
PrIter: A Distributed Framework for Prioritizing
Iterative Computations

Yanfeng Zhang, Qixin Gao, Lixin Gao, Fellow, IEEE, and Cuirong Wang

Abstract—Iterative computations are pervasive among data analysis applications, including web search, online social network

analysis, recommendation systems, and so on. These applications typically involve data sets of massive scale. Fast convergence of

the iterative computations on the massive data set is essential for these applications. In this paper, we explore the opportunity for

accelerating iterative computations by prioritization. Instead of performing computations on all data points without discrimination, we

prioritize the computations that help convergence the most, so that the convergence speed of iterative process is significantly

improved. We develop a distributed computing framework, PrIter, which supports the prioritized execution of iterative computations.

PrIter either stores intermediate data in memory for fast convergence or stores intermediate data in files for scaling to larger data sets.

We evaluate PrIter on a local cluster of machines as well as on Amazon EC2 Cloud. The results show that PrIter achieves up to 50 �
speedup over Hadoop for a series of iterative algorithms. In addition, PrIter is shown better performance for iterative computations than

other state-of-the-art distributed frameworks such as Spark and Piccolo.

Index Terms—PrIter, prioritized iteration, iterative algorithms, MapReduce, distributed framework

Ç

1 INTRODUCTION

ITERATIVE computations are common in myriad of data
mining algorithms. PageRank [2], as a well-known

iterative algorithm, has been widely used in web search
engines. Other iterative algorithms such as Adsorption [3]
and Expected Hitting Time [4] are applied to the problem
domains such as link prediction [4] and recommendation
systems [5]. In computational biology, iterative algorithms
such as K-means clustering algorithm [6] have been
adopted in classifying a large collection of data. The
massive amount of data involved in these applications
exacerbates the need for a computing cloud and a
distributed framework that supports fast iterative compu-
tation. MapReduce [7], which powered cloud computing, is
such a framework that supports data processing of massive
scale. Dryad/DryadLINQ [8], [9], Hadoop [10], Pig [11],
Hive [12], and Pregel [13] have been proposed as well. In
particular, all of the previously proposed frameworks
assume that the iterative update is equally important for
all data points.

However, in reality, selectively processing some portions
of the data first has the potential of accelerating the iterative
process, rather than simply performing a series of iterations
over all the data. Some of the data points play an important

decisive role in determining the final converged outcome.
By giving an execution priority to some of the data, the
iterative process can potentially converge fast. For example,
the well-known shortest path algorithm, Dijkstra’s algo-
rithm, greedily expands the node with the shortest distance
first. This will not only derive the shortest distance for all
nodes fast but also be able to quickly return the nearest
nodes. Unfortunately, neither MapReduce nor any existing
distributed computing framework provides the support of
prioritized execution.

In this paper, we demonstrate the potential of prior-
itized execution for iterative computations with a broad set
of algorithms. This motivates the desire of a general
priority-based distributed computing framework. We de-
sign and implement PrIter, a distributed framework, that
supports the prioritized execution of iterative computa-
tions. To realize prioritized execution, PrIter allows users to
explicitly specify the priority value of each processing data
point. PrIter allows either to store data in memory for
better performance or to store data in files for better
scalability. In addition, PrIter is designed to support load
balancing and fault tolerance so as to accommodate diverse
distributed environments.

To evaluate the performance of PrIter, we run a series of
well-known algorithms including PageRank on Amazon
EC2 Cloud [14] as well as on a local cluster. Our
experimental results show that PrIter significantly speeds
up the convergence of the iterative computations, which
achieves up to 50� speedup over the implementations with
Hadoop. Furthermore, we show the effectiveness of prior-
itization by comparing PrIter with prioritized execution and
that without prioritized execution. The results show that
PrIter with prioritization achieves 2� -8� speedup over
that without prioritization. In addition, the file-based PrIter
is shown to have competitive performance, which is only
2 times slower than the memory-based PrIter, but it can
scale to much larger data sets.

1884 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 24, NO. 9, SEPTEMBER 2013

. Y. Zhang is with the Computing Center, Northeastern University, No. 11,
Lane 3, WenHua Road, HePing District, Shenyang, Liaoning 110819,
China. E-mail: zhangyf@cc.neu.edu.cn.

. Q. Gao and C. Wang are with Northeastern University at Qinhuangdao,
143 Taishan Road, Qinhuangdao, Hebei 066004, China.
E-mail: {gaoqx, wangcr}@mail.neuq.edu.cn.

. L. Gao is with Department of Electrical and Computer Engineering,
University of Massachusetts Amherst, 151 Holdsworth Way, Amherst,
MA 01003. E-mail: lgao@ecs.umass.edu.

Manuscript received 3 June 2012; revised 26 Aug. 2012; accepted 4 Sept.
2012; published online 11 Sept. 2012.
Recommended for acceptance by J. Wang.
For information on obtaining reprints of this article, please send e-mail to:
tpds@computer.org, and reference IEEECS Log Number TPDS-2012-06-0529.
Digital Object Identifier no. 10.1109/TPDS.2012.272.

1045-9219/13/$31.00 � 2013 IEEE Published by the IEEE Computer Society

The rest of the paper is organized as follows: In Section 2,
we illustrate the benefit of prioritized iteration through two
example algorithms. Section 3 presents the system design of
PrIter, which maintains intermediate data in memory. In
Section 4, we extend PrIter to maintain intermediate data in
files, so that it is able to scale to much larger data sets. The
experiment results are shown in Section 5, followed by a
survey of related work in Section 6. Finally, we conclude the
paper in Section 7. Comparing to the conference version [1],
this paper improves the scalability of PrIter by proposing
file-based PrIter and adds more experimental results.

2 MOTIVATING EXAMPLES

In this section, we describe two well-known iterative
algorithms that benefit from the prioritized execution. More
motivating examples can be found in Section 1 of the
supplementary file, can be found on the Computer Society
Digital Library at http://doi.ieeecomputersociety.org/
10.1109/TPDS.2012.272.

2.1 Single Source Shortest Path (SSSP)

SSSP is a classical problem that derives the shortest distance
from a source node s to all other nodes in a graph.
Formally, given a weighted, directed or undirected graph
G ¼ ðV ;E;WÞ, where V is the set of nodes, E is the set of
edges, and Wði; jÞ is a positive weight of the edge from
node i to node j. The shortest distance from the source node
s to a node j can be computed iteratively as follows:

DðkÞðjÞ ¼ min
�
Dðk�1ÞðjÞ; min

i

�
Dðk�1ÞðiÞ þWði; jÞ

��
;

where k is the iteration number, and i is an incoming
neighbor of node j. Initially, Dð0ÞðsÞ ¼ 0, and Dð0ÞðjÞ ¼ 1
for any node j other than s.

Although the iterative computation can be easily im-
plemented in a distributed environment, it potentially has
the drawback of performing more computations than
necessary. For example, in Fig. 1, it is more likely that the
shortest path from s to j is the path via i2 than that via i1.
However, in the iterative computation, it explores both
paths simultaneously. In contrast, Dijkstra’s algorithm
selectively picks the node with the shortest distance to
expand. In fact, the path via i1 would not be explored if the
path via i2 is shorter than 100. Therefore, the iterative
algorithm performs more computation than necessary if
nodes are expanded hop by hop. To reduce the unnecessary
computations, we propose to perform iterative computation
with a priority. That is, the nodes with smaller distance
values are given a priority for letting them expand or
perform iterative computations first. In a distributed

environment, each machine will select the nodes to expand
according to the priority values. Formally, the prioritized
SSSP can be described by the MapReduce programming
model as follows:

Map: Compute DðiÞ þWði; jÞ for node i, send the result
to its neighboring node j.

Reduce: Select the minimum value among node j’s
current DðjÞ and all the results received by j, and update
DðjÞ with the minimum value.

Priority: Node j is eligible for the next map operation
only if DðjÞ has changed since the last map operation on j.
Priority is given to the node j with smaller value of DðjÞ.

2.2 PageRank and Personalized PageRank

PageRank and Personalized PageRank are popular algo-
rithms initially proposed for ranking webpages. Later on,
these algorithms have found a wide range of applications,
such as link prediction [4], [15]. PageRank ranks webpages
by performing a random walk on the web linkage graph.
Formally, the web linkage graph is a graph where the node
set V is the set of webpages, and there is an edge from node
i to node j if there is a hyperlink from page i to page j. Let
W be a column-normalized matrix that represents the web
linkage graph. That is, Wðj; iÞ ¼ 1=degðiÞ (where degðiÞ is
the outdegree of node i) if there is a link from i to j,
otherwise, Wðj; iÞ ¼ 0. Thus, the PageRank vector R with
each entry indicating a page’s ranking score can be
computed iteratively as follows:

RðkÞ ¼ dWRðk�1Þ þ ð1� dÞE; ð1Þ

where k is the iteration number, d is the damping factor,
and E is a size-jV j vector with each entry being 1

jV j . The
PageRank vector converges to

Rð1Þ ¼
X1

l¼0

ð1� dÞdlWlE: ð2Þ

Note that Rð1Þ does not depend on the initial PageRank
vector Rð0Þ.

Personalized PageRank differs from PageRank only at
vector E. In Personalized PageRank, E indicates the
personal preferences, in which only the entries represent-
ing the personally preferred pages are nonzero. Below we
will focus on discussing the prioritized iteration for
PageRank. However, similar argument follows for Perso-
nalized PageRank.

To illustrate the benefit from prioritized iteration, we
first present an alternate iterative computation for PageR-
ank, referred to as Incremental PageRank that derives the
same vector as PageRank:

�R
ðkÞ
inc ¼ dW�R

ðk�1Þ
inc

R
ðkÞ
inc ¼ R

ðk�1Þ
inc þ�R

ðkÞ
inc;

ð3Þ

where �R
ð0Þ
inc ¼ R

ð0Þ
inc ¼ ð1� dÞE. Note that both PageRank

and Incremental PageRank converge to the same ranking
vector as shown in (2). Therefore, Incremental PageRank
can be used for computing PageRank scores.

Furthermore, the Incremental PageRank update can be
executed selectively. That is, the update function does not
have to be performed by all nodes concurrently. In each

ZHANG ET AL.: PRITER: A DISTRIBUTED FRAMEWORK FOR PRIORITIZING ITERATIVE COMPUTATIONS 1885

Fig. 1. A SSSP example.

iteration, only a selected subset of nodes perform the update
function instead. To differentiate the “iteration” used in
selective update from the “iteration” used in concurrent
update, we refer to an “iteration” used in selective update
as a subpass.

Let Sk denote the subset of nodes in V that are activated
to perform the update function at subpass k. Selective
Incremental PageRank updates the ranking score as follows:

�R
ðkÞ
sel ¼ �R

ðk�1Þ
sel ðV � SkÞ þ dW�R

ðk�1Þ
sel ðSkÞ

R
ðkÞ
sel ¼ R

ðk�1Þ
sel þ dW�R

ðk�1Þ
sel ðSkÞ;

ð4Þ

where �R
ð0Þ
sel ¼ R

ð0Þ
sel ¼ ð1� dÞE. �R

ðk�1Þ
sel ðSkÞ is a vector

with only nodes in Sk being accounted for and all the
other entries being 0, while �R

ðk�1Þ
sel ðV � SkÞ is a vector

with only nodes in V � Sk retaining their �R
ðk�1Þ
sel and all

the other entries being 0. That is, once being activated, the
nodes in Sk use their �Rsel to update �R

ðkÞ
sel and R

ðkÞ
sel , after

that they reset their �Rsel to be 0. In Section 2.1 of the
supplementary file, available online, we have shown that
as long as each node is activated an infinite number of
times, Selective Incremental PageRank will converge to the
same PageRank vector as Incremental PageRank.

The selective computation of PageRank indicates that
the prioritized execution of iterative computations is
feasible. Now, we show how to determine the priority
and the benefit of the prioritized execution. For the ease of
argument, we use L1-Norm distance between the current
subpass’s PageRank vector R

ðkÞ
sel and the converged

PageRank vector R
ð1Þ
sel to quantify the closeness to

convergence. As shown in (4), each entry of R
ðkÞ
sel is

monotonic nondecreasing as k increases. Therefore,
the bigger kRðkÞselk1 is, the closer R

ðkÞ
sel is to the converged

PageRank vector. Since W is a column normalized matrix,

��RðkÞsel
��

1
¼
��Rðk�1Þ

sel

��
1
þ d
���R

ðk�1Þ
sel ðSkÞ

��
1
:

Accordingly, node i in Sk with its �R
ðk�1Þ
sel ðiÞ contributes

d�R
ðk�1Þ
sel ðiÞ for shortening the distance between R

ðk�1Þ
sel and

R
ð1Þ
sel . Hence, the larger �R

ðk�1Þ
sel ðiÞ contributes more for the

convergence of R
ðk�1Þ
sel toward R

ð1Þ
sel .

Let S� denote a subset of nodes that mini2S��RselðiÞ �
maxi2V�S��RselðiÞ. Prioritized Incremental PageRank per-
forms the iterative computation as shown in (4), which
is always selecting nodes in S� to activate in each subpass
but ignoring the nodes in V � S�. That is, to accelerate
the PageRank computation, the nodes in S�, a subset of
nodes with bigger �Rsel, are activated in each subpass.
Furthermore, Prioritized Incremental PageRank converges
to the same PageRank vector as Incremental PageRank
(see the proof in Section 2.2 of the supplementary file,
available online).

Formally, we describe Prioritized Incremental PageRank
using the MapReduce programming model as follows:

Map: Compute d�RðiÞWði; jÞ for node i, send the result
to its neighboring node j, and reset �RðiÞ to be 0.

Reduce: Compute �RðjÞ by summing node j’s current
�RðjÞ and all the results received by j, and update
RðjÞ ¼ RðjÞ þ�RðjÞ.

Priority: Node j is eligible for the next map operation
only if �RðjÞ > 0. Priority is given to the node with a larger
value of �R.

3 PRITER DESIGN

In this section, we propose PrIter, a distributed framework
for prioritized iterative computations, which is implemen-
ted based on Hadoop MapReduce [10]. First, we describe
the requirements of a framework that supports prioritized
iterative computations:

1. The framework needs to support iterative proces-
sing. Iterative algorithms perform the same compu-
tation in each iteration, and the state from the
previous iteration has to be passed to the next
iteration efficiently.

2. The framework needs to support state maintenance
across iterations. In MapReduce, only the previous
iteration’s result is needed for the next iteration’s
computation, while in PrIter the intermediate itera-
tion state should be maintained across iterations due
to the selective update operations.

3. The framework needs to support prioritized execu-
tion. That is, an efficient selection of the high-priority
data should be provided.

PrIter provides the functionalities of iterative proces-
sing (Section 3.1), state maintenance (Section 3.2), prior-
itized execution (Section 3.3), and online top-k query
(Section 3.4). PrIter also supports termination check
(Section 3.1 of the supplementary file, available online),
load balancing, and fault-tolerance (Section 3.2 of the
supplementary file, available online). We describe PrIter’s
API and show a representative PageRank implementation
example with PrIter in Section 4 of the supplementary file,
available online.

3.1 Iterative Processing

PrIter incorporates the support of iMapReduce [16] for
iterative processing. Iterative process performs the same
operation in each iteration, and the output of the previous
iteration is passed to the next iteration as the input.
iMapReduce following MapReduce paradigm directly
passes the reduce output to the map for the next iteration,
rather than writing output to distributed file system (DFS).
Fig. 2 shows the overall iterative processing structure.

We separate the data flow into two sub data flows
according to their variability features, including the static
data flow and the state data flow. The static data (e.g., the
graph structure) keeps unchanged over iterations, which is
used in the map function for exchanging information
between neighboring nodes. While the state data (e.g., the

1886 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 24, NO. 9, SEPTEMBER 2013

Fig. 2. Iterative processing structure.

iterated shortest distance or the PageRank score) is updated
every iteration, which indicates the node state. The static
graph data and the initial state data are partitioned and
preloaded to workers, and the framework will join the static
data with the state data before map operation.

Under the modified MapReduce framework, we can
focus on updating the state data through map and reduce
functions on the key-value pairs. Each key represents a node
id (nid), and the associated value is the node state that is
updated every iteration (e.g., the PageRank score of a
webpage). In addition, each node has information that is
static across iterations (e.g., the node linkage information),
which is also indexed by nids. A hash function F applied on
the keys/nodes is used to split the static graph data and the
initial node state data evenly into n partitions according to
pid ¼ F ðnid; nÞ, where pid is a partition id. These partitions
are assigned to different workers by the master. Each
worker can hold one or more partitions.

A map task with map task id pid is assigned for
processing partition pid, and the map output hkey; valuei=
hnode; statei pairs are shuffled to the reduce tasks accord-
ing to the same hash function, rid ¼ F ðnid; nÞ, where rid is
the reduce task id and n is the number of reduce tasks.
(Note that, PrIter requires the number of reduce tasks to be
equal to the number of map tasks.) Accordingly, a reduce
task is connected to the map task with the same task id pid
in the same worker, by which we establish a local reduce-
to-map connection. The reduce merges the results from
various maps to update a node’s state, and its output
hnode; statei pairs are directed to the connected map as the
map’s input. By using the same hash function F ðnid; nÞ for
partitioning and shuffling, a node’s static data (e.g.,
neighbors in the web graph) and its dynamic state are
always joined in the same map task. Therefore, a paired
map and reduce tasks always operate on the same subset
of keys/nodes. We refer to the paired map/reduce task as
MRPair. These tasks are persistent tasks that keep alive
during the entire iterative process and maintain the
intermediate iteration state. In summary, each MRPair
performs the iterative computation on a data partition, and
the necessary information exchange between MRPairs
occurs during the maps-to-reduces shuffling.

3.2 State Maintenance

Each MRPair is assigned with a subset of keys/nodes,
whose values/states are maintained locally. (Note that one
or more fine-grained MRPairs could be assigned to a worker
for load balancing, which is described in Section 3.2 of the
supplementary file, available online.) During the iterative
process, a key/node’s value/state is updated after an
iteration. That is, the value/state for each key/node should
be maintained across iterations. To ensure fast access to the
value/state, we design a StateTable at the reduce side that is
implemented with an in-memory hash table.

In the context of incremental update (opposed to
concurrent update in traditional iterative computations),
two types of state should be maintained. The first is the
iterative state or iState, which is used for the iterative
computation. The second is the cumulative state or cState
indicating a node’s state, which is accumulated from all the
previous iterations. For example, in the SSSP algorithm

(Section 2.1), the iState for node j is the shortest distance
received from j’s neighbors that have not been used for
updating j’s shortest distance, while the cState is the
accumulated shortest distance for node j, which will be
updated only if its iState is smaller than it. In PageRank
(Section 2.2), the iState for page j is �RðjÞ that is the
incremental PageRank score, while the cState is RðjÞ that is
the accumulated PageRank score. The key reason behind
the separation of the two types of state is for supporting the
incremental update. When performing an incremental
update, we not only perform the iterative computation on
the records to update their iterative state, but also need to
maintain their accumulated state during iterations. Accord-
ingly, two fields of the StateTable are designed to maintain
the iState and the cState, which are indexed by nid.

In MapReduce, the output hkey; valuei pairs of various
maps are sorted according to the natural order of keys, then
the reduce function is performed on the grouped
hkey; values listi pair. However, since the StateTable sup-
ports random access, it is not necessary to perform sort
between the map and reduce in PrIter, so that we eliminate
the sort phase, which can significantly improve perfor-
mance [17]. Moreover, we start the reduce operation
immediately upon receiving a map’s output. In other
words, the “reduce” function is applied on hkey; valuei
rather than hkey; values listi. It updates the corresponding
entry in the StateTable according to a received value, rather
than performing a reduce function on all the received
values associated with the same key. We replace the reduce
function by an UpdateState function, which updates the
iState and the cState in the StateTable.

In summary, the StateTable stores the state information
of each node. The state is updated every iteration by an
UpdateState function, which takes map’s output hkey; valuei
pairs as input. Users can specify the update rules to achieve
their goals.

3.3 Prioritized Execution

To perform prioritized execution, PrIter labels each node
with a priority value that is specified by users. The priority
information of each node is also maintained in the
StateTable. During the update of node state, instead of a
pass over the entire StateTable as an iteration, a pass
through a selected subset as a subpass is performed based
on the entries’ priority values. A number of nodes with
larger priority values are selected for the map operation in
the next subpass. Since each MRPair holds only a subset of
nodes, the priority value is compared among the nodes
residing in the same MRPair instead of a global comparison
across workers.

Fig. 3 shows the data flow in a MRPair. The StateTable is
updated in each subpass based on the output of the
UpdateState function. The priority value is determined by
function DecidePriority, which is for users to specify each
node’s execution priority taking account of the state
information. For example, in SSSP, the priority value is
the negative value of the cState (i.e., the shortest distance),
while in PageRank, the priority value is exactly the same
value as the iState (i.e., �R). Upon the receipt of all maps’
output, a priority queue containing the hnode; iStatei pairs
with higher priority values is extracted from the StateTable

ZHANG ET AL.: PRITER: A DISTRIBUTED FRAMEWORK FOR PRIORITIZING ITERATIVE COMPUTATIONS 1887

for feeding the paired map in the next subpass. After a node
is decided to be enqueued, its iState and its nid are copied
in the priority queue, and accordingly its iState in the
StateTable is reset.

The size of the priority queue demonstrates the tradeoff
between the gain from the prioritized execution and the cost
from the queue extraction. Setting it too long may degrade
the effect of prioritization. In the extreme case that the
queue size is the same size as the StateTable, there is no
priority in the iterative computation. On the other hand,
setting the queue too short may lead to frequent subpasses
and as result incurs considerable overhead for the frequent
queue extractions. (Discussion of the optimal queue size can
be found in Section 4 of the supplementary file, available
online.) However, the prioritized iteration is shown to
improve the performance over a wide range of queue size
settings as shown in Section 6.4 of the supplementary file,
available online.

Once the queue size q is given, PrIter should extract the
top q nodes with the highest priority values in each
subpass. Sorting the whole StateTable can be expensive
and time consuming. In practice, it is unnecessary to extract
the exact q top priority nodes. PrIter approximates the top
records by a sampling method shown in Algorithm 1. The
idea of this heuristic is that the distribution of the priority
values in a small samples set reflects the distribution of
priority values in the large StateTable. By sorting the
samples in the descending order of the priority values, the
lower bound of the priority value of the top q records can
be approximated to be the (q�sN)th record’s priority value in
the sorted samples set. Intuitively, the more samples the
more accuracy of this approximation is obtained but the
more time is consumed. In Section 6.3 of the supplementary
file, available online, we show the effectiveness of the
sampling approach. Through this approximation, PrIter
takes OðNÞ time on extracting the top priority nodes
instead of OðN logNÞ time.

3.4 Online Top-k Query Support

Since each PrIter MRPair operates on a subset of nodes,
after a number of map-reduce subpasses, it only has the

knowledge of partial result, i.e., cState values in StateTable.

These partial results can be written to DFS for users to

access. However, for some applications users might prefer

to query the top-k records online.
The local top results in each MRPair can be extracted in

parallel. A DecideTopK function is applied on each node’s

cState, which indicates a node’s final cumulative state, to

retrieve its top-k priority value (Note that the priority

information based on cState helps the top-k results

extraction, while the priority information based on iState

helps prioritized iteration). The higher the top-k priority

value is, the more likely it is in the top-k list. PrIter adopts

the same sampling technique for generating priority queue

to derive the local top-k nodes with higher top-k priority.

These extracted local top results (hnode; cStatei pairs) from

the running MRPairs are sent to a merge worker

periodically, where they are merged into a global top-k

result. Then, the global top-k result is written to DFS by the

merge worker, such that users are able to see the top-k

result snapshot periodically.
While the mechanism described above is straightfor-

ward, it might not scale. Scaling to a large number of

MRPairs incurs heavy burden on the merge worker. We

have two refinements on the naive mechanism. First, each

PrIter MRPair sends less than k tops. Suppose there are m

running MRPairs, on average each MRPair contributes

only k
m records to the global top-k records. We let each

PrIter MRPair sends 4k
m top records to approximate the

global top-k records. Second, the PrIter worker merges

the local MRPairs’ top records first before sending them to

the merge worker. The premerge operation alleviates the

merge worker’s workload significantly.

4 FILE-BASED PRITER

PrIter relies on in-memory StateTable to proceed prioritized

iteration. Suppose the number of workers is fixed, if the

input graph becomes huge, the StateTable with billions of

records cannot be loaded into memory. In this section, we

extend PrIter to store data in files so as to scale to much

larger data sets.

1888 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 24, NO. 9, SEPTEMBER 2013

Fig. 3. Data flow in a PrIter MRPair.

4.1 Data in Sorted Files

The key problem of file-based system is the lack of fast
random access support, such that it is not practical to
update a specified StateTable entry in the UpdateState
function. However, we are inspired by the idea of
MapReduce to solve this problem, where MapReduce
realizes grouping keys by presorting. In the map output
files, the hkey; valuei pairs are sorted in the natural order of
keys. In the reduce phase, by sequential access to multiple
files in a single pass, the hkey;valuei pairs from various map
output files are grouped by key for the reduce operation.

The file-based PrIter stores every key/node’s informa-
tion (line by line) in local files and in the order of their
keys/nids. In each MRPair, iState and cState are stored in
separated files, i.e., iState file and cState file. The static data,
for example, the linklist of each node, are also stored in a
local file in the order of their keys (i.e., static data file). Since
the computation for deciding each key’s priority is light-
weight, we will compute the priority value when needed, so
the priority values are not stored in file to avoid the
relatively more expensive disk I/Os. As these files are
sorted in the same order of keys, when querying every
node’s information, we can sequentially parse these
separated files (line by line) in the same pace.

4.2 Two-Phase Update

As presented in Section 3.2, PrIter starts to update the in-
memory StateTable immediately upon receiving a map
output file, and it extracts a priority queue after receiving all
map output files. However, in the file-based PrIter, we start
to perform update after receiving all map output files.
Basically, given the map output files and the initial iState/
cState/static data files, the file-based PrIter performs
update and extracts priority queue by two phases of
parsing these files. As shown in Fig. 4, the first phase
aggregates the map output files and the iState file to

produce an intermediate iState file, and the second phase
reads the intermediate iState file, cState file, and static data
file to produce the updated iState and cState files and the
priority queue file.

In the first phase, we leverage Hadoop’s merging
mechanism, which groups the key-value pairs with the
same key by parsing the sorted map output files. We add
the sorted iState file in this merge phase. We move the line
cursors (top down) in these map output files and in the iState
file to match the tuples that have the same key. The values in
the matched tuples are aggregated, and the aggregated
result is the new iState, which is written to the intermediate
iState file. Along with the aggregation, we also perform the
sampling process (Section 3.3) to retrieve a priority threshold
for priority queue extraction in the second phase.

In the second phase, by parsing the iState values in the
intermediate iState file, we decide each key’s priority value.
With the already retrieved priority threshold in the first
phase, the keys with priority values higher than the
threshold will be extracted. As a high-priority key is
selected, the key along with its iState and its static data
are written to the priority queue file. Note that, because the
map operation will use the static data (Section 3.1), we also
retrieve the static data from the static data file. In the
meantime, the selected key’s cState is updated, and its iState
is reset to the default value. Accordingly, we need to read
the old cState file and output the updated cState/iState. If a
key is not selected, its cState and iState are unchanged to be
written to the new cState and iState files, respectively.

After these files have been parsed, we generate a priority
queue file, in which each line contains the high-priority key,
iState, and static data information. It then notifies the local
map task to process the priority queue file to start the next
iteration. Based on the iState and the static data, the map
produces output files and shuffles them to reduce tasks to
continue the iterative process.

Comparing with the memory-based PrIter, the file-based
PrIter requires additional local disk I/Os for updating state
and generating priority queue. However, it can scale to
much larger data sets. In Section 5, we will show that the
file-based PrIter can give competitive performance.

5 EVALUATION

We implement a prototype of PrIter based on Hadoop [10].
Any Hadoop program can be implemented with PrIter. We
also have made our implementation available at [18]. In this
section, we evaluate our prototype implementation of
PrIter. Note that, besides the results shown in this section,
we also include more additional results on the top record
emergence time, the effectiveness of sampling queue
extraction, and the impact of priority queue size in Section 6
of the supplementary file, available online.

5.1 Environment Setup

The experiments are performed on Amazon EC2 Cloud [14]
and on a cluster of local machines. The experiment on
EC2 involves 100 medium instances, each with 1.7-GB
memory and five EC2 compute units. The local cluster
consisting of four commodity machines is used to run small-
scale experiments. Each machine has Intel E8200 dual-core

ZHANG ET AL.: PRITER: A DISTRIBUTED FRAMEWORK FOR PRIORITIZING ITERATIVE COMPUTATIONS 1889

Fig. 4. The data flow in the file-based PrIter.

2.66-GHz CPU, 3-GB of RAM, and 160-GB storage. These four
machines are connected through a switch with bandwidth
of 1 Gbps. The experiment data sets, including a number
of real data sets and synthetic data sets, are described in
Section 6.1 of the supplementary file, available online.

5.2 Overall Performance

To evaluate the performance of PrIter in a large scale
environment, we deploy PrIter on Amazon EC2 Cloud
involving 100 medium instances. We run PageRank on a
very large synthetic webgraph (containing 100,000,000
nodes) with memory-based PrIter, file-based PrIter, mem-
ory-based iMapReduce, file-based iMapReduce, Piccolo,
Spark and Hadoop. iMapReduce [16], an extended version
of Hadoop, supports iterative processing by launching
persistent tasks and maintaining the intermediate iteration
state in local files (file-based iMapReduce) or in local
memory (memory-based iMapReduce), and it improves the
performance mainly by eliminating the shuffling of the
static data. Piccolo [17], which is implemented with C++,
allows to operate a global table stored in distributed
machines, with each machine holding a part of the table
in local memory. Users can implement iterative algorithms
by accessing in-memory distributed tables. In addition,
Piccolo uses MPI to communicate between distributed
workers to improve performance. Spark [19], [20] is another
state-of-the-art cloud-based framework that supports large-
scale iterative computations. Spark utilizes resilient distrib-
uted data set (RDD), which is a read-only collection of objects
maintained in memory across iterations. RRD makes three
replicas for each piece of data to support fault tolerance but
sacrifices performance.

Fig. 5 shows the convergence time of PageRank, by using
Hadoop, file-based iMapReduce, file-based PrIter, Spark,
memory-based iMapReduce, Piccolo, and memory-based
PrIter. We take the convergence time of Hadoop as a
baseline, which takes 100 percent time to convergence. The
file-based iMapReduce reduces the convergence time by
about 42 percent, which is achieved mainly by the
avoidance of static data shuffling. The file-based PrIter
reduces the Hadoop convergence time to 25 percent by
prioritized computation. These three frameworks store
intermediate data in files, which can scale to much larger
data sets. Since disk access is much slower than memory
access, the file-based iMapReduce and the file-based PrIter
are expected to be slower than their in-memory versions.
However, we can see that the file-based PrIter only takes

around two times longer time than the memory-based
PrIter, but it allows to scale to much larger data sets. Spark,
famous as a fault tolerant memory-based cloud system,
sacrifices performance for data redundancy. As depicted in
the figure, Spark only reduces Hadoop convergence time by
53 percent (Spark should perform better with controlled
partitioner [20]). Piccolo also stores data in memory and
leverages MPI for high performance communication, which
reduces Hadoop convergence time to 14 percent.

The memory-based PrIter performs the best, which
reduces Hadoop convergence time to only 11 percent. Since
PrIter incorporates iMapReduce for efficient iterative
processing (see Section 3.1), the performance improvement
by the memory-based PrIter results from 1) the optimiza-
tions from the memory-based iMapReduce and 2) the
prioritized computation. As shown in the figure, the
memory-based iMapReduce reduces Hadoop running
time to 42.2 percent, which is mainly achieved by avoiding
static data shuffling [16] and eliminating sort phase [16],
[17]. Thanks to the prioritized computation, the memory-
based PrIter further reduces the memory-based iMapRe-
duce running time to almost 1/4 (from 42.2 to 11 percent).

5.3 Varying Input Size

To illustrate PrIter’s performance with different input size,
we, respectively, generate synthetic graphs with 100,000
nodes, 1,000,000 nodes, 10,000,000 nodes, and 50,000,000
nodes and run PageRank on our local cluster with the file-
based PrIter, memory-based PrIter, Piccolo, and Hadoop.

We record the convergence time of these frameworks on
different-size graphs. For the same size graph, we consider
Hadoop’s running time as 100 percent of the running time.
As shown in Fig. 6, the memory-based PrIter and the file-
based PrIter always converge faster than Hadoop, which
only take 20-30 percent of the Hadoop’s running time. The
file-based PrIter requires additional local disk I/Os, which
impacts the performance. Therefore, the file-based PrIter
performs a little worse (around two times slower) than the
memory-based PrIter for 100K-node graph, 1M-node graph,
and 10M-node graph. On the other hand, Piccolo performs
well on small-size graph. But as the graph size increases,
Piccolo is not as good as the memory-based PrIter. In
addition, Piccolo and the memory-based PrIter cannot
process large graphs due to memory space limitation, while
the file-based PrIter stores intermediate data in files, which
can scale to much larger data sets.

1890 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 24, NO. 9, SEPTEMBER 2013

Fig. 5. The convergence time of PageRank (100M node synthetic graph)
on Amazon EC2.

Fig. 6. The running time of PageRank on local cluster for synthetic
graphs with different graph sizes.

5.4 Convergence Speed

PrIter prioritizes the computation by performing update
on the dominant data that contribute to the convergence
the most. As a result, the iterative algorithms approach to
the convergence point with less node activations, which
means less computation workload and less amount of
network communication. Therefore, the algorithms imple-
mented with prioritization will converge faster than that
without prioritization.

To evaluate the effect of prioritized execution, we
compare the convergence rate by turning on and off the
prioritized execution. Additionally, we also compare PrIter
with the traditional Hadoop. To illustrate the effect of
prioritized iteration in more general sense, we perform the
experiments in the context of four popular applications
using the real data sets described in Table 1 of the
supplementary file, available online. We let PrIter generate
a result snapshot every few seconds, and calculate its
distance to the final result, which has been precomputed
offline. For the Hadoop implementations, we record the
snapshot after completing each job and measure the
distance to the convergence point. The distance in SSSP/
ConnComp is defined as the number of nodes that have not
yet finalized their shortest distances/component ids. In
PageRank/Adsorption, we use L1-Norm distance between
the current PageRank/label distribution vector and the
final converged vector.

We perform the convergence speed experiment on our
local cluster. The experiment results are shown in Fig. 7.
We can see that the PrIter implementations with prior-
itized execution converge faster than that without prior-
itized execution. Overall, the prioritized execution of PrIter
speeds up the convergence by a factor of 2 to 8. Further,
the convergence speed of the PrIter implementations is
much faster than that of the Hadoop implementations,
where a more significant speedup ranging from 5��50�
is achieved.

6 RELATED WORK

With the increasing popularity of MapReduce [7], [21] and
its open source implementation Hadoop [10], a series of
distributed computing frameworks have been proposed
these years, such as Dryad/DryadLINQ [8], [9], Hive [12],
MapReduce Online [22], and Pig [11]. These efforts directly
promote the development of cloud computing. However,
these proposed frameworks unanimously embraced a batch
processing model, which limits their potential to efficiently
implement iterative algorithms. To address this problem,
there are a number of efforts targeted on providing efficient
frameworks for the distributed implementations of iterative
algorithms. These include Twister [23], HaLoop [24],

iMapReduce [16], Piccolo [17], Spark [19], [20], CIEL [25],
and so on.

Among these works, Pregel [13] provides an expressive
model for programming graph-based algorithms. It uses a
pure message passing model to process graphs, and the
iterative algorithms in Pregel are expressed as a sequence of
supersteps. Basically, a node performs message passing and
votes to halt after finishing its computation in a superstep.
The idea of prioritized execution can be integrated into
Pregel as well. GraphLab [26] improves upon MapReduce
abstraction by compactly expressing asynchronous iterative
algorithms with sparse computational dependencies.
The GraphLab data model relies on shared memory to
maintain vertex state and edge state. Most recently, the
authors extend the GraphLab framework to the substan-
tially more challenging distributed setting while preserving
strong data consistency guarantees [27]. However, the
asynchronous programming model in GraphLab requires
data consistency models to prevent data races, and the
asynchronous model can also lead to nondeterministic
behavior, which depends largely on the asynchronous
update order. PrIter proposes rearranging the update order
considering node state instead of blindly processing nodes
in a synchronous manner, which can be adopted by
GraphLab to support efficient asynchronous update.

Besides these recently proposed large scale distributed
frameworks, Jack Dongarra et al. have contributed a
number of open source software packages for parallel
sparse matrix vector iterative computation, including BLAS
[28] and LAPACK [29]. PrIter’s idea of selective update in
each iteration differs from the traditional synchronous
iteration in these previous works and can be an optimiza-
tion to be applied in these softwares. In addition, many
early stage studies laid the foundation of asynchronous
iteration and have proved its effectiveness and convergence
[30], [31], [32]. Our work provides a new selective update
iteration scheme, which explores the priority property to
accelerate distributed iterative computation.

PrIter accelerates the convergence of iterative algorithms
by the prioritized execution of iterative updates. A priority
value is assigned to each data point (represented by a key),
and only the high priority data points are executed in each
iteration. To the best of our knowledge, this is the first
work that supports the prioritized execution for iterative
computations.

7 CONCLUSIONS

Parsing massive data sets iteratively is a time-consuming
process. In this paper, we argue that the prioritized
execution of iterative computations accelerates iterative
algorithms. Prioritized iteration enables selecting a subset

ZHANG ET AL.: PRITER: A DISTRIBUTED FRAMEWORK FOR PRIORITIZING ITERATIVE COMPUTATIONS 1891

Fig. 7. Convergence speed.

of data that ensure fast convergence to perform updates,
rather than performing updates on all data. We formally
prove that the prioritized iteration converges to the correct
results. With prioritized iteration, the iterative process
proceeds more effectively. To support prioritized iteration
in a distributed environment or in a cloud, we propose
PrIter. For better scalability, we also propose file-based
PrIter that stores all data in files. Experiments are performed
in the context of various applications to evaluate PrIter. The
experimental results show that PrIter significantly improves
performance over that achieved by Hadoop.

ACKNOWLEDGMENTS

This work was partially supported by US National Science
Foundation (NSF) grants (CCF-1018114, CNS-1217284),
Fundamental Research Funds for the Central Universities
(N120416001, N120816001, N100704001), China Mobil Labs
Fund (MCM20122051), MOE-Intel Special Fund of Informa-
tion Technology (MOE-INTEL-2012-06), and National Nat-
ural Science Foundation of China (61272179). A preliminary
version [1] appeared in the Proceedings of the 2nd ACM
Symposium on Cloud Computing (SOCC ’11), 2011.

REFERENCES

[1] Y. Zhang, Q. Gao, L. Gao, and C. Wang, “Priter: A Distributed
Framework for Prioritized Iterative Computations,” Proc. ACM
Symp. Cloud Computing (SOCC ’11), 2011.

[2] S. Brin and L. Page, “The Anatomy of a Large-Scale Hypertextual
Web Search Engine,” Proc. Seventh Int’l Conf. World Wide Web
(WWW ’98), pp. 107-117, 1998.

[3] S. Baluja, R. Seth, D. Sivakumar, Y. Jing, J. Yagnik, S. Kumar, D.
Ravichandran, and M. Aly, “Video Suggestion and Discovery for
Youtube: Taking Random Walks Through the View Graph,” Proc.
Int’l Conf. World Wide Web (WWW ’08), pp. 895-904, 2008.

[4] D. Liben-Nowell and J. Kleinberg, “The Link Prediction Problem
for Social Networks,” Proc. ACM Conf. Information and Knowledge
Management (CIKM ’03), pp. 556-559, 2003.

[5] T. Zhou, Z. Kuscsik, J.-G. Liu, M. Medo, J.R. Wakeling, and Y.-C.
Zhang, “Solving the Apparent Diversity-Accuracy Dilemma of
Recommender Systems,” Proc. Nat’l Academy of Sciences of USA,
vol. 107, no. 10, pp. 4511-4515, Mar. 2010.

[6] N. Slonim, N. Friedman, and N. Tishby, “Unsupervised Docu-
ment Classification Using Sequential Information Maximization,”
Proc. 25th Ann. Int’l ACM SIGIR Conf. Research and Development in
Information Retrieval, pp. 129-136, 2002.

[7] J. Dean and S. Ghemawat, “Mapreduce: Simplified Data Proces-
sing on Large Clusters,” Proc. USENIX Symp. Operating Systems
Design & Implementation (OSDI ’04), p. 10, 2004.

[8] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly, “Dryad:
Distributed Data-Parallel Programs from Sequential Building
Blocks,” ACM SIGOPS Operating Systems Rev., vol. 41, pp. 59-72,
Mar. 2007.

[9] Y. Yu, M. Isard, D. Fetterly, M. Budiu, U. Erlingsson, P.K. Gunda,
and J. Currey, “Dryadlinq: A System for General-Purpose
Distributed Data-Parallel Computing Using a High-Level Lan-
guage,” Proc. USENIX Symp. Opearting Systems Design & Imple-
mentation (OSDI ’08), pp. 1-14, 2008.

[10] Hadoop, http://hadoop.apache.org/, 2013.
[11] C. Olston, B. Reed, U. Srivastava, R. Kumar, and A. Tomkins, “Pig

Latin: A Not-So-Foreign Language for Data Processing,” Proc.
ACM SIGMOD Int’l conf. Management of Data, pp. 1099-1110, 2008.

[12] A. Thusoo, J.S. Sarma, N. Jain, Z. Shao, P. Chakka, S. Anthony,
H. Liu, P. Wyckoff, and R. Murthy, “Hive: A Warehousing
Solution over a Map-Reduce Framework,” Proc. Int’l Conf. Very
Large Database (VLDB ’09), pp. 1626-1629, 2009.

[13] G. Malewicz, M.H. Austern, A.J. Bik, J.C. Dehnert, I. Horn, N.
Leiser, and G. Czajkowski, “Pregel: A System for Large-Scale
Graph Processing,” Proc. ACM SIGMOD Int’l Conf. Management of
Data, pp. 135-146, 2010.

[14] Amazon ec2, http://aws.amazon.com/ec2/, 2013.

[15] H.H. Song, T.W. Cho, V. Dave, Y. Zhang, and L. Qiu, “Scalable
Proximity Estimation and Link Prediction in Online Social
Networks,” Proc. Int’l Conf. Internet Measurement (IMC ’09),
pp. 322-335, 2009.

[16] Y. Zhang, Q. Gao, L. Gao, and C. Wang, “Imapreduce: A
Distributed Computing Framework for Iterative Computation,”
Proc. IEEE Int’l Workshop Data Intensive Cloud Computing (Data-
Cloud ’11), 2011.

[17] R. Power and J. Li, “Piccolo: Building Fast, Distributed Programs
with Partitioned Tables,” Proc. USENIX Symp. Opearting Systems
Design and Implementation (OSDI ’10), 2010.

[18] Priter project, http://code.google.com/p/priter/, 2013.
[19] M. Zaharia, M. Chowdhury, M.J. Franklin, S. Shenker, and I.

Stoica, “Spark: Cluster Computing with Working Sets,” Proc.
USENIX Workshop Hot Topics in Cloud Computing (HotCloud ’10),
2010.

[20] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley,
M.J. Franklin, S. Shenker, and I. Stoica, “Resilient Distributed
Datasets: A Fault-Tolerant Abstraction for. in-Memory Cluster
Computing,” Proc. Ninth USEINX Symp. Networked Systems Design
and Implementation (NSDI ’12), 2012.

[21] A. Pavlo, E. Paulson, A. Rasin, D.J. Abadi, D.J. DeWitt, S. Madden,
and M. Stonebraker, “A Comparison of Approaches to Large-Scale
Data Analysis,” Proc. ACM SIGMOD Int’l Conf. Management of
Data, pp. 165-178, 2009.

[22] T. Condie, N. Conway, P. Alvaro, J.M. Hellerstein, K. Elmeleegy,
and R. Sears, “Mapreduce Online,” Proc. USEINX Symp. Networked
Systems Design and Implementation (NSDI ’10), 2010.

[23] J. Ekanayake, H. Li, B. Zhang, T. Gunarathne, S.-H. Bae, J. Qiu,
and G. Fox, “Twister: A runtime for Iterative Mapreduce,” Proc.
IEEE Int’l Workshop MapReduce (MapReduce ’10), pp. 810-818, 2010.

[24] Y. Bu, B. Howe, M. Balazinska, and D.M. Ernst, “Haloop: Efficient
Iterative Data Processing on Large Clusters,” Proc. Int’l Conf. Very
Large Database (VLDB ’10), 2010.

[25] D.G. Murray, M. Schwarzkopf, C. Smowton, S. Smith, A.
Madhavapeddy, and S. Hand, “Ciel: A Universal Execution
Engine for Distributed Data-Flow Computing,” Proc. USEINX
Symp. Networked Systems Design and Implementation (NSDI ’11),
2011.

[26] Y. Low, J. Gonzalez, A. Kyrola, D. Bickson, C. Guestrin, and J.M.
Hellerstein, “Graphlab: A New Framework for Parallel Machine
Learning,” Proc. Int’l Conf. Uncertainty in Artificial Intelligence (UAI
’10), 2010.

[27] Y. Low, J. Gonzalez, A. Kyrola, D. Bickson, C. Guestrin, and J.M.
Hellerstein, “Distributed Graphlab: A Framework for Machine
Learningand Data Mining in the Cloud,” Proc. Int’l Conf. Very
Large Database (VLDB ’12), 2012.

[28] J.J. Dongarra, J. Du Croz, S. Hammarling, and R.J. Hanson, “An
Extended Set of Fortran Basic Linear Algebra Subprograms,”
ACM Trans. Math. Software, vol. 14, no. 1, pp. 1-17, Mar. 1988.

[29] E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J.D. Croz,
A. Greenbaum, S. Hammarling, A. McKenney, S. Ostrouchov, and
D. Sorensen, LAPACK’s User’s Guide. SIAM, 1992.

[30] D. Chazan and W. Miranker, “Chaotic Relaxation,” Linear Algebra
and Its Applications, vol. 2, no. 2, pp. 199-222, 1969.

[31] G.M. Baudet, “Asynchronous Iterative Methods for Multiproces-
sors,” J. ACM, vol. 25, pp. 226-244, Apr. 1978.

[32] D.P. Bertsekas, “Distributed Asynchronous Computation of Fixed
Points,” Math. Programming, vol. 27, pp. 107-120, 1983.

Yanfeng Zhang received the BSc, MSc, and
PhD degrees in computer science from North-
eastern University, China, in 2005, 2008, and
2012, respectively. He had been a visiting PhD
student in University of Massachusetts Amherst
during August 2009 to April 2012. He is currently
with the Computing Center at Northeastern
University, China. His current research consists
of large scale data mining, distributed systems,
and cloud computing. He has published many

technical papers in the above areas. His paper in ACM cloud computing
2011 was honored with “Paper of Distinction.”

1892 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 24, NO. 9, SEPTEMBER 2013

Qixin Gao received the PhD degree from
Institute of Computer Science and Engineering,
Northeastern University, Shenyang, China, in
2008. He is currently with Northeastern Uni-
versity at Qinhuangdao, China. His current
research interests include image processing,
visual perception, and massive data processing.

Lixin Gao received the PhD degree in computer
science from the University of Massachusetts at
Amherst in 1996. She is a professor of electrical
and computer engineering at the University of
Massachusetts at Amherst. Her research inter-
ests include social networks, Internet routing,
network virtualization and cloud computing.
Between May 1999 and January 2000, she
was a visiting researcher at AT&T Research
Labs and DIMACS. She was an Alfred P. Sloan

fellow between 2003 and 2005 and received the National Science
Foundation (NSF) CAREER Award in 1999. She won the best paper
award from IEEE INFOCOM 2010, and the test-of-time award in ACM
SIGMETRICS 2010. Her paper in ACM Cloud Computing 2011 was
honored with “Paper of Distinction.” She received the Chancellor’s
Award for Outstanding Accomplishment in Research and Creative
Activity in 2010, and is a fellow of the IEEE.

Cuirong Wang received the PhD degree from
Northeastern University, Shenyang, China, in
2003. She is currently a professor with the
Computer Science Department, Northeastern
University at Qinhuangdao, China. Her current
research interests include data center networks,
cloud computing, and wireless sensor networks.
She has been a main researcher in several
National Nature Science Foundation research
projects of China. She is an advanced member

of China Computer Federation.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

ZHANG ET AL.: PRITER: A DISTRIBUTED FRAMEWORK FOR PRIORITIZING ITERATIVE COMPUTATIONS 1893

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (IEEE Settings with Allen Press Trim size)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [567.000 774.000]
>> setpagedevice

