point id i, ri, di, upslope
point id ui, assigned cluster id c, i.e., hi; ri; di; ui; ci, and these
points are stored using a fixed-size array structure. To
achieve efficient implementation, the points are assigned to
a cluster in the descending order of their r values. The den-
sity peaks with highest r values are first labeled with cluster
ids. Since a point’s upslope point must have a larger r and
its upslope point should already be assigned to a cluster,
the point is simply assigned to the cluster where its upslope
point belongs. By this way, the point assignment process is
achieved by a single pass of these points. Commonly, this
step can be done in memory in a centralized manner.2 As
the data size exceeds the memory space limit, it is easy to
implement a disk-based or a distributed version since only
one pass of the data is required.

3.2 Cost Analysis and Improvement Opportunities

From the above description, we see that the most expensive
steps in Basic-DDP are the computation of r (Step 1) and d

(Step 2). The blocking technique still has to send every point

dnþ1
2 e times during the shuffling phase in Step 1 as well as in

Step 2. This incurs significant shuffle overhead especially
when the point set S is large. Moreover, Basic-DDP com-

putes jSjðjSj�1Þ
2 distances in both Step 1 and Step 2. The

computational cost is quadratic with respect to the total
number of points jSj.

To improve performance, an ideal strategy is to partition
S into n disjoint subsets fSkj1 � k � ng such that the r and
d computation could be self-contained within each partition.
First, distances are computed only inside a partition,
fdijj8i 2 Pk; 8j 2 Pkg. Second, to guarantee the correctness

of r, the subset Sk must contain each point i’s dc-length
neighbors. We have to put more points into every Sk to
form S0

k, i.e., P0
k ¼ Pk [ fjj8i 2 Pk; dij < dcg. Note that,

S0
k [ S0

l is typically not empty. Recent technology in kNN
search [14] or triangle inequality might be employed to
select additional points to include in each S0

k. However, the
d computation becomes infeasible. Each point i in Sk is only
aware of the distance to the subset S0

k of points, i.e.,
fdi;jj8j 2 P0

kg. The points with higher density are likely not
in S0

k. Copying all the higher density points will incur exces-
sive shuffle cost.

While the above ideal partitioning approach does not
work, it inspires us to develop an alternative approximate
solution, as will be detailed in the next section.

4 LSH BASED APPROACH

In this section, we propose an approximate distributed algo-
rithm, LSH-DDP, for DP. Intuitively, a locality preserving
partition strategy is desirable for DP. This is because the
computation of ri is based on the neighbors within a dis-
tance of dc from point i, and the computation of d looks for
the nearest point with higher density. Hence, closer points
play a more important role in the computation. As sug-
gested by the name, LSH-DDP leverages Locality-Sensitive
Hashing [15] to partition points so that closer points are
more likely to be assigned to the same partitions.

To improve approximation accuracy, we partition the
point set S usingM LSH partition layouts, P1ðSÞ;P2ðSÞ; . . . ;
PMðSÞ. An LSH partition layout PmðSÞ is a partition of the
data space. S is split into multiple partitions such that
PmðSÞ ¼ Sm

1 [ Sm
2 [ . . ., where Sm

k \ Sm
l ¼ ;ð8k 6¼ lÞ. With

a larger M, it is more likely that points that are close will
collide in the same partition in at least one partition layouts.

LSH-DDP computes the distances of pairs of points
within each partition Sm

k , and derives a set V̂m
k of approxi-

mate r values within partition Sm
k . The computation on mul-

tiple PmðSÞ can be performed in parallel. Then, LSH-DDP

aggregates the multiple approximations, V̂m
k , to obtain more

accurate results, V̂. The approximation of d values follows
the same strategy. With the previously approximated r̂i
values, LSH-DDP finds the upslope point ui for each point i

and computes d̂i within each partition. The multiple approx-

imations, D̂m
k , are further aggregated to obtain more accu-

rate results, D̂.

4.1 Step 0: LSH Partition

LSH Background. The Locality-Sensitive Hashing function
has the property that points that are closer to each other
have a higher probability of colliding than points that are
farther apart [15]. It has been widely adopted in solving
approximate nearest neighbor search problem [16], [17],
[18], [19], [20].

The commonly used LSH function for euclidean distance
is as follows [12]

hðpÞ ¼
�
a � pþ b

w

�
; (3)

where a is a d-dimensional random vector, each entry of
which is chosen independently from a p-stable distribution

2. A mid-range server with 32GB memory can process up to 1.6 bil-
lion points.
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[21], b is a real number chosen from ½0; w�, and w is also a
real number representing the width of the LSH function.

The distance-preserving property of LSH allows us to
partition the set of points based on their hash values. If two
points i and j are hashed to the same bucket, we know that
i and j are close to each other with certain confidence.
Therefore, we can assign them to the same partition. How-
ever, it is possible that two distant points happen to be
hashed to the same bucket according to Equation (3). To
reduce such false positives, a group G of p hash functions
G ¼ ðh1; h2; . . . ; hpÞ are employed. That is, only points shar-
ing all the p hash values are placed in the same partition.
Thus, each point i is labeled with GðpiÞ ¼ ½h1ðpiÞ; h2ðpiÞ;
. . . ; hpðpiÞ�, which is considered as a partition id. Multiple
partitions are formed and assigned to multiple workers3 for
parallel processing. The resulting data partition result is
referred to as an LSH partition layout P. The formal defini-
tion of LSH partition layout is as follows:

Definition 1 (LSH Partition Layout). Given a set of points
S, and a group of hash functions G ¼ ðh1; h2; . . . ; hpÞ, an LSH
partition layout is obtained by hashing every point pi 2 S
using G and assigning pi to the partition as identified by hash
key GðpiÞ ¼ ½h1ðpiÞ; h2ðpiÞ; . . . ; hpðpiÞ�. The point set S is
accordingly split into multiple disjoint subsets, i.e., PðSÞ ¼
S1 [ S2 [ . . . , where Sk \ Sl ¼ ;; 8k 6¼ l.

However, it is also possible that points that are close hap-
pen to be hashed to different partitions, especially when p is
large, incurring false negatives. To reduce the number of false
negatives, we employ a combination of M hash groups,
ðG1; G2; . . . ; GMÞ. That is, the point set is partitioned inM dif-
ferent ways. Suppose by applying a hash group Gm, we
obtain an LSH partition PmðSÞ ¼ Sm

1 [ Sm
2 [ . . ., where

Sm
k \ Sm

l ¼ ;; 8k 6¼ l. Similarly, by applying M groups of
hash functions ðG1; G2; . . . ; GMÞ, we will have M LSH parti-
tions ðP1;P2; . . . ;PMÞ of the set S. For example, Fig. 2 illus-
trates two possible LSH partitions of point set S.4

We achieve multiple LSH partition layouts in the map
phase. The map() function invocation on a point pi com-
putesM hash keysG1ðpiÞ; G2ðpiÞ; . . . ; GMðpiÞ and then sends
the intermediate key-value pairs, hG1ðpiÞ; pii, hG2ðpiÞ; pii, . . .,
hGMðpiÞ; pii, to reducers. Each reduce() function will

receive a subset Sm
k of points under a certain LSH partition

layout PmðSÞ. In this way, M LSH partition layouts are cre-
ated. We can also estimate dc through sampling in the same
MapReduce job to save cost.

4.2 Step 1: Approximating r

Local Computation of r̂mi . For a certain LSH partition PmðSÞ, a
subset Sm

k is shuffled to a reduce() function. The reduce()
function first computes the distances between any pairs of
points in Sm

k . Then it computes a density value r̂mi for each
point i, i.e., r̂mi ¼Pjjj2Pm

k
xðdij � dcÞ.

However, r̂mi is not necessarily equal to ri. As shown in
Fig. 2a, point p2 in LSH partition layout 1 is located near the

border line between S1, S4, and S5. The computation of r̂12 is
limited only to the points that are in S1. However, it is clear
that a large number of points that are close to p2 are located

in S4 and S5. Therefore, r̂
1
2 < r. The use of multiple hash

groups mitigates the problem. As shown in Fig. 2b, all p2’s
dc-length neighbors reside in the same partition as p2. There-

fore, r̂22 ¼ r.
To study the probability of Pr½r̂mi ¼ ri�, we give the fol-

lowing two lemmas.

Lemma 1. Given a point pi and an LSH function hðpiÞ ¼
ba�piþb

w c, for the points fpjjj 2 P; dij � dcg, the probability that

all these points are hashed to the same bucket is as follows:

Prðw; dcÞ ¼ Pr
�
hðpiÞ ¼ hðpjÞ; 8j 2 P; dij � dc�

� 1� 4dcffiffiffiffiffiffi
2p

p
w
:

(4)

Proof. Fig. 3 depicts the idea of the proof intuitively. Let us
consider a number line, where each point is a real number.
yi ¼ a � pi þ b is a point on the number line. By floor divid-
ing w, the number line is divided into a sequence of
w-width slots. According to the LSH function, all the
points in the same w-width slot share the the same hash
key. The points that are close to pi are all hashed to the
points close to yi on the number line. The position of yi is
important. If yi is close to the center of the slot, it is more
likely that all dc-length neighbors of pi are in the same slot.

According to the definition of p-stable distribution
[12], given a d-dimensional random vector a each entry
of which is chosen independently from a standard gauss-
ian distribution Nð0; 1Þ, for two points pi and pj, the
distance between their projections ja � pi � a � pjj is dis-
tributed as dijx, where x is the absolute value of a standard
gaussian random variable. Therefore, for any pj where
dij < dc, we havemaxjjyi�yjj¼maxjja � pi � a � pjj< dcx.

Moreover, yi ¼ a � pi þ b is uniformly distributed in a
certain slot. To ensure that yi and all its dc-length neigh-
bors are in the same slot, yi has to be located in the inter-
val of ½awþ dcx; ðaþ 1Þw� dcxÞ for some a, as shown in

Fig. 2. r computation in two partition layouts (in plane view).

Fig. 3. Graphic interpretation of Lemma 1.

3. That is, each hash bucket is assigned to a distributed computation
unit, e.g., a reducer. Here, we use the termworker for ease of exposition.

4. Note that, Figs. 2 and 4 are only illustrative figures. The real LSH
partition might not be linearly separable. The number of partitions is
dependent on the LSH parameter w and p as will be discussed in
Section. 5.2
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Fig. 3. The probability that yi resides in such an interval

is w�2dcx
w ¼ 1� 2dcx

w . The probability density function of

the absolute value of the standard gaussian distribution

is fpðxÞ ¼ 2e�x2=2ffiffiffiffi
2p

p , where x � 0. Therefore, the probability

becomes 1� 2dcx
w ¼ R10 ð1� 2dcx

w ÞfpðxÞdx, and a further cal-

culation shows that the probability is 1� 4dcffiffiffiffi
2p

p
w
. tu

Further, it is obvious to obtain Lemma 2. The proof can
be found in Section 1 of the supplementary file, which can
be found on the Computer Society Digital Library at http://
doi.ieeecomputersociety.org/10.1109/TKDE.2016.2609423.

Lemma 2. For an LSH partition Pm with p hash functions, we
have Pr½r̂mi ¼ ri� � Prðw; dcÞp.
Aggregation of Multiple r̂mi . The point set is partitioned in

M LSH partition layouts ðP1;P2; . . . ;PMÞ. Accordingly, for
each point i, we will obtain M approximate density values

ðr̂1i ; r̂2i ; . . . ; r̂Mi Þ. These candidates (that are retrieved from
multiple distributed reducers) are aggregated in the second
MapReduce job. Since r̂mi � r, we choose r̂i ¼ maxmr̂

m
i . We

hope that the aggregate value is closer to the exact value.
Employing M LSH partitions reduces the chances that

a point’s dc-length neighbors reside in different partitions.
As a result, it reduces the number of false negatives, and
thus significantly increases Pr½r̂i ¼ ri�.
Theorem 1. With M LSH partitions ðP1;P2; . . . ;PMÞ, we have

Pr½r̂i ¼ ri� � 1� �1� Prðw; dcÞp
�M

.

Proof. r̂mi � maxmr̂
m
i � r̂i. If maxmr̂

m
i 6¼ ri, then 8m ¼

1; . . . ;M, r̂mi 6¼ ri. From Lemma 2, Pr½r̂mi ¼ ri� �
Prðw; dcÞp. Since Gmð1 � m � MÞ is independently and
randomly generated, we have the following:

Pr½r̂i ¼ ri� ¼ 1�
YM
m¼1

ð1� Pr½rmi ¼ ri�Þ

� 1� �1� Prðw; dcÞp
�M

:
tu

4.3 Step 2: Approximating d

The computation of d depends on r values. Therefore, after
Step 2, LSH-DDP associates each point pi with its approxi-
mate r̂i value. Then, Step 3 follows the same idea as approx-
imating r. LSH-DDP partitions the points using M LSH
layouts P1;P2; . . . ;PM with the map() function. Then it
performs local computation for dmi values as follows.

Local Computation of dmi . Let us consider a reduce()

function working on a partition Sm
k in a certain LSH parti-

tion layout Pm. LSH-DDP computes the distances between
all pairs of points in Sm

k . Then, using the approximate den-

sity fr̂jjj 2 Pm
k g, it approximates d̂mi ¼ minjjj2Pm

k
;r̂j > r̂i

ðdijÞ for
any i 2 Pm

k . For the point with the highest density in Sm
k , i.e.,

point i ¼ argmaxiji2Pm
k
r̂i, we set d̂mi ¼ 1.

However, even though the approximated r̂i were exactly
equal to ri, d

m
i might not be equal to di, since the computa-

tion is constrained within a subset of points. For example, in
LSH partition layout 1 as shown in Fig. 4a, since point p2’s
real upslope point resides in a different partition, the local d
approximation returns a wrong result, an incorrect upslope

point on another density mountain. Fortunately, in LSH
partition layout 2 as shown in Fig. 4b, p2 and its upslope
point are assigned in the same partition, and the correct d2
can be computed.

Assume r̂i ¼ ri, we study the probability of Pr½d̂mi ¼ di� in
the following lemmas. First, based on the property of LSH
and p-stable distribution (refer to Datar’s paper [12]), we
have Lemma 3. Further, we have Lemma 4 based on LSH
properties, and the proof can be found in Section 2 of the
supplementary file, available online.

Lemma 3. Given a point pi and an LSH function hðpiÞ ¼
ba�piþb

w c, suppose pi’s upslope point is pui (if exist) and diui is

the distance from i to ui (i.e., diui ¼ di), we have

Pdiðdiui ; wÞ ¼ Pr
�
hðpiÞ ¼ hðpuiÞ

�
¼
Z w

0

1

diui
fp

x

diui

� �
1� x

w

	 

dx

¼ 2norm
w

diui

� �
� 1� 2diuiffiffiffiffiffiffi

2p
p

w
1� e

� w2

2d2
iui

 !
;

where fpðxÞ denotes the probability density function of the
absolute value of a standard gaussian distribution, and
normð�Þ is the cumulative distribution function (cdf) for a ran-
dom variable that is distributed asNð0; 1Þ.

Lemma 4. Suppose point pi’s real upslope point is pui (if exist),
by a certain LSH partition Pm with p hash functions, we have

Pr½d̂mi ¼ di� ¼ Pdiðdiui ; wÞp

Aggregation of Multiple d̂mi . For each point i, we will obtain

M approximate values ðd̂1i ; d̂2i ; . . . ; d̂Mi Þ in various LSH lay-
outs. We hope that at least one of them is equal or close to
the exact value. According to Equation (2), the smallest one
is more likely to be the exact di. Therefore, we aggregate

these approximate ðd̂1i ; d̂2i ; . . . ; d̂Mi Þ in a MapReduce job and

set d̂i ¼ minmd̂
m
i . Similar to r approximation, the probability

Pr½d̂i ¼ di� is enlarged as follows.

Theorem 2. Given a point i’s upslope point ui, with M LSH

partitions ðP1;P2; . . . ;PMÞ, we have Pr½d̂i ¼ di� ¼ 1��
1� Pdiðdiui ; wÞp

�M
.

4.4 Step 3: Further Correction of d̂

From Theorem 2, we can see that the probability Pr½d̂i ¼ di�
highly depends on diui or di, i.e., the distance from point i

to its “nearest” neighbor with higher density. Generally

Fig. 4. d computation in two partition layouts (in contour view).
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speaking, as shown in Fig. 1d, diui is small for most points

and therefore the probability Pr½d̂i ¼ di� is correspondingly
high for most points. However, this is not true if point i is
distant from its upslope point (i.e., diui or di is large). This

leads to a very interesting situation. d̂i is more accurate for
smaller di but inaccurate for larger di.

Furthermore, since the density peaks are with large di,
they are distant from each other and are unlikely to be
hashed to the same bucket under a locality-preserving hash
function. Therefore, LSH-DDP may wrongly recognize
these density peaks as the absolute density peak in a parti-

tion and therefore assign d̂i ¼ 1. Although these points are
very likely to be the local density peaks and also probably
be chosen as density peaks in the density peak selection
step, a few wrong selections of density peaks will change
the cluster result and result in more fine-grained clusters.

To rectify these d̂i values, we should first find the points

whose d̂i are highly likely to be wrongly approximated, i.e.,

fpijd̂i 6¼ dig. Suppose r is correctly approximated. Given a
lower bound accuracy Ad of the d approximation, we have

Pr½d̂i ¼ di� ¼ 1� �1� Pdiðdiui ; wÞp
�M � Ad: (5)

Considering the representation of Pdiðdiui ; wÞ in Lemma 3,
diui is the only variable in (5). By solving this equation

(using Trust-Region with DogLeg method [22]), we can
obtain the minimum diui that satisfies this lower bound

accuracy requirement , i.e., diui � g where g is solution of

the equation and the lower bound distance to its upslope
point. Furthermore, point i’s di is the distance to its nearest

neighbor with higher density. Its approximation d̂i cannot

be less than its real value di, i.e., d̂i � di or diûi � diui (where

ûi is observed upslope point by approximation). We
have diûi � diui � g. With the probability guarantee, if

the observed diûi is larger than g, the approximation of di
are more likely inaccurate and should be further rectified.

Therefore, our further correction step will rectify these d̂i

values whose d̂i ¼ diûi � g.

However, precisely rectifying these d̂i requires to com-
pute point i’s distance to all the points with higher density.
This results in significant computational and communica-
tion cost (if implemented distributively). Instead, we rely on
rough rectification. Given that di computation only consid-
ers the distance to higher density points, we sample the
points with larger r̂ values. The larger a point’s r̂i value is,
the higher probability the point is sampled. Only these sam-
pled points are considered as the candidate points for dis-

tance measurement when rectifying d̂i values. Though this
approach is simple, our empirical results show that it is
effective enough.

4.5 MapReduce Implementation

To sum up, the MapReduce implementation of LSH-DDP
consists of five MapReduce jobs and a centralized program
(for density peak selection and point assignment). The first
job performs LSH partition (Map1) and local computation
of r̂mi (Reduce1). The second job aggregates the r̂mi values
(Reduce2). Similarly, LSH partition (Map3) and local com-

putation of d̂mi (Reduce3) are carried out in the third job. The

fourth job aggregates the d̂mi values (Reduce4). The central-
ized program first drafts a decision graph based on the

obtained r̂ and d̂ values and then let users select a set of den-

sity peaks with r̂ value at least rpeak and d̂ value at least dpeak,

i.e., fpijr̂i > rpeak; d̂i > dpeakg. The fifth job further corrects d̂

values. The points whose d̂i � g are filtered for further cor-
rection (Map5). At the same time, the points are sampled

with probability 1

1þeðr̂i�rpeakÞ if r̂i � rpeak and b � 1

1þeðr̂i�rpeakÞ if

r̂i < rpeak where b is a given sample rate (Map5). For each

to-be-corrected point i, its distance to higher density

sampled points are measured, and the d̂i is updated once a

smaller d̂i is found (Reduce5). Finally, the centralized
density peak selection and point assignment step is

re-performed with the corrected d̂ values.

5 PARAMETERS TUNING

To launch LSH-DDP, there are three parameters to be deter-
mined, the number of hash groups M, the number of hash
functions in each group p, and the width of hash function
w. A reasonable selection of these parameters is crucial to
approximation accuracy and performance. The determina-
tion of these three parameters is an optimization problem,
which takes two factors into account: the accuracy of result
and the cost (including shuffle cost and computational
cost). In this section, we discuss the parameter determina-
tion with a certain accuracy expectation.

5.1 Problem Formulation

Accuracy. The LSH-DDP algorithm makes the cluster assign-
ment for each point based on their approximated r̂ and d̂

values. The accuracy of each point assignment should be

Pr½r̂i ¼ ri� � Pr½d̂i ¼ di� ¼ Ar � Ad. However, according to

Theorem 2 the accuracy of an approximated d̂i greatly
depends on the real di, which is unknown in advance. We
would like to only analyze the accuracy of the approxi-
mated r̂ values. According to Theorem 1, we define the
expected accuracy as follows:

Arðw;p;MÞ ¼ 1� �1� Prðw; dcÞp
�M

; (6)

where Prðw; dcÞ is defined in Equation (4) and dc is fixed.
Shuffle Cost. ForM LSH partition layouts, LSH-DDP shuf-

fles M copies of each point in the r approximation and d

approximation, respectively, which is 2M � jSj. It also aggre-

gates V̂m;m ¼ 1; 2; . . . ;M and D̂m;m ¼ 1; 2; . . . ;M. But since

in general either jV̂j or jD̂j is much smaller than jSj, the shuf-
fle cost of r̂ values set D̂ and d̂ values set V̂ can be ignored.

In the correction step, since the d̂i values of only a subset of
points should be corrected and only a small portion of high
density points are sampled, the shuffle cost of the rectifica-
tion job are ignored for simplicity. Therefore, the shuffle cost.
(or the size of shuffled data) can be simplified as

Csðw;p;MÞ ¼ 2M � jSj: (7)

Computational Cost. The computations occur in the LSH
partition, the distance calculations, and r̂ and d̂ approxima-
tions. Among them, the distance calculations are the most
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costly. We consider the number of distance calculations in
the r and d approximation steps as the computational cost,
which are from the generations of distributed distance
matrices Dm

kk; 8k; 1 � m � M where Dm
kk is the pair-wise dis-

tance matrix of subset Sm
k and is a Nm

k �Nm
k matrix (Nm

k is
the number of points in Sm

k ). Therefore, the expected compu-
tational cost can be represented as

E
�Ccðw;p;MÞ� ¼ E

�XM
m¼1

X
k¼1

ðNm
k Þ2
�
¼ M �

XK
k¼1

Nk
2; (8)

where K is the expected number of partitions andPK
k¼1 Nk ¼ N .
We aim to minimize both the shuffle cost and the compu-

tational cost while satisfying a certain accuracy guarantee.
This is a multi-objective optimization problem. Apparently,
this multi-objective optimization problem can be trans-
formed to a single objective optimization problem by unify-
ing the costs into time cost. Suppose the ratio of the time
unit for shuffling each byte to the time unit for each distance
calculation is m, which varies for different clusters and can
be estimated in a MapReduce job (e.g., [0.02-0.1] for our
local cluster and [0.1-0.3] for our EC2 cluster). The single
optimization problem can be described as follows:

min: m � 2M � jSj þM �
XK
k¼1

Nk
2

s.t. 1� �1� Prðw; dcÞp
�M � required value.

(9)

We can see that the parameters w;p;M play a key role in
solving this optimization problem.

5.2 Analysis of Parameter Variations

From Theorem 1, it is obvious that the accuracy increases
with the increase ofM and w, and with the decrease of p.

For both shuffle and computational cost, it is obvious that
they increase with the increase of M. The computational
cost also increases with the increase of the sum of squaresPK

k¼1 Nk
2, where

PK
k¼1 Nk ¼ N . The value of

PK
k¼1 Nk

2

depends on the data distribution and affected by w and p.
We do not make any assumption of data distribution and

would like to study the relationship between
PK

k¼1 Nk
2 and

the parameters w and p. Intuitively, small w leads to narrow
partition, and large p leads to a fine partition of the space.
That is, small w and large p lead to a large number of small

Nk and probably small
PK

k¼1 Nk
2. Therefore, the computa-

tional cost should decrease with the decrease of M and w,
and with the increase of p.

Based on the above analysis, we see that the impacts of
the three parameters on the expected accuracy and on per-
formance are reverse. As a result, there is a tradeoff between
approximation accuracy and performance.

5.3 Offline Parameter Tuning

We tuneM, p, and w to minimize the runtime while guaran-
teeing a given accuracy requirement. Since the computa-

tional cost (mainly determined by
P

k Nk
2) depends on not

only LSH parameters fM;p; wg but also the data distribu-
tion, the optimization problem cannot be solved without
knowledge of the data. We employ offline parameter tuning

by sampling the data points. v groups ofN 0 points5 are sam-
pled through distributed reservoir sampling. We perform
LSH partitions on these v samples sets according to various
parameter combinations and obtain v LSH layouts, i.e., v

results of
P

k N
0
k
2 values.6 We then compute the average

and scale it by ðNN 0Þ2 to predict
P

k Nk
2, i.e.,

PvP
k
N 0
k
2

v
� ðNN 0Þ2.

We use the following greedy heuristic to look for the opti-
mal parameters set.

First, assume M and p are fixed as M0 and p0 respec-
tively. We compute the minimum value of w (i.e., w0) that
satisfies a given accuracy requirement A, i.e., solving equa-

tion 1� �1� Prðw; dcÞp
�M
0

¼ A for the variable w. Therefore,

given M0, p0 and the predicted
P

k Nk
2, the total cost T0 can

be obtained according to Equation (9).
Next, we try Mþx ¼ M0 þ x (x is the stepsize and x 2 Zþ)

aswell asM�x ¼ M0 � xwhile fixing p0 and repeat the above
process to obtain Tþx and T�x. We fix the M that results in
smaller total cost, and then try pþy and p�y. Similarly the p

with smaller total cost is chosen. We repeat this process by
alternatively varying M and p until the total cost T is not
decreased no matter increasing or decreasing M and p. The
resulted fM;p; wg are returned as the parameters set.

It is noticeable that the complexities in distributed envi-
ronment (e.g., load unbalance, synchronization barrier, net-
work congestion, node failure, in-memory or external sort)
impact the prediction accuracy. But it can provide a rela-
tively reasonable parameter setting with regard to the data
distribution. Our experimental results (Section 6.5) shows
its effectiveness. Our empirical study also shows that the
runtime is stable when M is large enough, and a recom-
mended parameters setting range is provided.

6 EXPERIMENTAL EVALUATION

6.1 Experimental Setup

Machine Configuration. The experiments are performed both
on our local cluster of machines and on EC2 cloud. Our local
cluster contains 1 master and 4 slave workers, each
equipped with an Intel I5-4690 3.3G 4-core CPU, 4 GB mem-
ory, running Hadoop 1.2.1. The EC2 cluster consists of 64
m1.medium instances.

Data Sets. Table 2 lists the data sets that we use in our
experiments. There are two small sized 2D data sets, four
real world medium sized high-dimensional data sets, and
three large high-dimensional data sets.7,8,9 We use the 2D
data sets to visualize the clustering results, the medium data
sets to evaluate the efficiency in our local cluster, and the
large data sets to evaluate the efficiency in large EC2 cluster.

6.2 DP versus Previous Algorithms

Before evaluating LSH-DDP, we would like to understand
DP’s advantages over previous clustering algoritms. Fig. 5a
depicts the ground truth. Figs. 5b, 5c, 5d, 5e, and 5f compare

5. The sample rate can be chosen based on data size and cluster
performance.

6. The average of multiple
P

k N
0
k
2 from multiple random LSH parti-

tions would be more accurate.
7. http://cs.joensuu.fi/sipu/datasets/
8. https://archive.ics.uci.edu/ml/datasets.html
9. http://www.cs.unipaderbom.de/en/fachgebiete/agbloemer/

research/clustering/streamkmpp

ZHANG ET AL.: EFFICIENT DISTRIBUTED DENSITY PEAKS FOR CLUSTERING LARGE DATA SETS IN MAPREDUCE 3225

Authorized licensed use limited to: Northeastern University. Downloaded on April 06,2025 at 03:23:19 UTC from IEEE Xplore.  Restrictions apply. 



the clustering results of DP and four previous representa-
tive algorithms, including agglomerative hierarchical clus-
ter (connectivity-based), K-means (centroid-based), EM
(distribution-based), DBSCAN (density-based). Table 3 lists
the key features of the clustering algorithms.

The input parameter dc of DP_Cluster is estimated as the 2
percent position of the ascending ordered distance set
(see Section 3.1). For the algorithms that take the number of
clusters k as the input parameter, k is set to the number of clus-
ters in the ground truth. DBSCAN’s input parameter " is set to
dc, and theminimumnumber of points in a cluster is set to 1.

Fig. 5 shows the results for the Aggregation data set, which
is a shaped data set. In addition, we compare the algorithms
using seven other shaped data sets and see similar trends. For
space limitation, we focus only on the Aggregation data set
here. There are seven clusters in the ground truth. The hierar-
chical and the DBSCAN algorithms correctly identify three
clusters, but make mistakes for the other clusters. The two
algorithms cannot easily separate clusters that are close to
each other. On the other hand, K-means and EM can correctly
identify four clusters, while they work poorly for non-oval
shapes. In contrast, DP correctly identifies all the seven clus-
ters, achieving the best clustering results.

6.3 Effectiveness of LSH-DDP

Visualized Cluster Result. In order to visualize the cluster
result, we run Basic-DDP and LSH-DDP on a small sized 2D
data set, S2. In LSH-DDP, we setA ¼ 0:99;M ¼ 10;p ¼ 3.

Figs. 6a and 6b show the decision graphs for Basic-DDP
and LSH-DDP, respectively. The decision graph of Basic-
DDP is generated using the computed exact (r, d) values,
while the decision graph of LSH-DDP is drawn using the

approximate (r̂, d̂) values. We show a possible selection of
peaks on the two decision graphs (i.e., all points that satisfy
r > 40 and d > 14).

We see that the decision graphs of Basic-DDP and
LSH-DDP are roughly the same. Thanks to the d̂ correction

technique, most of the wrongly approximated d̂i values are
corrected. The only difference is that one more peaks is
chosen in LSH-DDP decision graph. This is reflected in the
cluster result as shown in Fig. 7. One more group of points
is clustered in LSH-DDP. However, the cluster results of
Basic-DDP and LSH-DDP are almost the same. Differences
exist only at boundary points and/or for deciding whether
a set of points should be clustered at a finer granularity.

Expected Accuracy of r̂. We further evaluate the accuracy
of LSH-DDP. Since the cluster result of a large multi-
dimensional data set cannot be easily visualized, we focus on

TABLE 2
Data Sets

data set # instances # dimensions

Aggregation 788 2
S2 5,000 2
Facial 27,936 300
KDD 145,751 74
3Dspatial 434,874 4
BigCross500K 500,000 57
USCensus 2,458,285 68
BigCross 11,620,300 57
Activity 43,930,257 16

Fig. 5. Cluster results of different algorithms for Aggregation dataset (k ¼ 7).

Fig. 6. Decision graphs (S2).

Fig. 7. Cluster result (S2).

TABLE 3
Key Features of Various Clustering Algorithms

iterative cluster shape
assumption

predefined #
of clusters

complexity embarrassingly
parallel

interactivity

hierarchical no yes no Oðn3Þ no no
k-means yes yes yes Oðn � k � IÞ yes no
EM yes yes yes Oðn � k � IÞ yes no
DBSCAN no no no Oðn2Þ no no
DP no no no Oðn2Þ yes yes
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measuring the accuracy of r̂. We define two metrics t1 and t2
to characterize the accuracy of the approximation. t1 ¼
jfr̂ij8i2P;r̂i¼rigj

N is the fraction of correctly approximated r

values. Larger t1 means that the r̂ of more points are approxi-
mated correctly. When every r̂ is approximated correctly,

t1 ¼ 1. t2 ¼ 1�
P

i
jri�r̂ijP
i
ri

. It is 1 minus the normalized abso-

lute error. Hence, the smaller the error, the larger the t2.
When the error approaches 0, t2 grows to 1.

We have run experiments for all the four medium sized
data sets and see similar results. For space limitation, we
focus on BigCross500K in Fig. 8. On the x-axis, we vary the
expected accuracyA. Given aA, we set the LSH-DDPparam-
eters accordingly and then run the algorithm. The resulting
t1 and t2 are reported in Figs. 8a and 8b, respectively. From
the figures, we see that both t1 and t2 increase as the
expected accuracyA increases. Both metrics approach 1 asA
approaches 1. Note that the definition of t1 corresponds to
the accuracy target. It is clear that t1 points reside closely
around the diagonal line. This shows that LSH-DDP has suc-
cessfully realized the accuracy target as specified byA.

Effect of d̂ Correction. As discussed in Section 4.4, the

approximated d̂i is more accurate for smaller di but inaccu-
rate for larger di. Moreover, a few points with large d values
could be misidentified as local density peaks. This might
lead to more clusters than expected. In order to rectify the

wrongly approximated d̂ values and help identify the real

density peaks, we propose d̂ correction technique.
To verify the effect of the d̂ correction step, Table 4 shows

the ratio of wrongly approximated d̂ values and the number
of local density peaks (i.e., no other denser points found
after LSH partition) before and after correction. We can see

that large amount of wrongly approximated d̂ values are
corrected. Furthermore, all the misidentified density peaks
are rectified.

6.4 Efficiency of LSH-DDP

Runtime. We run Basic-DDP and LSH-DDP on four data
sets, i.e., Facial, KDD, 3Dspatial, and BigCross500K on the
local cluster of machines. The parameters of LSH-DDP are
set as follows: A ¼ 0:99;M ¼ 10;p ¼ 3, and the block size
parameter of Basic-DDP is set as 500. As shown in Fig. 9a,
LSH-DDP is dramatically better than Basic-DDP, achieving
1.7–24� speedups. Moreover, the larger the data set size,
the more benefit LSH-DDP brings. To understand the per-
formance benefit, we delve into the communication cost
and the computation cost in the following.

Shuffle Cost. Fig. 9b compares the total amount of data
shuffled in the MapReduce jobs of Basic-DDP and LSH-DDP.
Basic-DDP has to send every point to every other point using
the Map and the shuffle stages. In contrast, LSH-DDP sends
only the local results computed from LSH local partitions,
thereby avoiding the quadratic communication cost. As
shown in Fig. 9b, LSH-DDP reduces the amount of shuffled
data by 5–87� compared to Basic-DDP. Since the amount of
shuffled data in Basic-DDP grows quadratically, LSH-DDP
sees larger savings for larger data sets.

Computational Cost. Fig. 9c reports the number of distance
measurements computed in Basic-DDP versus LSH-DDP.
The computation cost of Basic-DDP grows quadratically,
while LSH-DDP sees only linear growth. Consequently,
the savings of LSH-DDP grow as the input data set size
increases. We see a 1.7–6.1� savings for computational cost.

Comparison to EDDPC. EDDPC [23] is a recently work on
parallelizing DP algorithm. It leverages Voronoi diagram
and careful data replication/filtering to reduce the huge
amount of useless distance measurement cost and data
shuffle cost. Rather than approximation, EDDPC will return
the exact r and d values. We also compare our approach
with EDDPC for clustering the BigCross500K data set. The
results are listed in Table 5. We can see that LSH-DDP
requires less runtime and much less shuffled data though
higher number of distance measurements (i.e., # dist.). Note

Fig. 8. Expected accuracyA versus t1 and t2 (S2).

TABLE 4
Effect of d̂ Correction

dataset before after

wrong d̂ # peaks wrong d̂ # peaks

Facial 14.92% 129 10.72% 1
KDD 6.75% 271 3.36% 1
BigCross500K 4.86% 43 1.45% 1

Fig. 9. Basic-DDP versus LSH-DDP for different data sets.
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that, LSH-DDP will result in even higher efficiency with
lower accuracy requirement.

Large Scale Experiments on EC2. In order to see the perfor-
mance of LSH-DDP for very large data sets in large scale
distributed environments, we run the algorithms on the
three large data sets (USCensus, BigCross, Activity) on our
EC2 cluster.

As known, the number of reducers plays a key role in dis-
tributed computing performance. Large number of reducers
helps increase parallelization but results in more task initiali-
zation overhead. Fig. 10 shows the runtime of LSH-DDP on
the BigCross data set when varying the number of reducers.
Job 1 and Job 3 perform LSH partition and local approxima-
tions of r̂ values and d̂ values respectively, which are rela-
tively heavy loaded.While Job 2 and Job 4 only aggregate the

local approximations of r̂ values and d̂ values respectively,

which are relatively light loaded. Job 5 further corrects the d̂
values, which is also light loaded.We can see that it is prefer-
able to choose a larger number of reducers for heavy loaded
job while a smaller number of reducers for light loaded job.
Once the overhead of task initializations overwhelms the
potential benefit of parallelization, the runtime prolongs
with the increase of number of reducers.

Table 610 shows the runtime of LSH-DDP and Basic-DDP
on different data sets. We only consider the runtime of the
r/d computation runtime for LSH-DDP and Basic-DDP. The
number of reducers is 256 for job1/job3 and 64 for job2/
job4/job5. The runtime of 5 jobs is listed separately. The
parameters settings are as follows: A ¼ 0:99;M ¼ 10;p ¼ 3.
Additionally, we run the popular K-means algorithm.
The number of centers k is predefined as 256. Since the con-
vergence of Kmeans algorithm depends on the application
requirement (it is common to require tens of iterations,
and more iterations result in more accurate result), we only

report its average runtime per iteration. We can see that
LSH-DDP achieves up to 70� speedup over Basic-DDP and
exhibits comparable performance with Kmeans. It is also
possible to lower the accuracy requirement to speedup
LSH-DDP further.

6.5 Effect of LSH Parameters

We study the effect of LSH-DDP’s parameters M and p. We
run LSH-DDP on the BigCross500Kdata set on our local clus-
ter of machines. We set A ¼ 0:99. Our offline parameter tun-
ing (Section 5.3) approach returns M ¼ 5 and p ¼ 3. We
further varyM and p. Figs. 11a and 11b report the impact of
the parameters on the runtime and the accuracy metric t2,
respectively. As shown in Fig. 11a, when p ¼ 3, the runtime
increases asM increases. However, this is not true for larger
p. When p ¼ 20, the trend actually reverses. This is because
that the workload is quite skewed when M is small and p is
large, leading to degraded performance. Fig. 11b shows the
impact of the choice of parameters on t2. When M is less
than 5, t2 is unexpectedly low and this could reduce the qual-
ity of the clustering result. On the other hand, when M is
larger than 5, t2 is stable, achieving 99 percent accuracy for
almost all cases. Taking both runtime and accuracy into con-
sideration, we recommend to setM ¼ ½10; 20� and p ¼ ½3; 10�.

7 RELATED WORK

Clustering Techniques. Previous clustering algorithms
include connectivity based clustering (e.g., hierarchical clus-
tering [24]), centroid-based clustering (e.g., k-means [2]),
distribution-based clustering (e.g., EM clustering [4]), and
density-based clustering (e.g., DBSCAN [3]). As described
in Section 1, Density Peaks [1] is a newly proposed cluster-
ing algorithm. DP has several distinctive advantages over
previous clustering algorithms: It does not require a priori
knowledge, it supports arbitrarily shaped clusters, it is
deterministic, and it provides a 2D representation to visual-
ize the input data. As a result, DP has already been
employed in a wide variety of applications [5], [6], [7], [8],
[9], [11]. Moreover, researchers in the AI community are

TABLE 5
Comparison to EDDPC on BigCross500K

runtime (s) shuffle (GB) # dist. (�109)

Basic-DDP 8,104 166.6 250
EDDPC 667 5.7 13.3
LSH-DDP 327 1.9 40.7

Fig. 10. Runtime of LSH-DDP when varying the number of reducers
(BigCross).

TABLE 6
Runtime on EC2 (Seconds)

dataset LSH-DDP Basic
DDP

kmeans
per iter.job1 job2 job3 job4 job5

USCensus 926 101 909 78 108 71,153 121.3
BigCross 1,300 156 1,353 116 134 164,172 189.4
Activity 4,319 222 4,415 158 339 - 242.8

Fig. 11. Runtime and actual accuracy t2 when varying M and p
(BigCross500K).

10. The runtime of Basic-DDP on Activity dataset is shown ‘-’
because we cannot finish the computation in 5 days.
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interested in extending DP in various aspects [25], [26], [27],
[28], [29]. In this paper, we propose and evaluate LSH-DDP,
an efficient distributed DP algorithm. While we focus on the
original DP, we believe that it is feasible to modify our solu-
tion to support variants of DP.

MapReduce Parallelization of Sequential Algorithms. As a
popular distributed programming paradigm, MapReduce
has been used in parallelizing a wide range of algorithms
for processing big data. This includes text processing [30],
crowdsourcing [31], kNN join [32], nonnegative matrix fac-
torization (NMF) [33], and spatial data query [34]. In this
paper, we also choose MapReduce as the programming
model for distributed DP algorithms.

All-Pair Computation in MapReduce. The computation of r
and d is related to a set of problems where computation is
required for all pairs of input data elements. Kiefer et al.
reduced the communication overhead of all-pair computa-
tion by using replication of set elements to enable partition-
ing, and by aggregating the results gathered for different
copies of an element [35]. Ture et al. presented an
LSH-based scalable MapReduce implementation of the sort-
based sliding window algorithm for extracting pair-wise
similarity [36]. In this paper, we also employ LSH in our
solution. Note that Ture et al.’s work cannot be applied
since r and d are not similarity measurements.

Approximate Algorithms Using LSH. The LSH method was
first proposed by Datar [12]. Since its introduction, LSH has
been used to optimize a wide range of applications. Stupar
et al. exploited LSH to answer kNN query [37]. Zhang et al.
extended this work to solve kNN join problem [32]. Liu
et al. employed LSH to optimize distributed graph summa-
rization [38]. Yu et al. supported scalable content-based
music retrieval through LSH [39]. Pillutla gave an approxi-
mate algorithm for distance based outlier detection using
LSH [40]. We also employ LSH in our solution. As discussed
in Section 1, there are several challenges in applying LSH to
DP. We leverage the characteristics of DP to deal with these
challenges. We present formal analysis of LSH-DDP, and
show that the approximation quality and the runtime can
be controlled by tuning LSH-DDP parameters.

8 CONCLUSION

In this paper, we present an efficient distributed algorithm
LSH-DDP for Density Peaks clustering. We perform theo-
retical analysis of LSH-DDP, which allows users to specify
the expected approximation accuracy. Compared to the
na€ıve MapReduce implementation (Basic-DDP), LSH-DDP
significantly reduces the amount of shuffled data and the
computational cost, thereby achieving a factor of 1.7–70�
speedups when clustering large real-world data sets. It
also achieves 2� speedup over EDDPC with a very high
accuracy requirement. Compared to the popular K-means
clustering algorithm, LSH-DDP has comparable or better
performance. In this paper, we only focus on optimizing
clustering in euclidean space. By using corresponding LSH
variants, LSH-DDP can be extended to support other dis-
tance metrics, such as Jaccard distance, hamming distance,
cosine distance, and edit distance. In conclusion, LSH-DDP
is a promising solution that makes DP algorithm feasible
for clustering large real-world data sets.
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