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Abstract Iterative computation is pervasive in
many applications such as data mining, web rank-
ing, graph analysis, online social network analysis,
and so on. These iterative applications typically
involve massive data sets containing millions or
billions of data records. This poses demand of
distributed computing frameworks for process-
ing massive data sets on a cluster of machines.
MapReduce is an example of such a framework.
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However, MapReduce lacks built-in support for
iterative process that requires to parse data sets
iteratively. Besides specifying MapReduce jobs,
users have to write a driver program that submits
a series of jobs and performs convergence testing
at the client. This paper presents iMapReduce,
a distributed framework that supports iterative
processing. iMapReduce allows users to specify
the iterative computation with the separated map
and reduce functions, and provides the support
of automatic iterative processing within a single
job. More importantly, iMapReduce significantly
improves the performance of iterative implemen-
tations by (1) reducing the overhead of creating
new MapReduce jobs repeatedly, (2) eliminat-
ing the shuffling of static data, and (3) allowing
asynchronous execution of map tasks. We imple-
ment an iMapReduce prototype based on Apache
Hadoop, and show that iMapReduce can achieve
up to 5 times speedup over Hadoop for imple-
menting iterative algorithms.

Keywords Iterative computation - iMapReduce -
Distributed computing framework - Hadoop

1 Introduction

With the success of Web 2.0 and the popularity of

online social networks, massive amounts of data
are being collected, such as Facebook activities,
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Flickr photos, Web pages, eBay sales records, and
cell phone records. The collected data typically
contain millions or billions of records. For the pur-
pose of processing large-scale data sets, Google,
Microsoft and Yahoo! have built their own data
centers [11]. Additionally, Amazon and Microsoft
provide commodity hardware for public usage
[1, 28]. Users pay to lease a number of virtual
server instances to customize their own clusters.

To analyze the massive data sets, a distrib-
uted computing framework is needed on top of
a cluster of servers. MapReduce [12] is a frame-
work proposed for data intensive computation in
alarge cluster environment. Since its introduction,
MapReduce, in particular its opensource imple-
mentation, Hadoop [15], has become extremely
popular for analyzing large data sets. It provides a
simple programming model and takes care of dis-
tributed execution, distributed storage, and fault
tolerance, which enable programmers with no ex-
perience on distributed systems to exploit a large
cluster of commodity machines to perform data
intensive computation.

MapReduce is designed for batch-oriented
computation such as log analysis and text process-
ing. However, many data analysis applications [2,
3,7, 10, 25, 32, 35] require iterative processing of
the data, which includes algorithms for text-based
search and machine learning. For example, the
well-known PageRank algorithm parses the web
linkage graph iteratively for deriving pages’ rank-
ing scores. The huge amount of data presented
in these applications demands for an efficient dis-
tributed framework to implement these iterative
algorithms. Nevertheless, MapReduce lacks the
built-in support for iterative processing.

Further, implementing iterative algorithms in
MapReduce usually requires users to design a
chain of jobs, which poses several performance
penalties. First, it wastes considerable resources
on launching, scheduling, and cleaning up these
jobs, and as result leads to longer processing
time, even though these jobs perform the same
operations. Second, the data used for iterative
computation are loaded and shuffled repeatedly
in each iteration job, even though they are not
changed during iterations. Third, the synchronous
batched executions of these MapReduce jobs re-
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quire finishing the previous iteration job before
starting the next iteration job, which can unnec-
essarily delay the process.

In this paper, we propose iMapReduce. To ad-
dress the inefficiencies of iterative algorithm im-
plementations in MapReduce, iMapReduce pro-
vides an efficient iterative processing framework
while reserving the similar MapReduce program-
ming interfaces at the same time. First, it pro-
poses the concept of persistent tasks to avoid
repeated task scheduling. Second, the input data
are loaded to local file system only once instead
of shuffled among workers many times, which
can significantly reduce I/O and network commu-
nication overhead. Third, it facilitates asynchro-
nous execution of map tasks within the same it-
eration to break synchronization barrier between
MapReduce jobs.

We implement a prototype of iMapReduce
based on Apache Hadoop [15] and Hadoop On-
line Prototype (HOP) [16]. Our prototype is back-
ward compatible to Hadoop MapReduce in the
sense that it supports any Hadoop MapReduce
job. We evaluate our prototype with several well-
known iterative algorithms, including Shortest
path, PageRank and K-means. Our experimental
results show that iMapReduce can accelerate the
iterative process significantly, which is up to 5
times faster than the Hadoop implementations.

The rest of the paper is organized as follows.
In Section 2, we introduce two typical iterative al-
gorithms’ MapReduce implementations and sum-
marize their limitations. Section 3 describes the
design and implementation of iMapReduce. Eval-
uation results are provided in Section 4. Section
5 generalizes iMapReduce to any iterative algo-
rithm. We review the related work in Section 6
and conclude the paper in Section 7.

2 Iterative Algorithms

Many data mining algorithms have an iterative
process to operate data recursively. In this sec-
tion, we first provide two examples of iterative
algorithms, and describe their MapReduce imple-
mentations. Then we summarize the limitations of
implementing these algorithms in MapReduce.
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2.1 Tterative Algorithm Examples

We describe Single Source Shortest Path (SSSP)
and PageRank along with their MapReduce im-
plementations in this section.

2.1.1 Single Source Shortest Path

Single Source Shortest Path (SSSP) [10] is a clas-
sical problem that derives the shortest distance
from a source node s to all other nodes in a graph.
Formally, we describe the shortest path computa-
tion as follows. Given a weighted, directed graph
G = (V, E), with link weight matrix W mapping
edges to real-valued weights, for a source node s,
find the minimum distance to any other vertex v,
d).

To perform the shortest path computation in
the MapReduce framework, we can traverse the
graph in a breadth-first manner. Starting from a
source s, with the distance to the source being
initialized as 0, i.e., d(s) = 0, and any other node’s
minimum distance being initially set to be oo, the
map function is applied on each node u. The map
input key is a node id, and the map input value is
composed of two parts. The first part is the mini-
mum distance from s to u, i.e., d(u), and the second
part is the set of node u’s outgoing links’ weight
values, i.e., W(u, ). Based on these two types
of input, the map function generates the output
key-value pair (v, d(u) + W(u, v)), where v is any
of u’s outbound neighboring nodes and W (u, v)
is the link weight from u to v. At meantime,
to maintain its current shortest distance and the
link weight information, the mapper also produces
(u, [du), W(u, %)]) pair.

The map output key-value pairs are shuffled to
the reducers. In each reducer, a number of pos-
sible distance values for a node v from different
predecessors u are gathered, and the minimum
distance value is selected to update v’s shortest
distance only if it is shorter than v’s original short-
est distance. Node v’s shortest distance combined
with its outbound link weight information com-
poses the reduce output value, which is written
to DFS for the next iteration MapReduce job. In
the next iteration, the same map/reduce opera-
tions are performed on the previous MapReduce

job’s output, which is the set of updated shortest
distance values. For the sake of terminating the
iterative process, an additional MapReduce job
following each iteration job is launched to check
the termination condition. Finally, the iterative
process terminates when all the nodes’ shortest
distance values are not changed.

The map and reduce operations can be summa-
rized as follows.

Map For each node u, based on its outgoing
links’ weight values W(u, %), output key-value
pairs (v, d(u) + W(u, v)), where W(u, v) € W(u,
x), and output its current shortest distance value
as well as its outgoing links’ weights, (u, [d(u),
W(u, %)]).

Reduce For each node v, select the minimum
value among d(v) and d(u) + W(u, v) received
from any u to update d(v), and output key-value
pair (v, [d(v), W (u, *)]).

2.1.2 PageRank

PageRank [3, 6, 32] is a popular algorithm initially
proposed for ranking web pages. Later on, it has
been used in a wide range of applications, such
as link prediction [23, 36] and recommendation
systems [2, 17, 37].

The PageRank vector R is defined over a di-
rected graph G = (V, E). Each node v in the
graph is associated with a PageRank score R(v).
The initial rank of each node is ﬁ Each node v
updates its rank iteratively as follows:

d d-R®
> et

1 —
R(k+l)(v) = 4 ,
VI e N

where N~ (v) is the set of nodes pointing to node
v, N*(v) is the set of nodes that v points to, k is
the iteration number, and d is a constant repre-
senting the damping factor. This iterative process
continues for a fixed number of iterations or till
the difference between the resulting PageRank
scores of two consecutive iterations is smaller than
a threshold.

In MapReduce, the map function is applied on
each node u, where the input key is the node
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id and the input value contains node u’s ranking
score R(u) as well as node u’s outbound neighbors
set NT(u). The mapper on node u derives the
partial ranking score of v, v € N*(u), i.e., dWRf—(”Lz)l,
that will be shuffled to node v. Meanwhile, the
retained PageRank score lﬁl and the outbound
neighbors set N* () are shuffled to itself. The re-
ducer on node v accumulates these partial ranking
scores and the retained ranking score to produce
a new ranking score of v. The updated ranking
score of v along with the outbound neighbors set
is written to DFS for feeding the next iteration
MapReduce job. To stop the iterative process,
users have to perform another MapReduce job af-
ter each iteration to measure the difference from
the last iteration’s result.

The map and reduce operations can be summa-

rized as follows.

Map For each node u, output key-value pairs
(v, d%), where v € N*(u), and output the re-
tained ranking score and its outbound neighbors
set, (u, [lﬁf, Ntw)).

Reduce For each node v, sum 'ﬁi and d%
received from any u to update R(v), and output

key-value pair (v, [R(v), NT(v)]).
2.2 Limitations of MapReduce Implementation

As described above, MapReduce can be used to
implement iterative algorithms. However, we list
three limitations for implementing iterative algo-
rithms in MapReduce.

1. The operations in each iteration are the
same. Nevertheless, MapReduce implemen-
tation starts a new job for each iteration,
which involves repeated task initializations
and cleanups. Moreover, these jobs have to
load the input data from DFS and dump the
output data to DFS repeatedly. These result
in the unnecessary scheduling overhead.

2. The adjacency information data is shuffled in
each iteration between map and reduce, de-
spite the fact that it remains the same during
all iterations. An alternative approach is to
run an additional MapReduce job to perform
a join operation between the static adjacency
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data and the dynamic iterated data before
each iteration. Both of these approaches result
in the unnecessary communication overhead.
3. The map tasks in an iteration cannot be
started before finishing all the reduce tasks
in the previous iteration. The main loop in
the MapReduce implementation requires the
completion of previous iteration job before
starting the next iteration job. However, the
map tasks should be started as soon as their
input data are available. This limitation results
in the unnecessary synchronization overhead.

iMapReduce aims to address these limitations
and provides an efficient distributed computing
framework for implementing iterative algorithms.
In doing so, we have two observations about these
iterative algorithms. First, the processing unit in
both map function and reduce function is node,
which enables a one-to-one mapping between
mappers and reducers. Second, each iteration is
expressed by only one MapReduce job. Although
these two observations might not be true for all
iterative algorithms, we note that they are indeed
true for a large class of graph-based iterative
algorithms. We will make these assumptions in
presenting iMapReduce in Section 3 for ease of
exposition. In Section 5, we will describe how
iMapReduce supports implementing iterative al-
gorithms where the above two assumptions do not
hold.

3 iMapReduce

In this section we propose iMapReduce.
iMapReduce provides support of iterative proc-
essing (Section 3.1), efficient data management
(Section 3.2), and asynchronous map task exec-
ution (Section 3.3). In addition, we will describe
the runtime support including load balancing and
fault tolerance mechanisms in Section 3.4 and
framework APIs in Section 3.5.

3.1 Iterative Processing

In the MapReduce implementations of iterative
algorithms, a series of MapReduce jobs consist-
ing of map operation and reduce operation are
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scheduled. Figure 1a shows the dataflow in the
MapReduce implementation. Each MapReduce
job has to load the input data from DFS before the
map operation. After the map operation derives
the intermediate key-value pairs, the reduce func-
tion operates on the intermediate data and derives
the output of this iteration, which is written to
DES. In the next iteration, the map function loads
the iterated data from DFS again and repeats the
process. These MapReduce jobs including their
component map/reduce tasks incur unnecessary
scheduling overhead. Additionally, the repeated
DEFS loading/dumping is expensive, even though
Hadoop provides locality optimization that re-
duces the remote communication.

We note that each iteration performs the
same operations. In other words, the series of
jobs perform the same map and reduce func-
tions. We exploit this property in iMapReduce by
making map/reduce tasks persistent. That is, the
map/reduce operations in map/reduce tasks are
kept executing till the iteration is terminated. Fur-
ther, iMapReduce enables the reduce’s output to
be passed to the map for the next round iteration.

job1 <

> job

MapReduce
dataflow

iMapReduce
dataflow

(a) (b)

Fig. 1 a Dataflow of MapReduce. b Dataflow of
iMapReduce

Figure 1b shows the dataflow in iMapReduce. The
dashed line indicates that the data loading from
DFS happens only once in the initialization stage,
and the output data are written to DFS only once
when the iteration terminates. In the following
we describe how iMapReduce implements the
persistent tasks and how the persistent tasks are
terminated.

3.1.1 Persistent Tasks

A map/reduce task is a computing process with a
specified map/reduce operation corresponding to
a subset of data records. In the Hadoop MapRe-
duce framework, each map/reduce task is assigned
to a slave worker processing a subset of the in-
put/shuffled data, and its life cycle ends when
completing processing the assigned data records.

In contrast, each map/reduce task in iMapRe-
duce is persistent. A persistent map/reduce task
keeps alive during the entire iterative process.
When all the assigned data of a persistent task
are parsed, the task becomes dormant, waiting
for the new input/shuffled data. For a map task,
it waits for the results from the reduce task, and
is reactivated to work on the new input data
records when the required data arrive from the
reduce task. We will describe how the data are
passed from the reduce tasks to the map tasks in
Section 3.2.1. For the reduce task, it waits for all
the map tasks’ output and is reactivated synchro-
nously as in MapReduce.

To implement persistent tasks, there should
be enough available task slots. The number of
available map/reduce task slots is the number of
map/reduce tasks that the framework can accom-
modate (or allows to be executed) simultaneously.
In Hadoop MapReduce, the master splits a job
into many small map/reduce tasks, the number
of map/reduce tasks executed simultaneously can-
not be larger than the number of the available
map/reduce task slots (the default number in
Hadoop is two per slave worker). Once a slave
worker completes an assigned task, it requests
another one from the master. In iMapReduce,
we need to guarantee that there are sufficient
available task slots for all the persistent tasks to
start at the beginning. This means that the task
granularity should be set coarser to have less
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tasks. Clearly, this might make load balancing
challenging. We will address this issue with a load
balancing scheme in Section 3.4.2.

3.1.2 Iteration Termination

Iterative algorithms typically stop when a termi-
nation condition is met. Users terminate an iter-
ative process in two ways: (1) Fixed number of
iterations: Iterative algorithm stops after a fixed
number of iterations. (2) Bounding the distance
between two consecutive iterations: Iterative al-
gorithm stops when the difference between two
consecutive iterations is less than a threshold.
iMapReduce performs the termination check
after each iteration. To terminate the iterative
computation by a fixed number of iterations, it is
straightforward that we record the iteration num-
ber in each task and terminate it when the number
exceeds a threshold. To bound the distance be-
tween two consecutive iterations, the reduce tasks
save the output from two consecutive iterations
and calculate the distance. Users should specify
the distance measurement method, e.g., Euclidean
distance, Manhattan distance, etc. In order to ob-
tain an global distance value from all reduce tasks,
the local distance values from the reduce tasks
are merged by the master, and the master checks
the termination condition to decide whether to
terminate or not. If the termination condition is
satisfied, the master will notify all the persistent
map/reduce tasks to terminate their executions.

3.2 Data Management

As described in Section 2.2, even though the graph
adjacency information is unchanged from itera-
tion to iteration, the MapReduce implementations
reload and reshuffle the unchanged graph data in
each iteration, which poses considerable commu-
nication overhead.

To avoid the shuffling of unchanged graph data,
iMapReduce differentiates the static data from the
state data. The state data are updated in each
iteration, while the static data remain the same
across iterations. For example, in the SSSP ex-
ample, the nodes’ shortest distance values as the
state data are updated at each iteration, while the
link weights as the static data are unchanged. In
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PageRank, the pages’ ranking scores as the state
data are updated iteratively, while the adjacency
lists as the static data are unchanged.

Figure 2 shows the state/static data flow in an
iMapReduce worker. Within a worker, the initial
state data and the static data are loaded to local
FS from DFS in the initial stage. Before each map-
reduce iteration starts, the iterated state data are
joined with the local static data for map operation.
Then the state data produced by map are shuffled
to reduce, and the updated state data from reduce
are passed to map to start another iteration. In
the following, we describe how the state data are
passed from reduce to map and how to join the
state data with the static data.

3.2.1 Passing State Data from Reduce to Map

In MapReduce, the output of a reduce task is
written to DFS and might be used later in the
next MapReduce job. In contrast, iMapReduce
allows the state data to be passed from the reduce
task to the map task directly, so as to trigger the
join operation with the static data and to start the
map execution for the next iteration. To do so,
iMapReduce builds persistent socket connections
from the reduce tasks to the map tasks.

Map task

Static data

—

state data flow

static data flow

[ Shuffle ]

Reduce task
i A 4

Reduce

Fig. 2 Dataflow of the state data and the static data in an
iMapReduce worker
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In order to reduce the number of the socket
connections, we partition the set of graph nodes
into multiple subsets. Each map task accompanied
with a reduce task is assigned with a subset of
nodes. In other words, there is a one-to-one cor-
respondence between the map tasks and the re-
duce tasks. Only one socket connection is needed
for passing the state data from a reduce task
to the corresponding map task, which processes
the same subset of nodes. Otherwise, we have
to perform another shuffling process from the
reduce tasks to the map tasks, where the number
of persistent connections grows exponentially as
the number of tasks increases.

Since the map task has a one-to-one correspon-
dence with the reduce task, they hold the same
subset of nodes. We can partition the static data
using the same partition function as that is used
in the shuffling of the state data. In doing so,
the state data are always shuffled to the exact
reduce task where its connected map task is hold-
ing the corresponding static data. Further, in or-
der to avoid the network communication needed
for passing the state data, we prefer a local con-
nection, so that the task scheduler maintains the
mapping information and always assigns the map
task and its corresponding reduce task to the same
worker.

3.2.2 Joining State Data with Static Data

As shown in Fig. 2, iMapReduce separates the sta-
tic data from the state data, so that we only update
the state data iteratively. The static data are lo-
cated in map tasks and are joined with the iterated
state data for map operation. Therefore, the map
operation takes input from both the state data and
the static data, while the reduce operation only
takes input from the state data. Before executing
the map operation, a join operation between the
state data and the static data is performed to
obtain the combined state and static data records,
which are used in the map operation.
iMapReduce automatically performs this join
operation without requiring users to write an ad-
ditional MapReduce job (Some previous work
has focused on optimizing this additional joining
MapReduce job [5]). We assign the same key to
the static data record and the state data record

that will be joined together. For the PageRank
example, a node’s static adjacency list and its
iteratively updated ranking score are indexed by
the same node id. The static data records and the
state data records are sorted in the natural order
of their keys respectively. In order to implement
the join operation, we read one static data record
and read one state data record correspondingly,
so they are with the same key. The framework
will join the static data and the state data before
feeding the joined data to the map operation. The
joined state data record and static data record are
provided to map operation as the input parame-
ters, so that users can concentrate on implement-
ing the map operation, without worrying about the
maintenance of the static data in their iterative
algorithm implementations.

3.3 Asynchronous Execution of Map Tasks

In MapReduce iterative algorithm implementa-
tions, two synchronization barriers are existed,
between maps-reduces and between MapReduce
jobs, respectively. Due to the synchronization bar-
rier between jobs, the map tasks of the next it-
eration job cannot start before the completion of
the previous iteration job, which requires all the
reduce tasks’ completion. However, since the map
task needs only the state data from its correspond-
ing reduce task, a map task can start its execution
as soon as its input state data arrives, without
waiting for the other reduce tasks’ completion.
In iMapReduce, we schedule the execution of
map tasks asynchronously. By enabling the asyn-
chronous execution, the synchronization barriers
between MapReduce jobs are eliminated, which
can further speed up the iterative process.

To implement the asynchronous execution, we
build a persistent socket connection from a reduce
task to its corresponding map task. In a naive
implementation, as soon as the reduce task pro-
duces a data record, it is immediately sent back to
its corresponding map task. Upon receipt of the
data from the reduce task, the map task performs
the map operation on it immediately. However,
the eager triggering in the native implementation
will result in frequent context switches between
reduce operation and map operation that impacts
performance. Thus, a buffer is designed in each
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reduce task. As the buffer size grows larger than a
threshold, the data are sent to the corresponding
map task.

In each map task, the join operation is per-
formed as soon as the state data from the cor-
responding reduce task arrive. Since the static
data are always ready in the map task, the join
operation can be performed in an eager fashion.
The map operation is executed immediately af-
ter the join operation produces the joined static
and state data record. Note that the reduce tasks
cannot start until all the map tasks in the same
iteration have been completed. In other words,
the execution of map tasks and the execution of
reduce tasks cannot be overlapped in the same
iteration, as is the case in MapReduce.

3.4 Runtime Support

The runtime support for load balancing and fault
tolerance is essential for a distributed computing
framework. As we know, one of the key reasons
for MapReduce’s success is its simple and efficient
runtime support. In the following, we describe
how iMapReduce supports load balancing and
fault tolerance.

3.4.1 Fault Tolerance

Fault Tolerance is important in a server cluster
environment. MapReduce splits a job into mul-
tiple fine-grained tasks and reschedule the failed
task whenever a task failure is detected. More-
over, MapReduce provides speculative execution
[40] that is designed on clusters of heterogeneous
hardware. Speculative execution starts another
concurrent task to process the same data block
if extra resources are available, where the first
completed task’s output is preferred.
iMapReduce relies on checkpointing mecha-
nism for fault-tolerance. For each map task, the
static data block has a replica on DFS, while
for each reduce task, the output state data as
the checkpoint are dumped to DFS every few
iterations. In case there is a failure, iMapReduce
recovers from the most recent checkpoint itera-
tion, instead of starting the iterative process from
scratch. Since the state data are relatively small,
it is expected to consume little time for dumping
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these data to DFS (i.e., make several file copies
on several other machines for data redundancy).
Note that the checkpointing process is performed
in parallel with the iterative process.

3.4.2 Load Balancing

In MapReduce, the master decomposes a submit-
ted job into multiple tasks. The slave worker com-
pletes one task followed by requesting another
one from the master. This “complete-and-then-
feed” task scheduling mechanism makes good
use of computing resources. In iMapReduce, all
tasks are assigned to slave workers in the be-
ginning at one time, since tasks are persistent in
iMapReduce. This one-time assignment conflicts
with MapReduce’s task scheduling strategy, so
that we cannot confer the benefit from the original
MapReduce framework.

Lack of load balancing support may lead to
several problems: (1) Even though the initial in-
put data are evenly partitioned among workers, it
does not necessarily mean that the computation
workload is evenly distributed due to the skewed
degree distribution. (2) Even though the computa-
tion workload is evenly distributed among work-
ers, it still cannot guarantee the best utilization of
computing resources, since a large cluster might
consist of heterogeneous servers [40].

To address these problems, iMapReduce per-
forms task migration whenever the workload is
unbalanced among workers. After each iteration,
each reduce task sends an iteration completion
report to the master, which contains the reduce
task id, the iteration number, and the processing
time for that iteration. Upon receipt of all the
reduce tasks’ reports, the master calculates the av-
erage processing time for that iteration excluding
longest and shortest, based on which the master
calculates the time deviation of each worker and
identifies the slower workers and the faster work-
ers. If the time deviation is larger than a threshold,
the reduce task along with its connected map task
in the slowest worker is migrated to the fastest
worker in the following three steps. The master
(1) kills a map-reduce task pair in the slow worker,
(2) launches a new map-reduce task pair in the
fast worker, and (3) sends a rollback command to
the other map/reduce tasks. All the map/reduce
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tasks that receive the rollback command skip their
current work. The rolled back map tasks reload
the latest checkpointed state data from DFS and
proceed the iterative computation, and the new
launched map tasks load not only the state data
but also the corresponding static data from DFS.

However, we notice that when the data parti-
tions are skewed and every worker in the cluster
is exactly the same, the large partition will keep
moving around inside the cluster, which may de-
grade performance a lot and does not help load
balancing. A confined load balancing mechanism
can automatically identify the large partition and
break it into several small sub-partitions distrib-
uted to different workers.

3.5 APIs

According to the design ideas, we implement a
prototype of iMapReduce [18] based on Hadoop
[15] and Hadoop Online Prototype (HOP) [16].
Our prototype supports any Hadoop job. In ad-
dition, it supports the implementation of iterative
algorithms. Users can turn on iterative process-
ing functionalities for implementing iterative algo-
rithms, or turn them off for implementing MapRe-
duce jobs as usual.

To implement an iterative algorithm in
iMapReduce, wusers should implement the
following interfaces:

— void map (Key, StateValue,
StaticValue).
The map interface in iMapReduce has one
input key Key and two input values: state
data value Statevalue and static data value
StaticValue. Both of the values are asso-
ciated with the same input key. iMapReduce
framework joins the state data and the static
data automatically, so that users can focus on
describing the map computation.

— void reduce (Key, StateValue).
The reduce interface in iMapReduce is the
same as that in MapReduce, with an input key
and an input value. Note that the input value is
state data that has been separated from static
data.

— float distance (Key, PrevState,

CurrState).

Users implement this interface to specify the
distance measurement using a key’s previous
state value and its current state value. The re-
turned float values for different keys are accu-
mulated to obtain the distance value between
two consecutive iterations’ results. For exam-
ple, Manhattan distance and Euclidean dis-
tance can be used to quantify the difference.

In addition, iMapReduce provides the follow-
ing job parameters (i.e., JobConf’s parameters) to
help users specify iterative computation:

— Jjob.set ("mapred.iterjob.statepath",
path).
Set the DFS path of the initial state data.

— Jjob.set ("mapred.iterjob.staticpath",
path).
Set the DFS path of the static data.

— Jjob.setInt ("mapred.iterjob.
maxiter", n).
Set the maximum iteration number # to termi-
nate an iterative computation.

— Jjob.setFloat ("mapred.iterjob.
disthresh", €).
Set the distance threshold as ¢ to terminate an
iterative computation, which is used together
with distance interface.

To show how to implement iterative algorithms
in iMapReduce, an example of PageRank algo-
rithm implementation code is given in Fig. 3. In
the map function (Line 1-4), each page’s PageR-
ank score is evenly distributed to its neighbors and
retaining % by itself, where N is the total num-
ber of pages in the graph. In the reduce function
(Line 5), for each page, it combines the partial
PageRank scores from its incoming neighbors and
its own retained score. For the distance measure-
ment, we calculate the Manhattan distance (Line
6). Additionally, we should specify the location
of the initial state data (Line 11), as well as the
location of the static data (Line 12). iMapRe-
duce supports automatically graph partitioning
and graph loading for a few particular format-
ted graphs (including weighted and unweighted
graphs). Users can first format their graphs in our
supported formats. By using the distance-based
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Map

Input: Key n, StateValue R (n), StaticValue adj(n)
1: for link in adj(n) do
2:  output( link.endnode, (d x R (n))/ |adj(n)| );
3: end for
4: output(n, (1-d)/N);

Reduce
Input: Key n, Set <values>
5: output(n, sum(<values>) );

Distance
Input: Key n, PrevState R7(n), CurrState R2(n)
6: return abs(R7(n) -R2(n) ),

Main

7: Job job = new Job();

8: job.setMap(Map);

9: job.setReduce(Reduce);

10: job.setDistance(Distance);

11: job.set(“mapred.iterjob.statepath”, “hdfs://.../initRankings”);
12: job.set(*mapred.iterjob.staticpath”, “hdfs://.../adjacencylists”);
13: job.setFloat(“mapred.iterjob.disthresh”, 0.01);

14: job.submit();

Fig. 3 PageRank implementation in iMapReduce

termination check method, the iterative computa-
tion will terminate when the distance measured by
the distance function is smaller than 0.01 (line 13).

4 Evaluation

In this section, we evaluate iMapReduce. Two
typical graph based iterative algorithms are
considered: SSSP and PageRank. We compare
the performance of the two algorithms imple-
mented in iMapReduce with that implemented in
Hadoop [15].

4.1 Experiment Setups
4.1.1 Cluster Environment

Our experiments are performed on both a local
cluster of commodity machines and a cluster built
on Amazon EC2 cloud [1]. Hadoop’s block size
is set to be 64 MB, and Hadoop’s heap size is set
to be 2 GB. We describe the cluster settings as
follows.

Local Cluster A local cluster containing 4 nodes
is used to run experiments. Each node has Intel
(R) Core(TM)2 Duo E8200 dual-core 2.66 GHz
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CPU, 3 GB of RAM, 160 GB storage, and runs
32-bit Linux Debian 4.0 OS. These four nodes are
locally connected by a switch with communication
bandwidth of 1 Gbps.

Amazon EC2 cluster We build a test cluster
on Amazon EC2. There are 80 small instances in-
volved in our experiments. Each instance has
1.7 GB memory, Inter Xeon CPU E5430
2.66 GHz, 146.77 GB instance storage and
runs 32-bit platform Linux Debian 4.0 OS.

4.1.2 Data Sets

We implement SSSP and PageRank under
iMapReduce and evaluate the performance on
real graphs and synthetic graphs. We generate the
synthetic graphs in order to evaluate iMapReduce
on graphs of different sizes.

We first describe the graphs used for running
SSSP algorithm as follows. (1) DBLP author co-
operation graph. Each node in DBLP graph repre-
sents an author, and each link between two nodes
represents the cooperation relationship between
the two authors. The link weight is set according
to the cooperation frequency between the two
linked authors. (2) Facebook user interactions
graph [38]. Each node in the graph represents a
Facebook user, and each link between two nodes
implies that the two users are friends. The users
interaction frequency is used to assign weight to
the user friendship links. (3) Synthetic graph. The
log-normal parameters of the link weight distrib-
ution (i.e., shape parameter o = 1.2, scale para-
meter u = 0.4) and that of the node out-degree
distribution (i.e., shape parameter o = 1.0, scale
parameter u = 1.5) are extracted by average from
the above two real graphs [8]. Based on these
log-normal parameters, we then generate three
log-normal synthetic graphs, containing 1 million,
10 million, and 50 million nodes, respectively.
Table 1 shows the brief description of these
data sets.

The data set used for PageRank is described
as follows. Two real graphs are considered:
(1) Google webgraph [22] and (2) Berkley-
Stanford webgraph [22]. Unlike SSSP’s weighted
graphs, these graphs are unweighted. (3) The log-
normal parameters (i.e., shape parameter o =
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Table 1 SSSP data sets statistics

Graph # of nodes # of edges File size
DBLP 310,556 1,518,617 16 MB
Facebook 1,204,004 5,430,303 58§ MB
SSPP-s 1M 7,868,140 87 MB
SSPP-m 10M 78,873,968 958 MB
SSPP-1 50M 369,455,293 5.19 GB
2, scale parameter u = —0.5) of the node’s out-

degree distribution are extracted from the above
real graphs to generate three synthetic graphs,
containing 1 million, 10 million, and 30 million
nodes, respectively. Table 2 shows the brief de-
scription of these data sets.

4.2 Local Cluster Experiments

On our local cluster, we use real graphs as in-
put to evaluate SSSP and PageRank under both
MapReduce and iMapReduce. As discussed in
Section 3, there are three factors that help re-
duce running time. (1) With the help of iterative
processing support, iMapReduce performs one-
time initialization rather than spending time on
multiple job/task initializations in each iteration
in Hadoop. (2) By maintaining static data locally,
iMapReduce avoids static data shuffling. (3) By
asynchronous map execution, iMapReduce elimi-
nates execution delay. Besides measuring the run-
ning time of MapReduce and iMapReduce, we
measure how much these factors help improve
performance.

In order to investigate how much these three
factors affect on performance improvement, we
measure each factor’s contribution by the follow-
ing steps. (1) We first record MapReduce job’s
running time and iMapReduce job’s running
time as two extreme reference points. The time
difference between the two indicates the reduced
time achieved by iMapReduce. (2) By using

Table 2 PageRank data sets statistics

Graph # of nodes # of edges File size
Google 916,417 6,078,254 49 MB
Berk-Stan 685,230 7,600,595 57 MB
PageRank-s 1M 7,425,360 61 MB
PageRank-m 10M 75,061,501 690 MB
PageRank-1 30M 224,493,620 2.26 GB

iMapReduce, we let the map tasks execute syn-
chronously and record the running time, so that
the running time difference from iMapReduce
indicates the contribution from the asynchronous
map execution factor. (3) In order to measure
the job/task initialization time consumed in the
Hadoop implementations, we record the initializa-
tion time, which is the time period from the job
submission to the averaged time point when these
map tasks start performing map operations. The
time spent on job/task initialization in Hadoop im-
plementations is the summation of the initializa-
tion time from all iteration jobs. iMapReduce has
one-time initialization that only happens in the
initialization stage. The estimated initialization
time of multiple Hadoop jobs excluding that of the
iMapReduce job is the time saved by the factor of
one-time initialization. (4) The contribution from
avoiding static data shuffling can be estimated by
subtracting the saved time measured by (2) and
(3) from the referenced Hadoop running time.
Figure 4 shows the running time of SSSP on
DBLP author cooperation graph. Figure 5 shows
that on Facebook user interaction graph. We can
see that by iMapReduce it can achieve a factor
of 2-3 speedup over the Hadoop implementation.
The plot labeled with MapReduce (ex. init.) shows
the MapReduce running time excluding the ini-
tialization time in each job, and the plot labeled
with iMapReduce (sync.) shows the synchronous
iMapReduce running time, where we let the map
tasks execute synchronously. We can see that by
means of one-time initialization we can reduce the
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Fig. 4 The running time of SSSP on DBLP author cooper-
ation graph
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Fig. 5 The running time of SSSP on Facebook user inter-
action graph

running time by about 20%, which is illustrated
by the plot labeled with MapReduce (ex. init.).
Further, another 15% running time is saved by
asynchronous map execution, which is illustrated
by the plot labeled with iMapReduce (sync.).
Then, the remaining improvement is achieved by
avoiding static data shuffling, which saves about
20% running time.

Figure 6 shows the running time of PageRank
on Google webgraph, and Fig. 7 shows that on
Berkley-Stanford webgraph. Comparing with the
Hadoop implementation, iMapReduce achieves
about 2 times speedup. In addition, we can see
that 10% running time is saved by one-time ini-
tialization, 30% running time is saved by avoiding
static data shuffling, and another 10% running
time is saved by asynchronous map execution.

900 MapReduce —+—

800 MapReduce (ex. init.) - -
iMapReduce (sync.) %

700 iMapReduce ---&--- >

time (s)

iterations

Fig. 6 The running time of PageRank on Google
webgraph
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Fig.7 The running time of PageRank on Berkley-Stanford
webgraph

4.3 EC2 Cluster Experiments

We deploy iMapReduce prototype on Amazon
EC2 cluster and perform experiments on the syn-
thetic graphs.

4.3.1 Running Time

We run SSSP on the three synthetic graphs SSSP-
s, SSSP-m, and SSSP-1 on Amazon EC2 cluster
(20 small instances). We limit to ten iterations
and compare running time on the synthetic graphs
with different sizes. Figure 8 shows the result.
The iMapReduce implementation reduces run-
ning time to 23.2%, 37.0% and 38.6% of that
of Hadoop for SSSP-s, SSSP-m, and SSSP-I, re-
spectively. We can see that iMapReduce performs
better when the input is small. The main iterative
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)
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* 8.6%
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. 7.0%
N 32%  PE
SSSP-s SSSP-m SSSP-I

Fig. 8 The running time of SSSP on the synthetic graphs
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computation takes less time on the small input, so
that there is relatively more time spent on job/task
initialization. While iMapReduce does not per-
form job/task initialization for each iteration, its
one-time initialization property can reduce the
total running time significantly.

Similarly, PageRank is executed with ten iter-
ations on the three synthetic graphs PageRank-s,
PageRank-m, and PageRank-1 on Amazon EC2
cluster (20 small instances). The results are shown
in Fig. 9. More significant speedup is achieved
for the PageRank-s graph, where the running
time is reduced to 44% comparing with Hadoop
implementation. For the PageRank-m graph and
the PageRank-1 graph, iMapReduce reduces the
running time to about 60%.

To explore the contributions from different fac-
tors, we show in Fig. 10 the time portion reduction
by the these factors, i.e., one-time initialization,
static data shuffling avoidance, and asynchronous
map execution. SSSP and PageRank are both
computed 10 iterations on the SSSP-m graph and
on the PageRank-m graph, respectively. We can
see that the running time reduced by one-time
initialization and asynchronous map execution are
both around 5-10%. The time reduced by avoid-
ing static data shuffling is proportional to the input
static data size (SSSP-m 958 MB and PageRank-
m 690 MB). It takes more time on shuffling the
bigger-size static data, so we can save relatively
more time when the static data size is larger.
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Fig. 9 The running time of PageRank on the synthetic
graphs
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Fig. 10 Different factors’ effects on running time
reduction

4.3.2 Communication Cost

In Hadoop MapReduce implementations, large
amounts of data are communicated between map
tasks and reduce tasks. Reducing the amount
of data communicated not only helps improve
performance but also saves communication re-
sources. iMapReduce saves network communica-
tion cost by avoiding static graph shuffling. To
quantify the saving of communication, we mea-
sure the total amount of data exchanged when
performing the iterative algorithms on the SSSP-
1 graph and on the PageRank-l graph. As shown
in Fig. 11, iMapReduce significantly reduces the
communication cost. The amount of required data
exchange is reduced to only about 12%.
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Fig. 11 Total communication cost
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Fig. 12 The speedup over the Hadoop implementations
for running SSSP when scaling cluster size from 20 to 80

4.3.3 Scaling Performance

Since our prototype is implemented on top of
Hadoop MapReduce, which scales well, the scal-
ability of iMapReduce prototype should meet
most applications’ needs. We scale our Amazon
EC2 cluster to contain 50 instances and 80 in-
stances, and run SSSP and PageRank on the SSSP-
1 graph and on the PageRank-1 graph, respec-
tively. iMapReduce accelerates algorithm conver-
gence when using more computing resources as
expected. Moreover, iMapReduce performs even
better on a larger scale cluster.

Figure 12 shows the running time of SSSP when
we scale the cluster size. The figure shows that the
running time ratio of iMapReduce to MapReduce
is reduced by 8% when we scale cluster from
20 instances to 80 instances. Figure 13 shows the
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B MapReduce
iMapReduce
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60.3%

20 50 80
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Fig. 13 The speedup over the Hadoop implementations
for running PageRank when scaling cluster size from 20
to 80
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running time result of PageRank when we scale
the cluster size. We can see that the running time
ratio of iMapReduce to MapReduce is reduced by
7% when we scale the cluster from 20 instances to
80 instances. We explain these results as follows.
The bigger the cluster is, the more network com-
munications would occur. Since iMapReduce aims
at reducing network communications, it is more
likely to exert its advantages on the bigger cluster.

4.3.4 Parallel Efficiency

We measure the parallel efficiencies of iMapRe-
duce and MapReduce in the context of SSSP and
PageRank, The parallel ef ficiency is defined as

L @)

Parallel efficiency = ;
WX N

where 7, is the running time of an application in
a single EC2 instance (no communication and no
synchronization between machines), » is the num-
ber of instances, and 7, is the running time of an
application in an n-instance cluster. We first run
an application in a single EC2 instance to obtain
T, where the partition number is one. Then we
run the application on a cluster of machines with
cluster size of 20, 50 and 80 respectively.

Figure 14 shows the parallel efficiencies for
SSSP computation and PageRank computation.
We can see that iMapReduce yields higher par-
allel efficiencies than Hadoop MapReduce in
both SSSP and PageRank. For SSSP, performance
slowdown could be around 60% by MapRe-
duce when scaling cluster size to 80. While by
iMapReduce, the performance slowdown could
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Fig. 14 Parallel efficiencies of iMapReduce and MapRe-
duce for SSSP and PageRank
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be around 43%. For PageRank, the parallel
efficiency of iMapReduce is also much better than
MapReduce.

5 Extensions of iMapReduce

So far, we have focused on supporting graph-
based iterative algorithms in iMapReduce. How-
ever, iMapReduce can be extended to imple-
ment other iterative algorithms as well. In Sec-
tion 2.2, we make two assumptions in iMapRe-
duce: (1) there is one-to-one correspondence from
reducers to mappers, and (2) each iteration is de-
scribed as a single MapReduce job. In this section,
we present how to extend iMapReduce to support
the iterative algorithms which do not hold these
two assumptions.

5.1 Accommodating Broadcast from Reduce
to Map

In an iterative algorithm, it is possible that a
mapper needs all reducers’ output. For example,
to implement the Jacobi method [4] in MapRe-
duce, according to x**) = D=1(b — Rx®), each
reducer calculates a part of the iterated vector,
and all mappers need the intact vector x for com-
putation, where D is a diagonal matrix. Another
famous iterative algorithm, K-means clustering al-
gorithm, also requires all reducers’ output for map
operation. iMapReduce accommodates broadcast
from reduces to maps as shown in Fig. 15. Each
reduce task can send its output key-value pairs
to all map tasks. Note that, the broadcast from
reduces to maps is different from the shuffle from
maps to reduces. By broadcasting, each reduce
task sends n copies of its output to n map tasks
(each map task receives a whole output), while
by shuffling, each map task splits its output into »
partitions and sends the n partitions to n reduce
tasks (each reduce task receives a part of the
output), where n is the number of map/reduce
tasks. In the following, we will present the K-
means algorithm in iMapReduce to show how
iMapReduce accommodates broadcasting.

Fig. 15 Broadcast from reduces to maps

5.1.1 K-means Clustering Algorithm

K-means [25] is a commonly used clustering al-
gorithm, which partitions # nodes into k clusters
so that the nodes in the same cluster are more
similar than those in other clusters. We describe
the algorithm briefly as follows. (1) Start with
selecting k random nodes as cluster centroids, (2)
Assign each node to the nearest cluster centroid,
(3) Update the k cluster centroids by “averaging”
the nodes belonging to the same cluster centroid.
Repeat steps (2) and (3) until convergence has
been reached.

The map and reduce operations for the K-
means algorithm can be described as follows.

Map For each key nid (node id), compute the
distance from the node to any cluster centroid,
and output the closest cluster id cid along with the
node coordinate information ncoord, i.e., output
key-value pair {(cid, ncoord).

Reduce For each key cid (cluster id), update
the cluster centroid coordinate by averaging all
the nodes’ coordinates that belong to cid, and
output cid along with the cluster’s updated cen-
troid coordinate ccoord, i.e., output key-value pair
(cid, ccoord).

The map function needs all the cluster centroids
in order to find the closest one for a certain
node. This means that the mapping from reduce
to map is not one-to-one but one-to-all. The state
data, i.e., cluster centroids set, should be sent
from each reduce task to all map tasks. Another
difference between K-means and the graph-based
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iterative algorithms described in Section 2 is that,
not only the map operation needs the static data
(i.e., the coordinates of all nodes) for measuring
the distance to the centroids, but also the reduce
operation needs the static data for the averaging
operation. Therefore, the coordinates of nodes
have to be shuffled from map to reduce.

5.1.2 iMapReduce Implementation

To support “K-means-like” iterative algorithms,
iMapReduce lets reduce tasks broadcast the up-
dated state data to all map tasks. For the one-
to-all mapping, the map function operates on a
static data record with multiple state data records.
Accordingly, users should specify the mapping
type by setting

— Jjob.set ("mapred.iterjob.mapping",
"onezall").

Otherwise, the framework will use "one2one" by
default. In addition, the map function’s input pa-
rameter StateValue (Section 3.5) that originally
contains a single state value are extended to a list
of state values. In the case of K-means, the state
values list is the set of all cluster centroids.

Further, the map operation needs the output
from multiple reduce tasks. The map operation
cannot be started before all its input data arrive.
In the case of K-means, the map operation cannot
be started before all the updated cluster centroids
are collected. That is, the map tasks cannot be
executed asynchronously. Therefore, the option
for synchronous map execution should be turned
on by setting

— Jjob.setBoolean ("mapred.iterjob.
sync", true).

In general, we trigger the map operations synchro-
nously when all the reduce operations that supply
the input have completed.

5.1.3 Experimental Results
We implement K-means in iMapReduce and run
the algorithm on the data set collected from

Last.fm [21]. The users’ listening history log is
used to cluster users based on their tastes. This
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log contains each user’s artist preference informa-
tion quantified by the times the artist is listened.
Sharing a preferred artist indicates a common
taste. Last.fm data set (1.5 GB) has 359,347 user
records, and each user has 48.9 preferred artists
on average.

Figure 16 shows the K-means running time lim-
ited in ten iterations, which are performed on our
local cluster. iMapReduce achieves about 1.2x
speedup over Hadoop. This is less significant than
that achieved for the SSSP and PageRank algo-
rithms. Nevertheless, this is under our expectation
since the implementation of K-means needs to
shuffle static data and has to execute map oper-
ations synchronously.

It is also possible to reduce the shuffling of sta-
tic data by using Combiner provided by Hadoop
MapReduce. Combiner performs local aggrega-
tion at the map side before shuffling the in-
termediate data in order to reduce the amount
of shuffled data. We also perform the K-means
experiments with Combiner (other experiment
configurations are the same). As expected, the
running time is reduced in both Hadoop and
iMapReduce. For Hadoop implementation, the
running time is reduced from 2881 s to 2226 s
(23% reduction), while for iMapReduce imple-
mentation, the running time is reduced from
2338 s to 1733 s (26% reduction).
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Fig. 16 Running time of K-means for clustering Last.fm
data on the local cluster
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5.2 Accommodating Multiple Map-Reduce
Phases

In reality, it is common that a single map-reduce
pass of the input is not sufficient to express algo-
rithm logic. To solve this problem, we can perform
multiple map-reduce steps in each iteration. In
this section, we discuss the extensions of iMapRe-
duce that support multiple map-reduce phases for
each iteration.

Figure 17 shows an example of two-phase case.
The state data are parsed by two map-reduce
phases in each iteration, and the static data can
be joined with the state data at two different map
steps respectively. To join the state data with their
corresponding static data, the key is to specify the
mapping from the reducers of the previous phase
to the mappers of the next phase, as well as the
mapping from the reducers of the last phase to
the mappers of the first phase. In the following,
we give an example of matrix power computation
to illustrate the multiple map-reduce phases case.

5.2.1 Matrix Power Computation

Square matrices can be multiplied by themselves
repeatedly. This repeated multiplication can be

staticdata 1 +---- |
h 4

staticdata 2 F---- state data

y

Reduce 2

Fig. 17 Two map-reduce phases for each iteration in
iMapReduce

described as a power of the matrix, i.e., MK =
]_[lf M. The operation of each iteration is ma-
trix multiplication, i.e., M¥ = M x N, where N =
M =1 If M is a matrix with element m;; in row i
and column j, and N is a matrix with element 7
in row jand column k, then the product P = MN
is the matrix P with element p; in row i and
column k, where py = ijijnjk.

In the MapReduce framework, we use two
map-reduce phases to perform the matrix multi-
plication [29], which forms each iteration. In the
first phase, the map extracts the columns of M
and the rows of N, and the reduce joins column
jof M and row j of N together. In the second
phase, the map multiplies a column vector with
the joined row vector to obtain an matrix, and
the reduce sums these matrices to obtain the final
result matrix. The map and reduce operations in
each iteration are described as follows.

Map 1 For each key (i, j), send each matrix ele-
ment m;; of M to the key-value pair (j, (M, i, m;))).
For each key (j, k), send each matrix element
of N to the key-value pair (j, (N, k, nji)).

Reduce 1 For each key j, collect its list of
associated values (j, [(M, iy, m; ), (M,iy, m;,)),
AR (Na k]a n’jkl)) (N7 k2a njkz)! A '])'

Map 2 Take the output key-value pair of Re-
duce 1. For each value that comes from M,
say (M,i,m;;), and each value that comes from
N, say (N, k,nj), produce the key-value pair
(G, k), mynj). It will output all the permu-
tations ((il, kl), mill-n,-kl), <(i1, kg), m,-l,-n,-kz), ey
((i2, k), myy e, - ..

Reduce 2 For each key (i, k), produce the sum
of the list of values associated with this key. The
result key-value pair is ((i, k), pi), where pj =
ijijl’ljk.

5.2.2 iMapReduce Implementation

In iMapReduce, we connect Reduce 1 to Map 2
such that both of them operate on the same key

Jj, and connect Reduce 2 to Map 1 such that both
of them operate on the same key (i, k). Since the
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connected reduce and map operate on the same
type of keys, we can connect them according to
one-to-one mapping. In order to avoid static data
shuffling, we note that M as a static multiplicator
is used in each iteration, so that we make M as
the static data, which are joined with N at Map 2.
While in the first map-reduce phase, there is no
join operation, so that the static data are not set.

Accordingly, besides setting the first map-
reduce phase by configuring a JobConf jobl,
users should set the second map-reduce phase
by configuring another JobConf job2. These two
jobs are chained together by setting

— Jjobl.addSuccessor (job2)
— Jjob2.addSuccessor (jobl).

Otherwise, if a single map-reduce phase is
sufficient to execute an iteration, the job will
set the successor to be itself by default. The
framework connects these map/reduce functions
according to the chained order.

5.2.3 Experimental Results

We perform matrix power computation for a syn-
thetic matrix (1000 x 1000) for five iterations in
iMapReduce as well as in Hadoop, which is con-
ducted on our local cluster. In the matrix power
computation, the major portion of running time is
consumed by the intermediate data shuffling be-
tween Map 2 and Reduce 2, which is ineluctable.
However, as shown in Fig. 18, iMapReduce can

9000 w
MapReduce —+—
8000 | iMapReduce 444444 e ___E:l

7 ’ A
V El |
5 V |

L El A

time (s)

10000~ ‘ ‘
1
iterations
Fig. 18 Running time of matrix power computation on the

local cluster
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still achieve about 10% speedup over Hadoop by
various framework optimizations.

5.3 Accommodating Auxiliary Map-Reduce
Phase

Some applications require running an auxiliary
map-reduce phase that generates some auxiliary
information. The main map-reduce phase per-
forms iterative computation, and the auxiliary
map-reduce phase also takes the main phase’s
output and produces some auxiliary information.
Figure 19 shows a typical structure of this case.
The execution of the main phase takes consid-
eration of the result of the auxiliary phase, and
the auxiliary phase generates the auxiliary in-
formation without pausing active computation in
the main phase. In the following, we illustrate
a common usage of the auxiliary map-reduce
phase for detecting convergence of an iterative
computation.

5.3.1 Convergence Detection of K-means

iMapReduce can terminate iterative computa-
tion based on the maximum iteration number or
based on the difference between two consecutive

staticdata 1 +----
h 4 I

state data

staticdata2 F----
A 2 4
auxiliary Map 2

de;ta

Fig. 19 Auxiliary map-reduce phase in iMapReduce
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iterations’ results. However, iMapReduce only
provides a limited number of choices on measur-
ing the difference (based on Manhattan distance
or Euclidean distance), which is not sufficient to
detect convergence for a broad class of algorithms.
For example, the K-means algorithm is consid-
ered converged when the number of nodes that
move between clusters is less than a threshold.
The main map-reduce phase (Map 1 and Reduce
1) for computing K-means has been discussed in
Section 5.1. We use another auxiliary map-reduce
phase to detect convergence. The map and reduce
operations in the auxiliary map-reduce phase are
described as follows.

Map 2 For each cluster cid, compute the num-
ber of nodes that do appear in cluster cid in
the previous iteration, say num_stay, and output
(0, num_stay), where 0 is a unique key, so that
all the mappers’ outputs are shuffled to a unique
reducer.

Reduce 2 1In the sole reducer assigned for key
0, sum all num_stay from different mappers to
retrieve the total number of nodes that move
between clusters, which is num_move = |S| —
num_stay, where |S| is the total number of input
nodes, and broadcast the termination signals to all
mappers in Map 1 step if num_move is less than a
threshold.

5.3.2 iMapReduce Implementation

In iMapReduce, these two map-reduce phases are
running in parallel. As long as the map tasks in
the main phase receive the termination signals
from Reduce 2, they will terminate themselves
and notify the master. To perform an auxiliary
map-reduce phase in iMapReduce, users should
set

— Jjobl.addAuxiliray (job2)

where jobl corresponds to the main map-reduce
phase, and job2 corresponds to the auxiliary map-
reduce phase. In addition, the one-to-all mappings
from Reduce 2 to Map 1 should be specified.
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Fig. 20 Running time of K-means with convergence
detection

5.3.3 Experimental Results

Based on the experiment setup mentioned in Sec-
tion 5.1.3, we perform K-means with an auxiliary
phase for convergence detection in iMapReduce.
For comparison with MapReduce implementa-
tion, we also implement an additional Hadoop
job for convergence detection, which is executed
between two K-means computation jobs. While in
iMapReduce, the two map-reduce phases are run-
ning in parallel (asynchronously) that could help
reduce the running time. The results are shown in
Fig. 20, where the algorithm terminates after six
iterations. We can see that 25% running time is
reduced, which is mainly resulted from the elim-
ination of the synchronously executed auxiliary
job.

6 Related Work

MapReduce, as a popular distributed framework
for data intensive computation, has gained con-
siderable attention over the past few years [12].
The framework has been extended for diverse
application requirements. MapReduce Online [9]
pipelines map/reduce operations and performs
online aggregation to support efficient online
queries, which directly inspires our work.

To support implementing large-scale iterative
algorithms, there are a number of studies propos-
ing new distributed computing frameworks for

@ Springer



66

Y. Zhang et al.

iterative processing [5, 13, 19, 20, 24, 27, 30, 33,
34,39, 41].

A class of these efforts targets on managing
static data efficiently. Design patterns for run-
ning efficient graph algorithms in MapReduce
have been introduced in [24]. They partition the
static graph adjacency list into »n parts and pre-
store them on DFS. However, since the MapRe-
duce framework arbitrarily assigns reduce tasks
to workers, accessing the graph adjacency list can
involve remote reads. This cannot guarantee local
access to the static data. HaLoop [5] was pro-
posed aiming at iterative processing on a large
cluster. It realizes the join of the static data and
the state data by explicitly specifying an additional
MapReduce job, and relies on the task scheduler
and caching techniques to maintain local access to
static data. While iMapReduce relies on persistent
tasks to manage static data and to avoid tasks
initialization.

Some studies accelerate iterative algorithms by
maintaining the iterated state data in memory.
Spark [39] was developed to optimize iterative
and interactive computation. It uses caching tech-
niques to dramatically improve the performance
for repeated operations. The main idea in Spark
is the construction of resilient distributed dataset
(RDD), which is a read-only collection of ob-
jects maintained in memory across iterations and
supports fault recovery. [26] presents a general-
ized architecture for continuous bulk processing
(CBP), which performs iterative computations in
an incremental fashion by unifying stateful pro-
gramming with a data-parallel operator. CIEL
[31] supports data-dependent iterative or recur-
sive algorithms by building an abstract dynamic
task graph. Piccolo [34] allows computation run-
ning on different machines to share distributed,
mutable state via a key-value table interface. This
enables one to implement iterative algorithms that
access in-memory distributed tables without wor-
rying about the consistency of the data. Priter [42]
enables prioritized iteration, which exploits the
dominant property of some portion of the data
and schedules them first for computation, rather
than blindly performs computations on all data.
This is realized by maintaining a state table and
a priority queue in memory. Our iMapReduce
framework is built on Hadoop, the iterated state
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data as well as the static data are maintained in
files but not in memory. Therefore, it is more
scalable and more resilient to failures.

Some other efforts focus on graph-based iter-
ative algorithms, an important class of iterative
algorithms. PEGASUS [20] models those seem-
ingly different graph iterative algorithms as a gen-
eralization of matrix-vector multiplication (GIM-
V). By exploring matrix property, such as block
multiplication, clustered edges and diagonal block
iteration, it can achieve 5x faster performance
over the regular job. Pregel [27] chooses a pure
message passing model to process graphs. In each
iteration, a vertex can, independently of other
vertices, receive messages sent to it in the pre-
vious iteration, send messages to other vertices,
modify its own and its outgoing edges’ states, and
mutate the graph’s topology. By using this model,
processing large graphs is expressive and easy to
program. iMapReduce exploits the property that
the map and reduce functions operate on the same
type of keys, i.e., node id, to accelerate graph-
based iterative algorithms.

The most relevant work is that of Ekanayake
et al., who proposed Twister [13, 14], which em-
ploys stream-based MapReduce implementation
that supports iterative applications. Twister em-
ploys novel ideas of loading the input data only
once in the initialization stage and performing
iterative map-reduce processing by long running
map/reduce daemons. iMapReduce differs from
Twister mainly on that Twister stores interme-
diate data in memory, while iMapReduce stores
intermediate data in files. Twister loads all data
in distributed memory for fast data access and
grounds on the assumption that datasets and in-
termediate data can fit into the distributed mem-
ory of the computing infrastructure. iMapReduce
aims at providing a MapReduce based iterative
computing framework running on a cluster of
commodity machines where each node has lim-
ited memory resources. In iMapReduce, the in-
termediate data, including the intermediate re-
sults, the shuffled data between map and reduce,
and the static data, are all stored in files. This
key difference results in different implementa-
tion mechanisms, including different data trans-
fers and different joining techniques of static
data and state data. Furthermore, iMapReduce
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supports asynchronous map execution, which fur-
ther improves performance. Besides, iMapReduce
is implemented based on Hadoop MapReduce.
The iterative applications in Hadoop can be easily
modified to run on iMapReduce.

7 Conclusions

In this paper, we propose iMapReduce that sup-
ports the implementation of iterative algorithms
under a large cluster environment. iMapReduce
extracts the common features of iterative algo-
rithms and provides the built-in support for these
features. In particular, it proposes the concept
of persistent tasks to reduce the job/task initial-
ization overhead, provides efficient data manage-
ment to avoid the shuffling of static data among
tasks, and allows asynchronous map task execu-
tion when possible. Accordingly, the system per-
formance is greatly improved through these op-
timizations. For clarity, we first present iMapRe-
duce for supporting graph-based iterative algo-
rithms. Then, the original framework is slightly
extended to support more iterative applications,
which makes our framework more general on
supporting iterative implementations. We demon-
strate our results in the context of various applica-
tions, which show up to 5 times speedup over the
traditional Hadoop MapReduce.
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