
Maiter: An Asynchronous Graph Processing
Framework for Delta-Based Accumulative

Iterative Computation
Yanfeng Zhang, Qixin Gao, Lixin Gao, Fellow, IEEE, and Cuirong Wang

Abstract—Myriad of graph-based algorithms in machine learning and data mining require parsing relational data iteratively.
These algorithms are implemented in a large-scale distributed environment to scale to massive data sets. To accelerate these
large-scale graph-based iterative computations, we propose delta-based accumulative iterative computation (DAIC). Different from
traditional iterative computations, which iteratively update the result based on the result from the previous iteration, DAIC updates the
result by accumulating the ‘‘changes’’ between iterations. By DAIC, we can process only the ‘‘changes’’ to avoid the negligible
updates. Furthermore, we can perform DAIC asynchronously to bypass the high-cost synchronous barriers in heterogeneous
distributed environments. Based on the DAIC model, we design and implement an asynchronous graph processing framework,
Maiter. We evaluate Maiter on local cluster as well as on Amazon EC2 Cloud. The results show that Maiter achieves as much as
60� speedup over Hadoop and outperforms other state-of-the-art frameworks.

Index Terms—Delta-based accumulative iterative computation, asynchronous iteration, maiter, distributed framework

Ç

1 INTRODUCTION

THE advances in data acquisition, storage, and network-
ing technology have created huge collections of high-

volume, high-dimensional relational data. Huge amounts
of the relational data, such as Facebook user activities, Flickr
photos, Web pages, and Amazon co-purchase records, have
been collected. Making sense of these relational data is
critical for companies and organizations to make better
business decisions and even bring convenience to our daily
life. Recent advances in data mining, machine learning, and
data analytics have led to a flurry of graph analytic
techniques that typically require an iterative refinement
process [1], [2], [3], [4]. However, the massive amount of
data involved and potentially numerous iterations required
make performing data analytics in a timely manner
challenging. To address this challenge, MapReduce [5],
[6], Pregel [7], and a series of distributed frameworks [8],
[9], [10], [7], [11] have been proposed to perform large-scale
graph processing in a cloud environment.

Many of the proposed frameworks exploit vertex-centric
programming model. Basically, the graph algorithm is
described from a single vertex’s perspective and then
applied to each vertex for a loosely coupled execution.
Given the input graph GðV; EÞ, each vertex j 2 V maintains

a vertex state vj, which is updated iteratively based on its
in-neighbors’ state, according to the update function f :

vkj ¼ f vk�1
1 ; vk�1

2 ; . . . ; vk�1
n

� �
; (1)

where vkj represents vertex j’s state after the k iterations, and
v1; v2; . . . ; vn are the states of vertex j’s in-neighbors. The
iterative process continues until the states of all vertices
become stable, when the iterative algorithm converges.

Based on the vertex-centric model, most of the proposed
frameworks leverage synchronous iteration. That is, the
vertices perform the update in lock steps. At step k, vertex j
first collects vk�1

i from all its in-neighbors, followed by
performing the update function f to obtain vkj based on
these vk�1

i . The synchronous iteration requires that all the
update operations in the ðk� 1Þth iteration have to com-
plete before any of the update operations in the kth iteration
start. Clearly, this synchronization is required in each step.
These synchronizations might degrade performance, espe-
cially in heterogeneous distributed environments.

To avoid the high-cost synchronization barriers, asyn-
chronous iteration was proposed [12]. Performing updates
asynchronously means that vertex j performs the update at
any time based on the most recent states of its in-neighbors.
Asynchronous iteration has been studied in [12], [13], and
[14]. Bypassing the synchronization barriers and exploiting
the most recent state intuitively lead to more efficient
iteration. However, asynchronous iteration might require
more communications and perform useless computations.
An activated vertex pulls all its in-neighbors’ values, but not
all of them have been updated, or even worse none of them is
updated. In that case, asynchronous iteration performs a
useless computation, which impacts efficiency. Furthermore,
some asynchronous iteration cannot guarantee to converge
to the same fixed point as synchronous iteration, which

. Y. Zhang is with Northeastern University, Shenyang, China. E-mail:
zhangyf@cc.neu.edu.cn.

. Q. Gao and C. Wang are with Northeastern University, Qinhuangdao,
China.

. L. Gao is with University of Massachusetts Amherst, MA, USA.

Manuscript received 14 Apr. 2013; revised 12 July 2013; accepted 2 Sept.
2013. Date of publication 15 Sept. 2013; date of current version 16 July 2014.
Recommended for acceptance by X. Liu.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TPDS.2013.235

1045-9219 � 2013 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/
redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 25, NO. 8, AUGUST 2014 2091

Authorized licensed use limited to: Northeastern University. Downloaded on April 06,2025 at 03:13:13 UTC from IEEE Xplore. Restrictions apply.

leads to uncertainty. More background introduction of the
iterative graph processing can be found in Section 1 of the
supplementary file which is available in the Computer
Society Digital Library at http://doi.ieeecomputersociety.
org/10.1109/TPDS.2013.235.

In this paper, we propose DAIC, delta-based accumulative
iterative computation. In traditional iterative computation,
each vertex state is updated based on its in-neighbors’
previous iteration states. While in DAIC, each vertex
propagates only the ‘‘change’’ of the state, which can avoid
useless updates. The key benefit of only propagating the
‘‘change’’ is that, the ‘‘changes’’ can be accumulated mono-
tonically and the iterative computation can be performed
asynchronously. In addition, since the amount of ‘‘change’’
implicates the importance of an update, we can utilize more
efficient priority scheduling for the asynchronous updates.
Therefore, DAIC can be executed efficiently and asynchro-
nously. Moreover, DAIC can guarantee to converge to the
same fixed point. Given a graph iterative algorithm, we
provide the sufficient conditions of rewriting it as a DAIC
algorithm and list the guidelines on writing DAIC algorithms.
We also show that a large number of well-known algorithms
satisfy these conditions and illustrate their DAIC forms.

Based on the DAIC model, we design a distributed
framework, Maiter. Maiter relies on Message Passing
Interface (MPI) for communication and provides intuitive
API for users to implement a DAIC algorithm. We system-
atically evaluate Maiter on local cluster as well as on Amazon
EC2 Cloud [15]. Our results are presented in the context of
four popular applications. The results show that Maiter can
accelerate the iterative computations significantly. For
example, Maiter achieves as much as 60� speedup over
Hadoop for the well-known PageRank algorithm.

The rest of the paper is organized as follows. Section 2
presents DAIC, followed by introducing how to write DAIC
algorithms in Section 3. In Section 4, we describe Maiter. The
experimental results are shown in Section 5. We outline the
related work in Section 6 and conclude the paper in Section 7.

2 DELTA-BASED ACCUMULATIVE ITERATIVE
COMPUTATION (DAIC)

In this section, we present delta-based accumulative
iterative computation, DAIC. By DAIC, the graph iterative
algorithms can be executed asynchronously and efficiently.
We first introduce DAIC and point out the sufficient
conditions of performing DAIC. Then, we propose DAIC’s
asynchronous execution model. We further prove its
convergence and analyze its effectiveness. Under the
asynchronous model, we also propose several scheduling
policies to schedule the asynchronous updates.

2.1 DAIC Introduction
Based on the idea introduced in Section 1, we give the
following 2-step update function of DAIC:

vkj ¼ vk�1
j � Dvkj ;

Dvkþ1
j ¼

Xn
i¼1

�gfi;jg Dvki
� �

8><
>: (2)

k ¼ 1; 2; . . . is the iteration number. vkj is the state of vertex j
after k iterations. Dvkj denotes the change from vk�1

j to vkj in

the ‘�’ operation manner, where ‘�’ is an abstract operator.Pn
i¼1

�xi ¼ x1 � x2 � . . .� xn represents the accumulation of

the ‘‘changes’’, where the accumulation is in the ‘�’
operation manner.

The first update function says that a vertex state vkj is
updated from vk�1

j by accumulating the change Dvkj . The
second update function says that the change Dvkþ1

j , which
will be used in the next iteration, is the accumulation of the
received values gfi;jgðDvki Þ from j’s various in-neighbors i.
The propagated value from i to j, gfi;jgðDvki Þ), is generated in
terms of vertex i’s state change Dvki . Note that, all the
accumulative operation is in the ‘�’ operation manner.

However, not all iterative computation can be converted
to the DAIC form. To write a DAIC, the update function
should satisfy the following sufficient conditions.

The first condition is that,

. update function vkj ¼ fðvk�1
1 ; vk�1

2 ; . . . ; vk�1
n Þ can be

written in the form:

vkj ¼ gf1;jg vk�1
1

� �
� gf2;jg vk�1

2

� �
� . . .

� gfn;jg vk�1
n

� �
� cj (3)

where gfi;jgðviÞ is a function applied on vertex j’s in-
neighbor i, which denotes the value passed from
vertex i to vertex j. In other words, vertex i passes
value gfi;jgðviÞ (instead of vi) to vertex j. On vertex j,
these gfi;jgðviÞ from various vertices i and cj are
aggregated (by ‘�’ operation) to update vj.

For example, the well-known PageRank algorithm
satisfies this condition. It iteratively updates the PageRank
scores of all pages. In each iteration, the ranking score of
page j, Rj, is updated as follows:

Rk
j ¼ d �

X
ijði!jÞ2Ef g

Rk�1
i

NðiÞj j þ ð1� dÞ;

where d is a damping factor, jNðiÞj is the number of
outbound links of page i, ði! jÞ is a link from page i to
page j, and E is the set of directed links. The update
function of PageRank is in the form of Equation (3), where
cj ¼ 1� d, ‘�’ is ‘þ’, and for any page i that has a link to

page j, gfi;jgðvk�1
i Þ ¼ d �

vk�1
i

jNðiÞj.

Next, since Dvkj is defined to denote the ‘‘change’’ from
vk�1
j to vkj in the ‘�’ operation manner. That is,

vkj ¼ vk�1
j � Dvkj : (4)

To derive Dvkj we pose the second condition:

. function gfi;jgðxÞ should have the distributive property
over ‘�’, i.e., gfi;jgðx� yÞ ¼ gfi;jgðxÞ � gfi;jgðyÞ.

By replacing vk�1
i in Equation(3) with vk�2

i � Dvk�1
i , we have

vkj ¼ gf1;jg vk�2
1

� �
� gf1;jg Dvk�1

1

� �
� . . .

� gfn;jg v
k�2
n

� �
� gfn;jg Dvk�1

n

� �
� cj: (5)

Further, let us pose the third condition:

. operator ‘�’ should have the commutative property,
i.e., x� y ¼ y� x;

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 25, NO. 8, AUGUST 20142092

Authorized licensed use limited to: Northeastern University. Downloaded on April 06,2025 at 03:13:13 UTC from IEEE Xplore. Restrictions apply.

. operator ‘�’ should have the associative property, i.e.,
ðx� yÞ � z ¼ x� ðy� zÞ.

Then we can combine these gfi;jgðvk�2
i Þ, i ¼ 1; 2; . . . ; n, and cj

in Equation (5) to obtain vk�1
j . Considering Equation (4), the

combination of the remaining gfi;jgðDvk�1
i Þ, i ¼ 1; 2; . . . ; n in

Equation (5), which is
Pn
i¼1

�gfi;jgðDvk�1
i Þ, will result in Dvki .

Then, we have the 2-step DAIC as shown in (2).
To initialize a DAIC, we should set the start values of v0

j

and Dv1
j . v

0
j and Dv1

j can be initialized to be any value, but
the initialization should satisfy v0

j � Dv1
j ¼ v1

j ¼ gf1;jgðv0
1Þ�

gf2;jgðv0
2Þ � . . .� gfn;jgðv0

nÞ � cj, which is the fourth condition.
The PageRank’s update function as shown in Equation (4)

satisfies all the conditions. gfi;jgðvk�1
i Þ ¼ d �

vk�1
i

jNðiÞj satisfies the

second condition. ‘�’ is ‘þ’, which satisfies the third condition.
To satisfy the fourth condition, v0

j can be initialized to 0, and
Dv1

j can be initialized to 1� d. Besides PageRank, we have
found a broad class of DAIC algorithms, which are
described in Section 3 of the supplementary file available
online.

To sum up, DAIC can be described as follows. Vertex j
first updates vkj by accumulating Dvkj (by ‘�’ operation) and

then updates Dvkþ1
j with

Pn
i¼1

�gfi;jgðDvki Þ. We refer to Dvj as

the delta value of vertex j and gfi;jgðDvki Þ as the delta message

sent from i to j.
Pn
i¼1

�gfi;jgðDvki Þ is the accumulation of the

received delta messages on vertex j since the kth update.
Then, the delta value Dvkþ1

j will be used for the ðkþ 1Þth
update. Apparently, this still requires all vertices to start
the update synchronously. That is, Dvkþ1

j has to accumulate
all the delta messages gfi;jgðDvki Þ sent from j’s in-neighbors,
at which time it is ready to be used in the ðkþ 1Þth iteration.
Therefore, we refer to the 2-step iterative computation in
(2) as synchronous DAIC.

2.2 Asynchronous DAIC
DAIC can be performed asynchronously. That is, a vertex
can start update at any time based on whatever it has
already received. We can describe asynchronous DAIC as
follows, each vertex j performs:

receive :
Whenever receiving mj;

Dvj Dvj �mj:

�

update :

vj vj � Dvj;

For any h; if gfj;hgðDvjÞ 6¼ 0;

send value gfj;hgðDvjÞ to h;

Dvj 0;

8>>><
>>>:

(6)

where mj is the received delta message gfi;jgðDviÞ sent from
any in-neighbor i. The receive operation accumulates the
received delta message mj to Dvj. Dvj accumulates the
received delta messages between two consecutive update
operations. The update operation updates vj by accumulat-
ing Dvj, sends the delta message gfj;hgðDvjÞ to any of j’s out-
neighbors h, and resets Dvj to 0. Here, operator ‘�’ should
have the identity property of abstract value 0, i.e., x� 0 ¼ x,
so that resetting Dvj to 0 guarantees that the received value
is cleared. Additionally, to avoid useless communication, it
is necessary to check that the sent delta message
gfj;hgðDvjÞ 6¼ 0 before sending.

For example, in PageRank, each page j has a buffer DRj

to accumulate the received delta PageRank scores. When
page j performs an update, Rj is updated by accumulating
DRj. Then, the delta message dðDRj=jNðjÞjÞ is sent to j’s
linked pages, and DRj is reset to 0.

In asynchronous DAIC, the two operations on a vertex,
receive and update, are completely independent from
those on other vertices. Any vertex is allowed to perform the
operations at any time. There is no lock step to synchronize
any operation between vertices.

2.3 Convergence
To study the convergence property, we first give the follow-
ing definition of the convergence of asynchronous DAIC.

Definition 1. Asynchronous DAIC as shown in (6) converges
as long as that after each vertex has performed the receive and
update operations an infinite number of times, v1j converges
to a fixed value v�j .

Then, we have the following theorem to guarantee that
asynchronous DAIC will converge to the same fixed point
as synchronous DAIC. Further, since synchronous DAIC is
derived from the traditional form of iterative computation,
i.e., Equation (1), the asynchronous DAIC will converge to
the same fixed point as traditional iterative computation.

Theorem 1. If vj in (1) converges, vj in (6) converges. Further,
they converge to the same value, i.e., v1j ¼ v1j ¼ v�j .

The formal proof of Theorem 1 is provided in Section 2 of
the supplementary file available online. We explain the
intuition behind Theorem 1 as follows. Consider the process
of DAIC as information propagation in a graph. Vertex i with
an initial value Dv1

i propagates delta message gfi;jgðDv1
i Þ to its

out-neighbor j, where gfi;jgðDv1
i Þ is accumulated to vj and a

new delta message gfj;hgðgfi;jgðDv1
i ÞÞ is produced and propa-

gated to any of j’s out-neighbors h. By synchronous DAIC, the
delta messages propagated from all vertices should be
received by all their neighbors before starting the next round
propagation. That is, the delta messages originated from a
vertex are propagated strictly hop by hop. In contrast, by
asynchronous DAIC, whenever some delta messages arrive, a
vertex accumulates them to vj and propagates the newly
produced delta messages to its neighbors. No matter
synchronously or asynchronously, the spread delta messages
are never lost, and the delta messages originated from each
vertex will be eventually spread along all paths. For a
destination node, it will eventually collect the delta messages
originated from all vertices along various propagating paths.
All these delta messages are eventually received and contrib-
uted to any vj. Therefore, synchronous DAIC and asynchro-
nous DAIC will converge to the same result.

2.4 Effectiveness
As illustrated above, vj and vj both converge to the same
fixed point. By accumulating Dvj (or Dvj), vj (or vj) either
monotonically increases or monotonically decreases to a
fixed value v�j ¼ v1j ¼ v1j . In this section, we show that vj
converges faster than vj.

To simplify the analysis, we first assume that 1) only one
update occurs at any time point; 2) the transmission delay can

ZHANG ET AL.: MAITER: AN ASYNCHRONOUS GRAPH PROCESSING FRAMEWORK 2093

Authorized licensed use limited to: Northeastern University. Downloaded on April 06,2025 at 03:13:13 UTC from IEEE Xplore. Restrictions apply.

be ignored, i.e., the delta message sent from vertex i, gfi;jgðDviÞ
(or gfi;jgðDviÞ), is directly accumulated to Dvj (or Dvj).

The workload can be seen as the number of performed
updates. Let update sequence represent the update order of
the vertices. By synchronous DAIC, all the vertices have to
perform the update once and only once before starting the
next round of updates. Hence, the update sequence is
composed of a series of subsequences. The length of each
subsequence is jV j, i.e., the number of vertices. Each vertex
occurs in a subsequence once and only once. We call this
particular update sequence as synchronous update sequence.
While in asynchronous DAIC, the update sequence can
follow any update order. For comparison, we will use the
same synchronous update sequence for asynchronous DAIC.

By DAIC, no matter synchronously and asynchronously,
the propagated delta messages of an update on vertex i in
subsequence k, i.e., gfi;jgðDvki Þ (or gfi;jgðDviÞ), are directly
accumulated to Dvkþ1

j (or Dvj), j ¼ 1; 2; . . . ; n. By synchro-
nous DAIC, Dvkþ1

j cannot be accumulated to vj until the
update of vertex j in subsequence kþ 1. In contrast, by
asynchronous DAIC, Dvj is accumulated to vj immediately
whenever vertex j is updated after the update of vertex i in
subsequence k. The update of vertex j might occur in
subsequence k or in subsequence kþ 1. If the update of
vertex j occurs in subsequence k, vj will accumulate more
delta messages than vj after k subsequences, which means
that vj is closer to v�j than vj. Otherwise, vj ¼ vj. Therefore,
we have Theorem 2. The formal proof of Theorem 2 is pro-
vided in Section 2 of the supplementary file available online.

Theorem 2. Based on the same update sequence, after k sub-
sequences, we have vj by asynchronous DAIC and vj by
synchronous DAIC. vj is closer to the fixed point v�j than
vj is, i.e., jv�j � vjj � jv�j � vjj.

2.5 Scheduling Policies
By asynchronous DAIC, we should control the update
order of the vertices, i.e., specifying the scheduling policies.
In reality, a subset of vertices are assigned to a processor,
and multiple processors are running in parallel. The
processor can perform the update for the assigned vertices
in a round-robin manner, which is referred to as round-
robin scheduling. Moreover, it is possible to schedule the
update of these local vertices dynamically by identifying
their importance, which is referred to as priority scheduling.
In [16], we have found that selectively processing a subset
of the vertices has the potential of accelerating iterative
computation. Some of the vertices can play an important
decisive role in determining the final converged outcome.
Giving an update execution priority to these vertices can
accelerate the convergence.

To show the progress of the iterative computation, we
quantify the iteration progress with L1 norm of v, i.e.,
kvk1 ¼

P
i vi. Asynchronous DAIC either monotonically

increases or monotonically decreases jvk1 to a fixed point
kv�k1. According to (6), an update of vertex j, i.e., vj ¼
vj � Dvj, either increases kvk1 by ðvj � Dvj � vjÞ or decreases
kvk1 by ðvj � vj � DvjÞ. Therefore, by priority scheduling,
vertex j ¼ argmaxj jvj � Dvj � vjj is scheduled first. In
other words, The bigger jvj � Dvj � vjj is, the higher update
priority vertex j has. For example, in PageRank, we set each

page j’s scheduling priority based on jRj þ DRj�
Rjj ¼ DRj. Then, we will schedule page j with the largest
DRj first. To sum up, by priority scheduling, the vertex
j ¼ argmaxj jvj � Dvj � vjj is scheduled for update first.

Theorem 3 guarantees the convergence of asynchronous
DAIC under the priority scheduling. The proof of
Theorem 3 can be found in Section 2 of the supplementary
file available online. Furthermore, according to the
analysis presented above, we have Theorem 4 to support
the effectiveness of priority scheduling.

Theorem 3. By asynchronous priority scheduling, v0j converges
to the same fixed point v�j as vj by synchronous iteration
converges to, i.e., v01j ¼ v1j ¼ v�j .

Theorem 4. Based on asynchronous DAIC, after the same
number of updates, we have v0j by priority scheduling and vj by
round-robin scheduling. v0j is closer to the fixed point v�j than
vj is, i.e., jv�j � v0jj � jv�j � vjj.

3 WRITING DAIC ALGORITHMS

In this section, we provide the guidelines of writing DAIC
algorithms. Given an iterative algorithm, the following steps
are recommended for converting it to a DAIC algorithm.

. Step1: Vertex-Centric Check. Check whether the
update function is applied on each vertex, and write
the vertex-centric update function f . If not, try to
rewrite the update function.

. Step2: Formation Check. Check whether f is in the
form of Equation (3)? If yes, identify the sender-
based function gfi;jgðviÞ applied on each sender
vertex i, the abstract operator ‘�’ for accumulating
the received delta messages on receiver vertex j.

. Step3: Properties Check. Check whether gfi;jgðviÞ
has the distributive property and whether operator
‘�’ has the commutative property and the associa-
tive property?

. Step4: Initialization. According to (2), initialize v0
j and

Dv1
j to satisfy v1

j ¼ v0
j � Dv1

j , and write the iterative
computation in the 2-step DAIC form.

. Step5: Priority Assignment (Optional). Specify the
scheduling priority of each vertex j as jvj � Dvj � vjj
for scheduling the asynchronous updates.

Following the guidelines, we have found a broad class of
DAIC algorithms, including single source shortest path
(SSSP), PageRank, linear equation solvers, Adsorption,
SimRank, etc. Table 1 shows a list of such algorithms. Each
of their update functions is represented with a tuple ðgfi;jgðxÞ;
�; v0

j ;Dv
1
j Þ. In Table 1, matrix A represents the graph

adjacency information. If there is an edge from vertex i to
vertex j, Ai;j represents the edge weight from i to j, or else
Ai;j ¼ 0. More details of these DAIC algorithms are described
in Section 3 of the supplementary file available online.

4 MAITER

To support implementing a DAIC algorithm in a large-scale
distributed manner and in a highly efficient asynchronous

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 25, NO. 8, AUGUST 20142094

Authorized licensed use limited to: Northeastern University. Downloaded on April 06,2025 at 03:13:13 UTC from IEEE Xplore. Restrictions apply.

manner, we propose an asynchronous distributed frame-
work, Maiter. Users only need to follow the guidelines to
specify the function gfi;jgðviÞ, the abstract operator ‘�’, and
the initial values v0

j and Dv1
j through Maiter API (Maiter API

is described in Section 4 of the supplementary file available
online). The framework will automatically deploy these
DAIC algorithms in the distributed environment and
perform asynchronous iteration efficiently.

Maiter is implemented by modifying Piccolo [11], and
Maiter’s source code is available online [17]. It relies on
message passing for communication between vertices. In
Maiter, there is a master and multiple workers. The master
coordinates the workers and monitors the status of work-
ers. The workers run in parallel and communicate with
each other through MPI. Each worker performs the update
for a subset of vertices. In the following, we introduce
Maiter’s key functionalities.

4.1 Data Partition
Each worker loads a subset of vertices in memory for
processing. Each vertex is indexed by a global unique vid.
The assignment of a vertex to a worker depends solely on
the vid. A vertex with vid j is assigned to worker hðjÞ,
where hðÞ is a hash function applied on the vid. Besides,
preprocessing for smart graph partition can be useful. For
example, one can use a lightweight clustering algorithm to
preprocess the input graph, assigning the strongly
connected vertices to the same worker, which can reduce
communication.

4.2 Local State Table
The vertices in a worker are maintained in a local in-
memory key-value store, state table. Each state table entry
corresponds to a vertex indexed by its vid. As depicted in
Fig. 1, each table entry contains five fields. The 1st field
stores the vid j of a vertex; the 2nd field stores vj; the 3rd
field stores Dvj; the 4th field stores the priority value of
vertex j for priority scheduling; the 5th field stores the
input data associated with vertex j, such as the adjacency
list. Users are responsible for initializing the v fields and
the Dv fields through the provided API. The priority fields
are automatically initialized based on the values of the v
fields and Dv fields. Users read an input partition and fills
entry j’s data field with vertex j’s input data.

4.3 Receive Thread and Update Thread
As described in (6), DAIC is accomplished by two key
operations, the receive operation and the update operation.

In each worker, these two operations are implemented in
two threads, the receive thread and the update thread. The
receive thread performs the receive operation for all local
vertices. Each worker receives the delta messages from
other workers and updates the Dv fields by accumulating
the received delta messages. The update thread performs
the update operation for all local vertices. When operating
on a vertex, it updates the corresponding entry’s v field
and Dv field, and sends messages to other vertices.

4.4 Scheduling within Update Thread
The simplest scheduling policy is to schedule the local
vertices for update operation in a round robin fashion. The
update thread performs the update operation on the table
entries in the order that they are listed in the local state
table and round-by-round. The static scheduling is simple
and can prevent starvation.

However, as discussed in Section 2.5, it is beneficial to
provide priority scheduling. In addition to the static round-
robin scheduling, Maiter supports dynamic priority sched-
uling. A priority queue in each worker contains a subset of
local vids that have larger priority values. The update
thread dequeues the vid from the priority queue, in terms
of which it can position the entry in the local state table and
performs an update operation on the entry. Once all the
vertices in the priority queue have been processed, the
update thread extracts a new subset of high-priority vids

TABLE 1
List of DAIC Algorithms

Fig. 1. Worker overview.

ZHANG ET AL.: MAITER: AN ASYNCHRONOUS GRAPH PROCESSING FRAMEWORK 2095

Authorized licensed use limited to: Northeastern University. Downloaded on April 06,2025 at 03:13:13 UTC from IEEE Xplore. Restrictions apply.

for next round update. The extraction of vids is based
on the priority field. Each entry’s priority field is initially
calculated based on its initial v value and Dv value. During
the iterative computation, the priority field is updated
whenever the Dv field is changed (i.e., whenever some delta
messages are received).

The number of extracted vids in each round, i.e., the
priority queue size, balances the tradeoff between the gain
from accurate priority scheduling and the cost of frequent
queue extractions. The priority queue size is set as a portion
of the state table size. For example, if the queue size is set
as 1 percent of the state table size, we will extract the top
1 percent high priority entries for processing. In addition,
we also use the sampling technique proposed in [16] for
efficient queue extraction, which only needs OðNÞ time,
where N is the number of entries in local state table.

4.5 Message Passing
Maiter uses OpenMPI [18] to implement message passing
between workers. A message contains a vid indicating the
message’s destination vertex and a value. Suppose that a
message’s destination vid is k. The message will be sent to
worker hðkÞ, where hðÞ is the partition function for data
partition, so the message will be received by the worker
where the destination vertex resides.

A naive implementation of message passing is to send
the output messages as soon as they are produced. This
will reach the asynchronous iteration’s full potential.
However, initializing message passing leads to system
overhead. To reduce this overhead, Maiter buffers the
output messages and flushes them after a timeout. If a
message’s destination worker is the host worker, the
output message is directly applied to the local state table.
Otherwise, the output messages are buffered in multiple
msg tables, each of which corresponds to a remote
destination worker. We can leverage early aggregation on
the msg table to reduce network communications. Each
msg table entry consists of a destination vid field and a
value field. As mentioned in Section 2.1, the associative
property of operator ‘�’, i.e., ðx� yÞ � z ¼ x� ðy� zÞ,
indicates that multiple messages with the same destination
can be aggregated at the sender side or at the receiver side.
Therefore, by using the msg table, Maiter worker combines
the output messages with the same vid by ‘�’ operation
before sending them.

4.6 Iteration Termination
To terminate iteration, Maiter exploits progress estimator in
each worker and a global terminator in the master. The
master periodically broadcasts a progress request signal to all
workers. Upon receipt of the termination check signal, the
progress estimator in each worker measures the iteration
progress locally and reports it to the master. The users are
responsible for specifying the progress estimator to retrieve
the iteration progress by parsing the local state table. After
the master receives the local iteration progress reports from
all workers, the terminator makes a global termination
decision in respect of the global iteration progress, which is
calculated based on the received local progress reports. If
the terminator determines to terminate the iteration, the
master broadcasts a terminate signal to all workers. Upon

receipt of the terminate signal, each worker stops updating
the state table and dumps the local table entries to HDFS,
which contain the converged results. Note that, even
though we exploit a synchronous termination check
periodically, it will not impact the asynchronous compu-
tation. The workers proceed after producing the local
progress reports without waiting for the master’s feedback.

4.7 Fault Tolerance
The fault tolerance support for synchronous computation
models can be performed through checkpointing, where the
state data is checkpointed on the reliable HDFS every several
iterations. If some workers fail, the computation rolls back to
the most recent iteration checkpoint and resumes from that
iteration. Maiter exploits Chandy-Lamport [19] algorithm to
design asynchronous iteration’s fault tolerance mechanism.
The checkpointing in Maiter is performed at regular time
intervals rather than at iteration intervals. The state table in
each worker is dumped to HDFS every period of time.
However, during the asynchronous computation, the infor-
mation in the state table might not be intact, in respect that the
messages may be on their way to act on the state table. To
avoid missing messages, not only the state table is dumped to
HDFS, but also the msg tables in each worker are saved. Upon
detecting any worker failure (through probing by the master),
the master restores computation from the last checkpoint,
migrates the failed worker’s state table and msg tables to an
available worker, and notifies all the workers to load the data
from the most recent checkpoint to recover from worker
failure. For detecting master failure, Maiter can rely on a
secondary master, which restores the recent checkpointed
state to recover from master failure.

5 EVALUATION

This section evaluates Maiter with a series of experiments.

5.1 Preparation

5.1.1 Frameworks for Comparison
We pick a few popular frameworks for comparison, includ-
ing Hadoop [6], memory-based iMapReduce (iMR-mem)
[20], file-based iMapReduce (iMR-file) [20], Spark [21],
file-based PrIter (PrIter-mem) [16], file-based PrIter (PrIter-
file) [16], Piccolo[11], and GraphLab [8]. The GraphLab
framework provides both synchronous execution engine
(GraphLab-Sync) and asynchronous execution engine. More-
over, under the asynchronous execution engine, GraphLab
supports both fifo scheduling (GraphLab-AS-fifo) and prior-
ity scheduling (GraphLab-AS-pri). To evaluate Maiter with
different scheduling policies, we consider the round robin
scheduling (Maiter-RR) as well as the priority scheduling
(Maiter-Pri). In addition, we manually add a synchroniza-
tion barrier controlled by the master to let these workers
perform DAIC synchronously. We call this version of
Maiter as Maiter-Sync. More details of these frameworks
can be found in Section 5.1 of the supplementary file avail-
able online.

5.1.2 Experimental Cluster
The experiments are performed on a cluster of local
machines as well as on Amazon EC2 Cloud [15]. The local

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 25, NO. 8, AUGUST 20142096

Authorized licensed use limited to: Northeastern University. Downloaded on April 06,2025 at 03:13:13 UTC from IEEE Xplore. Restrictions apply.

cluster consisting of 4 commodity machines is used to run
small-scale experiments. Each machine has Intel E8200
dual-core 2.66 GHz CPU, 3 GB of RAM, and 160 GB storage.
The Amazon EC2 cluster involves 100 medium instances,
each with 1.7 GB memory and 5 EC2 compute units.

5.1.3 Applications and Data Sets
Four applications, including PageRank, SSSP, Adsorption,
and Katz metric, are implemented. We use Google
Webgraph [22] for PageRank computation. We also gener-
ate synthetic massive data sets for PageRank and other
applications. The details of synthetic data sets can be found
in Section 5.2 of the supplementary file available online.

5.2 Running Time to Convergence

5.2.1 Local Cluster Results
We compare different frameworks on running time in the
context of PageRank computation. Due to the limited
space, the termination approach of PageRank computation
is presented in Section 5.3 of the supplementary file
available online. Fig. 2 shows the PageRank running time
on Google Webgraph on our local cluster. Note that, the
data loading time for the memory-based systems (other
than Hadoop, iMR-file, iMR-mem) is included in the total
running time.

By using Hadoop, we need 27 iterations and more than
800 seconds to converge. By separating the iteration-variant
state data from the static data, iMR-file reduces the running
time of Hadoop by around 50 percent. iMR-mem further
reduces it by providing faster memory access. Spark, with
efficient data partition and memory caching techniques, can
reduce Hadoop time to less than 100 seconds. PrIter
identifies the more important nodes to perform the update
and ignores the useless updates, by which the running time
is reduced. As expected, PrIter-mem converges faster than
PrIter-file. Piccolo utilizes MPI for message passing to realize
fine-grained updates, which improves the performance.

GraphLab variants show their differences on the
performance. GraphLab-Sync uses a synchronous engine
and completes the iterative computation within less than
100 seconds. GraphLab-AS-fifo uses an asynchronous
engine and schedules the asynchronous updates in a FIFO
queue, which consumes much more time. The reason is that

the cost of managing the scheduler (through locks) tends to
exceed the cost of the main PageRank computation itself.
The cost of maintaining the priority queue under asynchro-
nous engine seems even much larger, so that GraphLab-
AS-pri converges with significant longer running time.
More experimental results focusing on demonstrating the
difference between GraphLab and Maiter can be found in
Section 5.4 of the supplementary file available online.

The framework that supports synchronous DAIC, Maiter-
Sync, filters the zero updates ðDR ¼ 0Þ and reduces the
running time to about 60 seconds. Further, the asynchronous
DAIC frameworks, Maiter-RR and Maiter-Pri, can even
converge faster by avoiding the synchronous barriers. Note
that, our priority scheduling mechanism does not result in
high cost, since we do not need distributed lock for
scheduling asynchronous DAIC. In addition, in priority
scheduling, the approximate sampling technique [16] helps
reduce the complexity, which avoids high scheduling cost.

5.2.2 EC2 Results
To show the performance under large-scale distributed en-
vironment, we run PageRank on a 100-million-node synthetic
graph on EC2 cluster. Fig. 3 shows the running time with
various frameworks. We can see the similar results. One
thing that should be noticed is that Maiter-Sync has com-
parable performance with Piccolo and PrIter. Only DAIC is
not enough to make a significant performance improvement.
However, the asynchronous DAIC frameworks (Maiter-RR
and Maiter-Pri) perform much better. The result is under
expectation. As the cluster size increases and the heteroge-
neity in cloud environment becomes apparent, the problem
of synchronous barriers is more serious. With the asynchro-
nous execution engine, Maiter-RR and Maiter-Pri can bypass
the high-cost synchronous barriers and perform more
efficient computations. As a result, Maiter-RR and Maiter-
Pri significantly reduce the running time. Moreover, Maiter-
Pri exploits more efficient priority scheduling, which can
achieve 60� speedup over Hadoop. This result demonstrates
that only with asynchronous execution can DAIC reach its
full potential.

To show that Maiter can support more applications, we
also run other applications on EC2 cluster. We perform
SSSP, Adsorption, and Katz metric computations with
Maiter-Sync, Maiter-RR, and Maiter-Pri. We generate

Fig. 2. Running time of PageRank on Google Webgraph on local cluster.
Fig. 3. Running time of PageRank on 100-million-node synthetic graph
on EC2 cluster.

ZHANG ET AL.: MAITER: AN ASYNCHRONOUS GRAPH PROCESSING FRAMEWORK 2097

Authorized licensed use limited to: Northeastern University. Downloaded on April 06,2025 at 03:13:13 UTC from IEEE Xplore. Restrictions apply.

weighted/unweighted 100-million-node synthetic graphs
for these applications respectively. Fig. 4 shows the
running time of these applications. For SSSP, the asyn-
chronous DAIC SSSP (Maiter-RR and Maiter-Pri) reduces
the running time of synchronous DAIC SSSP (Maiter-Sync)
by half. For Adsorption, the asynchronous DAIC Adsorp-
tion is 5� faster than the synchronous DAIC Adsorption.
Further, by priority scheduling, Maiter-Pri further reduces
the running time of Maiter-RR by around 1/3. For Katz
metric, we can see that Maiter-RR and Maiter-Pri also
outperform Maiter-Sync.

5.3 Efficiency of Asynchronous DAIC
As analyzed in Section 2.4, with the same number of
updates, asynchronous DAIC results in more progress than
synchronous DAIC. In this experiment, we measure the
number of updates that PageRank and SSSP need to
converge under Maiter-Sync, Maiter-RR, and Maiter-Pri.
To measure the iteration process, we define a progress
metric, which is

P
j Rj for PageRank and

P
j dj for SSSP.

Then, the efficiency of the update operations can be seen as
the ratio of the progress metric to the number of updates.

On the EC2 cluster, we run PageRank on a 100-million-
node synthetic graph and SSSP on a 500-million-node
synthetic graph. Fig. 5a shows the progress metric against
the number of updates for PageRank. In PageRank, the
progress metric

P
j Rj should be increasing. Each R0

j is
intialized to be 0 and each DR1

j is initialized to be 1� d ¼ 0:2
(the damping factor d ¼ 0:8). The progress metric

P
j Rj is

increasing from
P

j R
1
j ¼

P
jðR0

j þ DR1
j Þ ¼ 0:2 �N to N ,

whereN ¼ 108 (number of nodes). Fig. 5b shows the progress

metric against the number of updates for SSSP. In SSSP, the
progress metric

P
j dj should be decreasing. Since dj is

initialized to be1 for any node j 6¼ s, which cannot be drawn
in the figure, we start plotting when any dj G 1. From Figs. 5a
and 5b, we can see that by asynchronous DAIC, Maiter-RR
and Maiter-Pri require much less updates to converge than
Maiter-Sync. That is, the update in asynchronous DAIC is
more effective than that in synchronous DAIC. Further,
Maiter-Pri selects more effective updates to perform, so the
update in Maiter-Pri is even more effective.

5.4 Scaling Performance
Suppose that the running time on one worker is T .
With optimal scaling performance, the running time on an
n-worker cluster should be T=n. But in reality, distributed
application usually cannot achieve the optimal scaling perfor-
mance. To measure how asynchronous Maiter scales with
increasing cluster size, we perform PageRank on a 100-million-
node graph on EC2 as the number of workers increases from 20
to 100. We consider the running time on a 20-worker cluster as
the baseline, based on which we determine the running time
with optimal scaling performance on different size clusters.
We consider Hadoop, Maiter-Sync, Maiter-RR, and Maiter-Pri
for comparing their scaling performance.

Fig. 6 shows the scaling performance of Hadoop, Maiter-
Sync, Maiter-RR, and Maiter-Pri. We can see that the
asynchronous DAIC frameworks, Maiter-RR and Maiter-Pri,
provide near-optimal scaling performance as cluster size
scales from 20 to 100. The performance of the synchronous
DAIC framework Maiter-Sync is degraded a lot as the cluster
size scales. Hadoop splits a job into many fine-grained tasks
(task with 64 MB block size), which alleviates the impact of
synchronization and improves scaling performance.

More experimental results, such as the communication
cost and the scaling performance when increasing input
size, are provided in Sections 5.5 and 5.6 of the supple-
mentary file available online.

6 RELATED WORK

The original idea of asynchronous iteration, chaotic itera-
tion, was introduced by Chazan and Miranker in 1969 [12].
Motivated by that, Baudet proposed an asynchronous
iterative scheme for multicore systems [13], and Bertsekas
presented a distributed asynchronous iteration model [14].
These early stage studies laid the foundation of asynchronous

Fig. 4. Running time of other applications (SSSP, Adsorption, and Katz
metric) on EC2 cluster.

Fig. 5. Number of updates vs. progress metric. (a) PageRank. (b) SSSP.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 25, NO. 8, AUGUST 20142098

Authorized licensed use limited to: Northeastern University. Downloaded on April 06,2025 at 03:13:13 UTC from IEEE Xplore. Restrictions apply.

iteration and have proved its effectiveness and convergence.
Asynchronous methods are being increasingly used and
studied since then, particularly so in connection with the use
of heterogeneous workstation clusters. A broad class of
applications with asynchronous iterations have been corre-
spondingly raised [23], [24], such as PageRank [25], [26] and
pairwise clustering [27]. Our work differs from these previous
works. We focus on a particular class of iterative algorithms
and provide a new asynchronous iteration scheme, DAIC,
which exploits the accumulative property.

On the other hand, to support iterative computation, a
series of distributed frameworks have emerged. In addition
to the frameworks we compared in Section 5, many other
synchronous frameworks are proposed recently. HaLoop
[28], a modified version of Hadoop, improves the efficiency
of iterative computations by making the task scheduler
loop-aware and employing caching mechanisms. CIEL [29]
supports data-dependent iterative algorithms by building
an abstract dynamic task graph. Pregel [7] aims at
supporting graph-based iterative algorithms by proposing
a graph-centric programming model. REX [30] optimizes
DBMS recursive queries by using incremental updates.
Twister [31] employs a lightweight iterative MapReduce
runtime system by logically constructing a reduce-to-map
loop. Naiad [9] is recently proposed to support incremental
iterative computations.

All of the above described works build on the basic
assumption that the synchronization between iterations is
essential. A few proposed frameworks also support asyn-
chronous iteration. The partial asynchronous approach
proposed in [32] investigates the notion of partial synchroni-
zations in iterative MapReduce applications to overcome
global synchronization overheads. GraphLab [33] supports
asynchronous iterative computation with sparse computa-
tional dependencies while ensuring data consistency and
achieving a high degree of parallel performance. PowerGraph
[34] forms the foundation of GraphLab, which characterizes
the challenges of computation on natural graphs. The authors
propose a new approach to distributed graph placement
and representation that exploits the structure of power-law
graphs. GRACE [35] executes iterative computation with
asynchronous engine while letting users implement their
algorithms with the synchronous BSP programming model.
To the best of our knowledge, our work is the first that proposes
to perform DAIC for iterative algorithms. We also identify a
broad class of iterative algorithms that can perform DAIC.

7 CONCLUSION

In this paper, we propose DAIC, delta-based accumulative
iterative computation. The DAIC algorithms can be per-
formed asynchronously and converge with much less work-
load. To support DAIC model, we design and implement
Maiter, which is running on top of hundreds of commodity
machines and relies on message passing to communicate
between distributed machines. We deploy Maiter on local
cluster as well as on Amazon EC2 cloud to evaluate its per-
formance in the context of four iterative algorithms. The
results show that by asynchronous DAIC the iterative com-
putation performance is significantly improved.

ACKNOWLEDGMENT

This work was partially supported by National Natural
Science Foundation of China (61300023), U.S. NSF grant
(CNS-1217284), Fundamental Research Funds for the
Central Universities (N120816001, N120416001), Science and
Technology Planning Project of Liaoning Province (2013217004),
China Mobil Labs Fund (MCM20122051), and MOE-Intel Spe-
cial Fund of Information Technology (MOE-INTEL-2012-06).

REFERENCES

[1] S. Baluja, R. Seth, D. Sivakumar, Y. Jing, J. Yagnik, S. Kumar,
D. Ravichandran, and M. Aly, ‘‘Video Suggestion and Discovery
for Youtube: Taking Random Walks through the View Graph,’’ in
Proc. Int’l Conf. WWW, 2008, pp. 895-904.

[2] H.H. Song, T.W. Cho, V. Dave, Y. Zhang, and L. Qiu, ‘‘Scalable
Proximity Estimation and Link Prediction in Online Social
Networks,’’ in Proc. Int’l IMC, 2009, pp. 322-335.

[3] D. Liben-Nowell and J. Kleinberg, ‘‘The Link-Prediction Problem
for Social Networks,’’ J. Amer. Soc. Inf. Sci. Technol., vol. 58,
pp. 1019-1031, May 2007.

[4] S. Brin and L. Page, ‘‘The Anatomy of a Large-Scale Hypertextual
Web Search Engine,’’ Comput. Netw. ISDN Syst., vol. 30, no. 1-7,
pp. 107-117, Apr. 1998.

[5] J. Dean and S. Ghemawat, ‘‘Mapreduce: Simplified Data Processing
on Large Clusters,’’ in Proc. USENIX Symp. OSDI, 2004, p. 10.

[6] Hadoop. [Online]. Available: http://hadoop.apache.org/.
[7] G. Malewicz, M.H. Austern, A.J. Bik, J.C. Dehnert, I. Horn, N. Leiser,

and G. Czajkowski, ‘‘Pregel: A System for Large-Scale Graph
Processing,’’ in Proc. ACM SIGMOD, 2010, pp. 135-146.

[8] Y. Low, J. Gonzalez, A. Kyrola, D. Bickson, C. Guestrin, and
J.M. Hellerstein, ‘‘Distributed Graphlab: A Framework for
Machine Learning and Data Mining in the Cloud,’’ Proc. VLDB
Endow., vol. 5, no. 8, pp. 716-727, 2012.

[9] F. McSherry, D. Murray, R. Isaacs, and M. Isard, ‘‘Differential
Dataflow,’’ in Proc. Biennial CIDR, 2013, pp. 1-12.

[10] M. Zaharia, M. Chowdhury, M.J. Franklin, S. Shenker, and I. Stoica,
‘‘Spark: Cluster Computing with Working Sets,’’ in Proc. USENIX
Workshop HotCloud, 2010, p. 10.

[11] R. Power and J. Li, ‘‘Piccolo: Building Fast, Distributed Programs with
Partitioned Tables,’’ in Proc. USENIX Symp. OSDI, 2010, pp. 1-14.

[12] D. Chazan and W. Miranker, ‘‘Chaotic Relaxation,’’ Linear
Algebra Appl., vol. 2, no. 2, pp. 199-222, 1969.

[13] G.M. Baudet, ‘‘Asynchronous Iterative Methods for Multiproces-
sors,’’ J. ACM, vol. 25, no. 2, pp. 226-244, Apr. 1978.

[14] D.P. Bertsekas, ‘‘Distributed asynchronous computation of fixed
points,’’ Math. Programm., vol. 27, no. 1, pp. 107-120, 1983.

[15] Amazon ec2. [Online]. Available: http://aws.amazon.com/ec2/.
[16] Y. Zhang, Q. Gao, L. Gao, and C. Wang, ‘‘Priter: A Distributed

Framework for Prioritized Iterative Computations,’’ in Proc. ACM
SOCC, 2011.

[17] Maiter Project. [Online]. Available: http://code.google.com/p/
maiter/.

[18] Open mpi. [Online]. Available: http://www.open-mpi.org/.
[19] K.M. Chandy and L. Lamport. (1985, Feb.). Distributed Snap-

shots: Determining Global States of Distributed Systems. ACM
Trans. Comput. Syst. [Online]. 3(1), pp. 63-75. Available: http://
doi.acm.org/10.1145/214451.214456.

Fig. 6. Scaling performanceas the number of workers increases from
20 to 100.

ZHANG ET AL.: MAITER: AN ASYNCHRONOUS GRAPH PROCESSING FRAMEWORK 2099

Authorized licensed use limited to: Northeastern University. Downloaded on April 06,2025 at 03:13:13 UTC from IEEE Xplore. Restrictions apply.

[20] Y. Zhang, Q. Gao, L. Gao, and C. Wang, ‘‘Imapreduce: A
Distributed Computing Framework for Iterative Computation,’’
J. Grid Comput., vol. 10, no. 1, pp. 47-68, 2012.

[21] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley,
M.J. Franklin, S. Shenker, and I. Stoica, ‘‘Resilient Distributed
Datasets: A Fault-Tolerant Abstraction for. In-Memory Cluster
Computing,’’ in Proc. USEINX Symp. NSDI, 2012, p. 2.

[22] Stanford Dataset Collection. [Online]. Available: http://snap.
stanford.edu/data/.

[23] A. Frommer and D.B. Szyld, ‘‘On Asynchronous Iterations,’’
J. Comput. Appl. Math., vol. 123, pp. 201-216, Nov. 2000.

[24] J.C. Miellou, D. El Baz, and P. Spiteri, ‘‘A New Class of
Asynchronous Iterative Algorithms with Order Intervals,’’
Math. Comput., vol. 67, pp. 237-255, Jan. 1998.

[25] F. McSherry, ‘‘A Uniform Approach to Accelerated Pagerank
Computation,’’ in Proc. Int’l Conf. WWW, 2005, pp. 575-582.

[26] G. Kollias, E. Gallopoulos, and D.B. Szyld, ‘‘Asynchronous
Iterative Computations with Web Information Retrieval Struc-
tures: The Pagerank Case,’’ in Proc. PARCO, vol. 33, ser. John von
Neumann Institute for Computing Series, 2005, pp. 309-316.

[27] E. Yom-Tov and N. Slonim, ‘‘Parallel Pairwise Clustering,’’ in
Proc. SIAM Int’l Conf. Data Mining (SDM), 2009, pp. 745-755.

[28] Y. Bu, B. Howe, M. Balazinska, and D.M. Ernst, ‘‘Haloop:
Efficient Iterative Data Processing on Large Clusters,’’ Proc.
VLDB Endow., vol. 3, no. 1, pp. 285-296, 2010.

[29] D.G. Murray, M. Schwarzkopf, C. Smowton, S. Smith, A. Madhavapeddy,
and S. Hand, ‘‘Ciel: A Universal Execution Engine for Distributed
Data-Flow Computing,’’ in Proc. USEINX Symp. NSDI, 2011, p. 9.

[30] M.S.R., I.G. Ives, and G. Sudipto, ‘‘Rex: Recursive, Deltabased
Datacentric Computation,’’ Proc. VLDB Endow., vol. 5, no. 8, 2012.

[31] J. Ekanayake, H. Li, B. Zhang, T. Gunarathne, S.-H. Bae, J. Qiu,
and G. Fox, ‘‘Twister: A Runtime for Iterative Mapreduce,’’ in Proc.
IEEE Int’l Workshop MapReduce, 2010, pp. 810-818.

[32] K. Kambatla, N. Rapolu, S. Jagannathan, and A. Grama,
‘‘Asynchronous Algorithms in Mapreduce,’’ in Proc. IEEE Conf.
Cluster, 2010, pp. 245-254.

[33] L. Yucheng, G. Joseph, K. Aapo, B. Danny, G. Carlos, and M.H. Joseph,
‘‘Graphlab: A New Framework for Parallel Machine Learning,’’ in
Proc. Int’l Conf. UAI, 2010.

[34] J.E. Gonzalez, Y. Low, H. Gu, D. Bickson, and C. Guestrin,
‘‘Powergraph: Distributed Graph-Parallel Computation on Natural
Graphs,’’ in Proc. USENIX Symp. OSDI, 2012, pp. 17-30.

[35] G. Wang, W. Xie, A. Demers, and J. Gehrke, ‘‘Asynchronous
Large-Scale Graph Processing Made Easy,’’ in Proc. Biennial
CIDR, 2013, pp. 1-12.

Yanfeng Zhang received the BSc, MSc, and PhD
degrees in computer science from Northeastern
University, China, in 2005, 2008, and 2012,
respectively. He is an Associate Professor of Com-
puting Center at NortheasternUniversity, China. He
had been a visiting PhD student in University of
Massachusetts Amherst during August 2009 to
April 2012. His current research consists of large
scale data mining, distributed systems, and cloud
computing. He has published many technical
papers in the above areas. His paper in ACMCloud

Computing 2011 was honored with ‘‘Paper of Distinction’’.

Qixin Gao received the PhD degree from
Institute of Computer Science and Engineering,
Northeastern University, Shenyang, China, in
2008. He is currently working in Northeastern
University at Qinhuangdao, China. His current
research interests include image processing,
visual perception, and massive data processing.

Lixin Gao received the PhD degree in computer
science from the University of Massachusetts at
Amherst, in 1996. She is a Professor of Electrical
and Computer Engineering at the University of
Massachusetts at Amherst. Her research interests
include social networks, Internet routing, network
virtualization and cloud computing. Between May
1999 and January 2000, she was a visiting
researcher at AT&T Research Labs and DIMACS.
She was an Alfred P. Sloan Fellow between 2003-
2005 and received an NSF CAREER Award in

1999. She won the best paper award from IEEE INFOCOM 2010, and the
test-of-time award in ACM SIGMETRICS 2010. Her paper in ACM Cloud
Computing 2011was honoredwith ‘‘Paper of Distinction’’. She received the
Chancellor’s Award for Outstanding Accomplishment in Research and
Creative Activity in 2010, and is a Fellow of ACM and IEEE.

Cuirong Wang received the PhD degree from
Northeastern University, Shenyang, China, in 2003.
She is currently a Professor with the Computer
Science Department, Northeastern University at
Qinhuangdao, China. Her current research interests
include data center networks, cloud computing,
andwireless sensor networks. She hasbeen amain
researcher in several National Nature Science
Foundation research projects of China. Dr. Wang
is an advanced member of China Computer
Federation.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 25, NO. 8, AUGUST 20142100

Authorized licensed use limited to: Northeastern University. Downloaded on April 06,2025 at 03:13:13 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues false
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

