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ABSTRACT
Iterative computations are pervasive among data analysis
applications in the cloud, including Web search, online so-
cial network analysis, recommendation systems, and so on.
These cloud applications typically involve data sets of mas-
sive scale. Fast convergence of the iterative computation on
the massive data set is essential for these applications. In
this paper, we explore the opportunity for accelerating it-
erative computations and propose a distributed computing
framework, PrIter, which enables fast iterative computation
by providing the support of prioritized iteration. Instead of
performing computations on all data records without dis-
crimination, PrIter prioritizes the computations that help
convergence the most, so that the convergence speed of iter-
ative process is significantly improved. We evaluate PrIter
on a local cluster of machines as well as on Amazon EC2
Cloud. The results show that PrIter achieves up to 50x
speedup over Hadoop for a series of iterative algorithms.

Categories and Subject Descriptors
H.3.4 [Systems and Software]: Distributed systems

General Terms
Algorithms, Design, Theory, Performance

Keywords
PrIter, prioritized iteration, iterative algorithms, MapRe-
duce, distributed framework

1. INTRODUCTION
Iterative computations are common in myriad of data

mining algorithms. PageRank [6], as a well-known itera-
tive algorithm, has been widely used in Web search engines.
Other iterative algorithms such as Adsorption [5] and Ex-
pected Hitting Time [16] are applied to the problem domains
such as link prediction [16] and recommendation systems
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[33]. In computational biology, iterative algorithms such
as K-means clustering algorithm [25] have been adopted in
classifying a large collection of data. The massive amount of
data involved in these applications exacerbates the need for
a computing cloud and a distributed framework that sup-
ports fast iterative computation. MapReduce [10], which
powered cloud computing, is such a framework that sup-
ports data processing of massive scale. Dryad/DryadLINQ
[13, 29], Hadoop [2], Pig [21], Hive [27], and Pregel [19] have
been proposed as well. In particular, all of the previously
proposed frameworks assume that the iterative update is
equally important for all data.

However, in reality, selectively processing some portions of
the data first has the potential of accelerating the iterative
process, rather than simply performing a series of iterations
over all the data. Some of the data points play an important
decisive role in determining the final converged outcome. By
giving an execution priority to some of the data, the itera-
tive process can potentially converge fast. For example, the
well-known shortest path algorithm, Dijkstra’s algorithm,
greedily expands the node with the shortest distance first.
This will not only derive the shortest distance for all nodes
fast but also be able to quickly return the nearest nodes. Un-
fortunately, neither MapReduce nor any existing distributed
computing framework provides the support of prioritized ex-
ecution.

In this paper, we demonstrate the potential of prioritized
execution for iterative computations with a broad set of al-
gorithms. This motivates the desire of a general priority-
based distributed computing framework. We design and
implement PrIter, a distributed framework, that supports
the prioritized execution of iterative computations. To re-
alize prioritized execution, PrIter allows users to explicitly
specify the priority value of each processing data point. In
addition, PrIter is designed to support load balancing and
fault tolerance so as to accommodate diverse distributed en-
vironments.

To evaluate the performance of PrIter, we run a series of
well-known algorithms including shortest path and PageR-
ank on a local cluster as well as on Amazon EC2 Cloud
[1]. Our experimental results show that PrIter significantly
speeds up the convergence of the iterative computations,
which achieves up to 50x speedup over the implementations
with Hadoop. Furthermore, we show the effectiveness of pri-
oritization by comparing PrIter with prioritized execution
and that without prioritized execution. The results show
that PrIter with prioritization achieves 2x-8x speedup over
that without prioritization.
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The rest of the paper is organized as follows: In Section
2, we illustrate the benefit of prioritized iteration through a
series of example algorithms. Section 3 presents the system
design and implementation of PrIter, and we have some fur-
ther discussions about PrIter in Section 4. The experiment
results are shown in Section 5, followed by a survey of re-
lated work in Section 6. Finally, we conclude the paper in
Section 7.

2. MOTIVATING EXAMPLES
In this section, we describe a series of well-known iterative

algorithms that benefit from the prioritized execution. We
then briefly list many other algorithms that have the similar
property.

2.1 Single Source Shortest Path
Single Source Shortest Path (SSSP) is a classical problem

that derives the shortest distance from a source node s to all
other nodes in a graph. Formally, given a weighted, directed
or undirected graph G = (V,E,W ), where V is the set of
nodes, E is the set of edges, and W (i, j) is a positive weight
of the edge from node i to node j. The shortest distance from
the source node s to a node j can be computed iteratively
as follows:

D(k)(j) = min
{
D(k−1)(j), min

i

{
D(k−1)(i) +W (i, j)

}}
,

where k is the iteration number, and i is an incoming neigh-
bor of node j. Initially, D0(s) = 0, and D0(j) =∞ for any
node j other than s.
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j

Figure 1: A single source shortest path example.

Although the iterative computation can be easily imple-
mented in a distributed environment, it potentially has the
drawback of performing more computations than necessary.
For example, in Figure 1, it is more likely that the shortest
path from s to j is the path via i2 than that via i1. However,
in the iterative computation, it explores both paths simul-
taneously. In contrast, Dijkstra’s algorithm selectively picks
the node with the shortest distance to expand. In fact, the
path via i1 would not be explored if the path via i2 is shorter
than 100. Therefore, the iterative algorithm performs more
computation than necessary if nodes are expanded hop by
hop. In order to reduce the unnecessary computations, we
propose to perform iterative computation with a priority.
That is, the nodes with smaller distance values are given a
priority for letting them expand or perform iterative com-
putations first. In a distributed environment, each machine
will select the nodes to expand according to the priority val-
ues. Formally, the prioritized SSSP can be described by the
MapReduce programming model as follows:

Map: Compute D(i) + W (i, j) for node i, send the result
to its neighboring node j.

Reduce: Select the minimum value among node j’s current
D(j) and all the results received by j, and update D(j) with
the minimum value.

Priority: Node j is eligible for the next map operation
only if D(j) has changed since the last map operation on j.
Priority is given to the node j with smaller value of D(j).

2.2 PageRank and Personalized PageRank
PageRank and Personalized PageRank are popular algo-

rithms initially proposed for ranking web pages. Later on,
these algorithms have found a wide range of applications,
such as link prediction [16, 26]. PageRank ranks web pages
by performing a random walk on the web linkage graph.
Formally, the web linkage graph is a graph where the node
set V is the set of web pages, and there is an edge from
node i to node j if there is a hyperlink from page i to page
j. Let W be the column-normalized matrix that represents
the web linkage graph. That is, W (j, i) = 1/deg(i) (where
deg(i) is the outdegree of node i) if there is a link from i
to j, otherwise, W (j, i) = 0. Thus, the PageRank vector
R with each entry indicating a page’s ranking score can be
computed iteratively as follows:

R(k) = dWR(k−1) + (1− d)E, (1)

where k is the iteration number, d is the damping factor,
and E is a size-|V | vector with each entry being 1

|V | . The

PageRank vector converges to

R(∞) =

∞∑
l=0

(1− d)dlW lE. (2)

Note that R(∞) does not depend on the initial PageRank
vector R(0).

Personalized PageRank differs from PageRank only at vec-
tor E. In Personalized PageRank, E indicates the personal
preferences, in which only the entries representing the per-
sonally preferred pages are non-zero. Below we will focus
on discussing prioritized iteration for PageRank. However,
similar argument follows for Personalized PageRank.

In order to illustrate the benefit from prioritized itera-
tion, we first present an alternate iterative computation for
PageRank, referred to as Incremental PageRank that derives
the same vector as PageRank:

∆R
(k)
inc = dW∆R

(k−1)
inc

R
(k)
inc = R

(k−1)
inc + ∆R

(k)
inc,

(3)

where ∆R
(0)
inc = R

(0)
inc = (1 − d)E. Note that both PageR-

ank and Incremental PageRank converge to the same rank-
ing vector as shown in Equation 2. Therefore, Incremental
PageRank can be used for computing PageRank scores.

Furthermore, the Incremental PageRank update can be
executed selectively. That is, the update function does not
have to be performed by all nodes concurrently. In each
iteration, only a selected subset of nodes perform the up-
date function instead. To differentiate the “iteration” used
in selective update from the “iteration” used in concurrent
update, we refer to an “iteration” used in selective update
as a subpass.



Let Sk denote the subset of nodes in V that are activated
to perform the update function at subpass k. Selective In-
cremental PageRank updates the ranking score as follows.

∆R
(k)
sel = ∆R

(k−1)
sel (V − Sk) + dW∆R

(k−1)
sel (Sk)

R
(k)
sel = R

(k−1)
sel + dW∆R

(k−1)
sel (Sk),

(4)

where ∆R
(0)
sel = R

(0)
sel = (1 − d)E. ∆R

(k−1)
sel (Sk) is a vector

with only nodes in Sk being accounted for and all the other

entries being 0, while ∆R
(k−1)
sel (V −Sk) is a vector with only

nodes in V − Sk retaining their ∆R
(k−1)
sel and all the other

entries being 0. That is, once being activated, the nodes in

Sk use their ∆Rsel to update ∆R
(k)
sel andR

(k)
sel , after that they

reset their ∆Rsel to be 0. As long as each node is activated
an infinite number of times, the proof in Appendix A shows
that Selective Incremental PageRank will converge to the
same PageRank vector as Incremental PageRank.

The selective computation of PageRank indicates that the
prioritized execution of iterative computations is feasible.
Now, we show how to determine the priority and the benefit
of the prioritized execution. For the ease of argument, we
use L1-Norm distance between the current subpass’s PageR-

ank vector R
(k)
sel and the converged PageRank vector R

(∞)
sel

to quantify the closeness to convergence. As shown in Equa-

tion (4), each entry of R
(k)
sel is monotonic nondecreasing as k

increases. Therefore, the bigger ||R(k)
sel ||1 is, the closer R

(k)
sel is

to the converged PageRank vector. Since W is a column nor-

malized matrix, ||R(k)
sel ||1 = ||R(k−1)

sel ||1 + d||∆R(k−1)
sel (Sk)||1.

Accordingly, node i in Sk with its ∆R
(k−1)
sel (i) contributes

d∆R
(k−1)
sel (i) for shortening the distance between R

(k−1)
sel and

R
(∞)
sel . Hence, the larger ∆R

(k−1)
sel (i) contributes more for the

convergence of R
(k−1)
sel towards R

(∞)
sel .

Let S∗ denote a subset of nodes that mini∈S∗ ∆Rsel(i) ≥
maxi∈V−S∗ ∆Rsel(i). Prioritized Incremental PageRank per-
forms the iterative computation as shown in Equation (4),
which is always selecting nodes in S∗ to activate in each
subpass but ignoring the nodes in V − S∗. That is, in or-
der to accelerate the PageRank computation, the nodes in
S∗, a subset of nodes with bigger ∆Rsel, are activated in
each subpass. Furthermore, Prioritized Incremental PageR-
ank converges to the same PageRank vector as Incremental
PageRank (see the proof in Appendix B).

Formally, we describe Prioritized Incremental PageRank
using the MapReduce programming model as follows.

Map: Compute d∆R(i)W (i, j) for node i, send the result
to its neighboring node j, and reset ∆R(i) to be 0.

Reduce: Compute ∆R(j) by summing node j’s current
∆R(j) and all the results received by j, and update R(j) =
R(j) + ∆R(j).

Priority: Node j is eligible for the next map operation only
if ∆R(j) > 0. Priority is given to the node with a larger
value of ∆R.

2.3 Adsorption
Adsorption [5] is a graph-based label propagation algo-

rithm, which provides personalized recommendation for con-
tents (e.g., video, music, document, product). The concept
of label indicates a common feature of the entities. Adsorp-

tion’s label propagation proceeds to label all of the nodes
based on the graph structure, ultimately producing a prob-
ability distribution over labels for each node.

Given a weighted graph G = (V,E,W ), each node v car-
ries a probability distribution Lv on label L, and it is initially
assigned with an initial distribution Iv. The algorithm pro-
ceeds as follows. For each node v, it iteratively computes the
weighted average of the label distributions from its neighbor-
ing nodes, and then a new label distribution is assigned to
v as follows:

L(k)
v = pcont

v ·
∑

u

{
W (u, v) · L(k−1)

u

}∑
wW (w, v)

+ pinj
v · Iv, (5)

where pcont
v and pinj

v are constants associated with each node
v, and pcont

v + pinj
v = 1 .

Similar to PageRank, we can derive the incremental up-
date function for the Adsorption algorithm as follows.

∆L
(k)
v = pcont

v ·
∑

u

{
W (u,v)·∆L

(k−1)
u

}
∑

w W (w,v)
,

L
(k)
v = L

(k−1)
v + ∆L

(k)
v ,

(6)

where ∆L
(0)
v = pinj

v · Iv.
In addition, we can perform the selective updates for the

Adsorption algorithm, and the selective process converges
to the same result as the above incremental updates do.
(Due to space limitation, we will not present the proof of
it. It is sufficient to state that a proof similar to that of
PageRank can be shown.) In order to derive the priority for
Adsorption, we note that there is a key difference between
Adsorption and PageRank. Adsorption normalizes receiver
node’s incoming link weights, while PageRank normalizes
sender node’s outgoing link weights. Rather than simply se-
lecting bigger ∆Lv, we should take the incoming link weight
W (u, v) into consideration. That is, the priority is given to

the node u with a larger value of
∑

v W (u,v)·∆Lu∑
w W (w,v)

. Formally,

we can describe the prioritized Adsorption algorithm using
the MapReduce programming model as follows.

Map: Compute pcont
v ·W (u, v) ·∆Lu for node u, send the

result to its neighboring node v, and reset ∆Lu to 0.

Reduce: Compute ∆Lv by summing node v’s current ∆Lv

and all the normalized results (normalized by
∑

wW (w, v))
received by v, and update Lv = Lv + ∆Lv.

Priority: Node u is eligible for the next map operation only
if ∆Lu > 0. Priority is given to the node with a larger value

of
∑

v W (u,v)·∆Lu∑
w W (w,v)

.

2.4 Connected Components
Connected Components [14] is an algorithm for finding

the connected components in large graphs. The main idea
is as follows. For each node v in an indirected graph, it is
associated with a component id cv, which is initially set to

be its own node id, c
(0)
v = v. In each iteration, each node

propagates its current cv to its neighbors. Then cv, the com-
ponent id of v, is set to be the maximum value among its
current component id and the received component ids. Fi-
nally, no node in the graph updates its component id where
the algorithm converges. The nodes belonging to the same
connected component have the same component id.



In the prioritized example of Connected Components, we
let the nodes with larger component ids propagate their com-
ponent ids rather than letting all the nodes do the propaga-
tion together. In this way, the unnecessary propagation of
the small component ids is avoided since those small com-
ponent ids will probably be updated with larger ones in the
future. The prioritized Connected Components algorithm
can be described using the MapReduce programming model
as follows.

Map: For node v, send its component id cv to its neighbor-
ing node w.

Reduce: Select the maximum value among node w’s cur-
rent cw and all the received results by w, and update cw
with the maximum value.

Priority: Node w is eligible for the next map operation only
if cw has changed since last map operation on w. Priority is
given to the node w with larger value of cw.

2.5 Other Algorithms
Prioritized iteration can be applied to many iterative algo-

rithms in the fields of machine learning [9], recommendation
systems [5] and link prediction [16]. The link prediction
problem aims to discover the hidden links or predict the
future links in complex networks such as online social net-
works or computer networks. The key challenge in link pre-
diction is to estimate the proximity measures between node
pairs. These proximity measures include (1) Katz metric
[15], which exploits the intuition that the more paths be-
tween two nodes and shorter these paths are, the closer the
two nodes are; (2) rooted PageRank [26], which captures the
probability for two nodes to run into each other by perform-
ing a random walk; (3) Expected Hitting Time [16], which
returns how long a source node takes (how many hops) to
reach a target on average. Similar to PageRank and Ad-
sorption, there is a common subproblem to compute:

∞∑
k=1

dkW k, (7)

where W is a sparse nonnegative matrix. A broad class of al-
gorithms [16, 26] that have the closed form can be converted
to a selective incremental version, where the prioritized ex-
ecution will accelerate the iterative computation.

3. PRITER
In this section, we propose PrIter, a distributed framework

for prioritized iterative computations, which is implemented
based on Hadoop MapReduce [2]. First, we describe the
requirements of a framework that supports prioritized iter-
ative computations.

1. The framework needs to support iterative processing.
Iterative algorithms perform the same computation in
each iteration, and the state from the previous itera-
tion has to be passed to the next iteration efficiently.

2. The framework needs to support state maintenance
across iterations. In MapReduce, only the previous it-
eration’s result is needed for the next iteration’s com-
putation, while in PrIter the intermediate iteration
state should be maintained across iterations due to the
selective update operations.

Map 1

Reduce 1

...

K V

Graph 

Partition (1)

Map 2

Reduce 2

K V

Graph 

Partition (2)

Map n

Reduce n

K V

Graph 

Partition (n)

Shuffle

Figure 2: Iterative processing structure.

3. The framework needs to support prioritized execution.
That is, an efficient selection of the high priority data
should be provided.

PrIter provides the functionalities of iterative processing
(Section 3.1), state maintenance (Section 3.2), prioritized
execution (Section 3.3), termination check (Section 3.4), and
online top-k query (Section 3.5). The framework has been
designed for scalable and fault-tolerant implementation on
clusters of thousands of commodity computers, so that the
load balancing and fault-tolerance mechanisms are provided
in PrIter (Section 3.6). Finally, we summarize PrIter’s APIs
and show a representative PageRank implementation exam-
ple in PrIter (Section 3.7).

3.1 Iterative Processing
PrIter incorporates the support of iMapReduce [32] for

iterative processing. Iterative process performs the same
operation in each iteration, and the output of the previ-
ous iteration is passed to the next iteration as the input.
iMapReduce following MapReduce paradigm directly passes
the reduce output to the map for the next iteration, rather
than writing output to distributed file system (DFS). Figure
2 shows the overall iterative processing structure.

We separate the data flow into two sub data flows accord-
ing to their variability features, including the static data
flow and the state data flow. The static data (e.g., the graph
structure) keeps unchanged over iterations, which is used in
the map function for exchanging information between neigh-
boring nodes. While the state data (e.g., the iterated short-
est distance or the PageRank score) is updated every itera-
tion, which indicates the node state. The static graph data
and the initial state data are partitioned and preloaded to
workers, and the framework will join the static data with
the state data before map operation.

Under the modified MapReduce framework, we can focus
on updating the state data through map and reduce func-
tions on the key-value pairs. Each key represents a node id,
and the associated value is the node state that is updated
every iteration (e.g., the PageRank score of a webpage). In
addition, each node has information that is static across it-
erations (e.g., the node linkage information), which is also
indexed by node ids (nid). A hash function F applying on
the keys/nodes is used to split the static graph data and the
initial node state data evenly into n partitions according to:

pid = F (nid, n), (8)

where pid is a partition id. These partitions are assigned to
different workers by the master. Each worker can hold one
or more partitions.



A map task with map task id pid is assigned for processing
partition pid, and the output 〈key, value〉/〈node, state〉 pairs
of the map task are shuffled to the reduce tasks according
to the same hash function, F . Accordingly, a reduce task
with reduce task id pid is assigned by the task scheduler to
connect to the map task with map task id pid in the same
worker, by which we establish a local reduce-to-map con-
nection. The reduce merges the results from various maps
to update a node’s state, and its output 〈node, state〉 pairs
are directed to the connected map as the map’s input. By
using the same hash function F for partitioning and shuf-
fling, a node’s static data (e.g., neighbors in the web graph)
and its dynamic state are always joined in the same map
task. Therefore, a paired map and reduce tasks always op-
erate on the same subset of keys/nodes. We refer to the
paired map/reduce task as MRPair. These tasks are persis-
tent tasks that keep alive during the entire iterative process
and maintain the intermediate iteration state. In summary,
each MRPair performs the iterative computation on a data
partition, and the necessary information exchange between
MRPairs occurs during the maps-to-reduces shuffling.

3.2 State Maintenance
Each MRPair is assigned with a subset of keys/nodes,

whose values/states are maintained locally (Note that one
or more fine-grained MRPairs could be assigned to a worker
for load balancing which will be described in Section 3.6).
During the iterative process, a key/node’s value/state is up-
dated after an iteration. That is, the value/state for each
key/node should be maintained across iterations. To ensure
fast access to the value/state, we design a StateTable at the
reduce side that is implemented with an in-memory hash
table.

In the context of incremental update (opposed to concur-
rent update in normal iteration), two types of state should be
maintained. The first is the iterative state or iState, which
is used for the iterative computation. The second is the
cumulative state or cState indicating a node’s state, which
is accumulated from all the previous iterations. For exam-
ple, in the SSSP algorithm (Section 2.1), the iState for node
j is the shortest distance received from j’s neighbors that
have not been used for updating j’s shortest distance, while
the cState is the accumulated shortest distance for node j,
which will be updated only if its iState is smaller than it.
In PageRank (Section 2.2), the iState for page j is ∆R(j)
that is the incremental PageRank score, while the cState
is R(j) that is the accumulated PageRank score. The key
reason behind the separation of the two types of state is for
supporting the incremental update. When performing an
incremental update, we not only perform the iterative com-
putation on the records to update their iterative state, but
also need to maintain their accumulated state during itera-
tions. Accordingly, two fields of the StateTable are designed
to maintain the iState and the cState, which are indexed by
node id.

In MapReduce, the output 〈key, value〉 pairs of various
maps are sorted according to the natural order of keys, then
the reduce function is performed on the grouped 〈key, values
list〉 pair. However, since the StateTable supports random
access, it is not necessary to perform sort between the map
and reduce in PrIter, so that we eliminate the sort phase,
which can significantly improve performance [24]. Moreover,
we start the reduce operation immediately upon receiving

Map

UpdateState

Decide

Priority

node iStatepriority

node iStatepriority

...

StateTable

node    iState

Priority

Queue

node iStatepriority

cState

cState

cState

iState

cState

priority

Shuffle

Figure 3: Data flow in a PrIter MRPair.

a map’s output. In other words, the “reduce” function is
applied on 〈key, value〉 rather than 〈key, values list〉. It
updates the corresponding entry in the StateTable according
to a received value, rather than performs a reduce function
on all the received values associated with the same key. We
replace the reduce function by a UpdateState function, which
updates the iState and the cState in the StateTable.

In summary, the StateTable stores the state information
of each node. The state is updated every iteration by an
UpdateState function, which takes map’s output 〈key, value〉
pairs as input. Users can specify the update rules to achieve
their goals.

3.3 Prioritized Execution
In order to perform prioritized execution, PrIter labels

each node with a priority value that is specified by users.
The priority information of each node is also maintained in
the StateTable. During the update of node state, instead
of a pass over the entire StateTable as an iteration, a pass
through a selected subset as a subpass is performed based
on the entries’ priority values. A number of nodes with
larger priority values are selected for the map operation in
the next subpass. Since each MRPair holds only a subset
of nodes, the priority value is compared among the nodes
residing in the same MRPair instead of a global comparison
across workers.

Figure 3 shows the data flow in a MRPair. The StateTable
is updated in each subpass based on the output of the Up-
dateState function. The priority value is determined by an-
other function DecidePriority, which is for users to specify
each node’s execution priority taking account of the state
information. For example, in SSSP, the priority value is
the negative value of the cState (i.e., the shortest distance),
while in PageRank, the priority value is exactly the same
value as the iState (i.e., ∆R). Upon the receipt of all maps’
output, a priority queue containing the 〈node, iState〉 pairs
with higher priority values is extracted from the StateTable
for feeding the paired map in the next subpass. After a
node is decided to be enqueued, its iState and its node id
are made a copy in the priority queue, and accordingly its
iState in the StateTable is reset.



The size of the priority queue shows the trade-off between
the gain from the prioritized execution and the cost from
the queue extraction. Setting it too long may degrade the
effect of prioritization. In the extreme case that the queue
size is the same size as the StateTable, there is no priority
in the iterative computation. On the other hand, setting
the queue too short may lead to frequent subpasses and as
result incurs considerable overhead for the frequent queue
extractions. However, the prioritized iteration is shown to
improve the performance over a wide range of queue size
settings as will be shown in Section 5.5. PrIter also provides
a recommended queue size setting. Anyhow, there should
be an optimal queue size that results the best performance,
which will be discussed in detail in Section 4.1.

Once the queue size q is given, PrIter should extract the
top q nodes with the highest priority values in each subpass.
Sorting the whole StateTable can be expensive and time con-
suming. In practice, it is unnecessary to extract the exactly
q top priority nodes. PrIter approximates the top records by
a sampling method shown in Algorithm 1. The idea of this
heuristic is that, the distribution of the priority values in a
small (PrIter default 1000) samples set reflects the distribu-
tion of priority values in the large StateTable. By sorting
the samples in the descending order of the priority values,
the lower bound of the priority value of the top q records
can be estimated to be the ( q·s

N
)th record’s priority value in

the sorted samples set. Through this approximation, PrIter
takes O(N) time on extracting the top priority nodes instead
of O(N logN) time.

Algorithm 1: Priority queue extraction

input : StateTable table, StateTable size N, queue size
q, samples set size s

output: priority queue queue

1 samples ← randomly select s records from table;
2 sort samples in priority-descending order ;
3 cutindex ← q·s

N
;

4 thresh ← samples [cutindex].priority ;
5 i ← 0;
6 foreach record r in table do
7 if r.priority ≥ thresh then
8 queue [i]← 〈r.nodeid, r.iState〉;
9 i ← i + 1;

10 end

11 end

3.4 Termination Check
Iterative algorithms typically stop when a termination

condition is met. To stop an iterative computation, PrIter
provides three alternate methods to do termination check.
1) Distance-based termination check. After each iteration,
each worker sends the sum of the cState values to the mas-
ter (the sum operation is performed accompanied with the
priority queue extraction). The master accumulates these
values from different workers, and it will stop the iteration
if the difference between the summed values of two consec-
utive iterations is less than a threshold. 2) Subpass-based
termination check. Users set a maximum subpass number.
The master keeps tracking the number of subpasses in the
workers, and terminates the iterative computation after it

has performed a fixed number of subpasses. 3) Time-based
termination check. Users can also set a reasonable time
limit. The master records the time passed, and terminate
the iterative computation while timing out.

3.5 Online Top-k Query Support
Since each PrIter MRPair operates on a subset of nodes,

after a number of map-reduce subpasses, it only has the
knowledge of partial result, i.e., cState values in StateTable.
These partial results can be written to DFS for users to
access. However, for some applications users might prefer
to query the top-k records on-line.

The local top results in each MRPair can be extracted in
parallel. A DecideTopK function is applied on each node’s
cState, which indicates a node’s final cumulative state, to
retrieve its top-k priority value (Note that the priority in-
formation based on cState helps the top-k results extraction,
while the priority information based on iState helps priori-
tized iteration). The higher the top-k priority value is, the
more likely it is in the top-k list. PrIter adopts the same
sampling technique for generating priority queue to derive
the local top-k nodes with higher top-k priority. These ex-
tracted local top results (〈node, cState〉 pairs) from the run-
ning MRPairs are sent to a merge worker periodically, where
they are merged into a global top-k result. Then, the global
top-k result is written to DFS by the merge worker, such
that users are able to see the top-k result snapshot periodi-
cally.

While the mechanism described above is straightforward,
it might not scale. Scaling to a large number of MRPairs in-
curs heavy burden on the merge worker. We have two refine-
ments on the naive mechanism. First, each PrIter MRPair
sends less than k tops. Suppose there are m running MR-
Pairs, on average each MRPair contributes only k

m
records

to the global top-k records. We let each PrIter MRPair sends
4k
m

top records to approximate the global top-k records.
Second, the PrIter worker merges the local MRPairs’ top
records first before sending them to the merge worker. The
pre-merge operation alleviates the merge worker’s workload
significantly.

3.6 Load Balancing and Fault Tolerance
PrIter MRPairs process different graph partitions sepa-

rately. The workload dispatched to each MRPair depends
on the assigned graph partition. Even though the graph
is evenly partitioned, the skewed degree distribution may
result in the skewed workload distribution. Further, even
though the workload is evenly distributed, we still need load
balancing since a large cluster might consist of heterogeneous
servers [31].

PrIter supports load balancing by MRPair migration. The
MRPairs are configured to dump their StateTables to DFS
every few subpasses, which are considered as the checkpoints
for task recovery. The MRPair sends a subpass completion
report to the master after completing a subpass. The sub-
pass completion report contains the MRPair id, the subpass
number, and the processing time for that subpass. Upon re-
ceipt of all the MRPairs’ reports, the master calculates the
average processing time for that iteration excluding longest
and shortest, based on which the master identifies the slower
and the faster workers. If the time difference to the average
is larger than a threshold, a MRPair in the slowest worker is
migrated to the fastest worker in the following three steps.



The master 1) kills a MRPair in the slow worker, 2) launches
a new MRPair in the fast worker, 3) and sends a rollback
command to the other MRPairs. The MRPairs that re-
ceive rollback command reload their most recent dumped
StateTables from DFS and proceed to extract the prior-
ity queue to recover the iterative computation. The new
launched MRPair needs to load not only the StateTable but
also the corresponding graph partition from DFS.

However, when the data partitions are skewed and every
worker in the cluster is exactly the same, the large partition
will keep moving around inside the cluster, which may de-
grade performance a lot and does not help load balancing. A
confined load balancing mechanism can automatically iden-
tify the large partition and breaks it into multiple small
sub-partitions assigned to multiple idle workers.

PrIter is also resilient to task failures and worker failures.
The master notices some MRPair failures or worker failures
when it has not received any response from probing for a
certain period of time. The failed MRPair(s) in the failed
workers are re-launched in other healthy workers from the
most recent checkpoint. Meanwhile, all the other MRPairs
roll back to the same checkpoint to redo the failed iterative
computation.

3.7 API
PrIter has a few application programming interfaces ex-

posed to users for implementing an iterative algorithm in
PrIter. We summarize the APIs as follows:

• initStateTable: specify each node’s initial state;

• map: process the iState of a node and map the results
to its neighboring nodes;

• updateState: update a node’s iState and cState;

• decidePriority: decide the priority value for a node
based on its iState, for prioritized iteration;

• decideTopK: decide the priority value for a node based
on its cState, for top-k results extraction;

• resetiState: reset a node’s iState after it has been
put into the priority queue;

• partitionGraph: (optional) specify the assignment of
a node to a worker in order to partition an input graph;

• readGraph: (optional) load a certain graph partition
to a MRPair.

Note that, the implementations of partitionGraph and
readGraph are optional. PrIter supports automatically graph
partitioning and graph loading for a few particular format-
ted graphs (including weighted and unweighted graphs). Users
can first format their graphs in our supported formats to
avoid implementing these two interfaces. On the other hand,
users also have the flexibility to decide their own smart par-
titioning schemes by implementing partitionGraph them-
selves, such that the workload can be distributed more evenly.
The graph partition is loaded to the local memory by de-
fault. In-memory StateTable has a field to store the linkage
information, which is separated from the main state infor-
mation when checkpointing is performed. Users can also
customize readGraph implementation to load the graph par-
tition in other abstract objects. For example, RDD [30] that
supports failure recovery can be utilized.

initStateTable
Input: node subset V, damping factor d

  1: foreach node n in V do

  2:     StateTable(n).iState = (1-d) / |V|;

  3:     StateTable(n).cState = (1-d) / |V|;

  4:     StateTable(n).priority = (1-d) / |V|;

  5: end for

map
Input: node n, ∆R

  6: <links> = look up n’s outlinks;

  7: foreach link in <links> do

  8:     output (link.endnode, (d × ∆R) / |<links>| );

  9: end for

updateState
Input: node n, ∆R

10: StateTable(n).iState = StateTable(n).iState + ∆R;

11: StateTable(n).cState = StateTable(n).cState + ∆R;

resetiState
Input: node n

12: StateTable(n).iState = 0;

decidePriority
Input: node n, iState

13: return iState;

decideTopK
Input: node n, cState

14: return cState;

main
15:  Job job = new Job();

16:  job.set(“priter.input.path”, /user/yzhang/googlegraph);

17:  job.setInt(“priter.graph.partitions”, 100);       

18:  job.setLong(“priter.snapshot.interval”, 20000);  

19:  job.setFloat(“priter.stop.dis.threshold”, 0.1);     

20:  job.submit();

Figure 4: PageRank example in PrIter.

In addition, there are a series of parameters users should
specify, such as the number of graph partitions, the snapshot
generation interval, and the termination condition. For bet-
ter understanding, we walk through how prioritized PageR-
ank is implemented in PrIter. Figure 4 shows the pseudo-
code of this implementation. Basically, prioritized PageR-
ank implementation follows the algorithm logic that we illus-
trated in Section 2.2. The node entries in the StateTable are
initialized with identical state values 1−d

|V | and priority values
1−d
|V | (line 1-5). In the map function, each node distributes its

equally divided iState values to its neighbors (line 6-9). The
output in line 8 abides by Hadoop programming style for out-
putting the intermediate key-value pair. In the updateState
function, each node accumulates the partial results from its
predecessor nodes and updates the StateTable (line 10-11).
We should also set the default iState for reset (line 12). The
priority determination rules for prioritized iteration (line 13)
and for top-k results extraction (line 14) should be specified
respectively. Since the input graph is formatted, we only
need to specify the path of the input data set on DFS (line
15). We split the input graph into 100 partitions (line 16),
and we let the system to generate a result snapshot every
20 seconds (line 17). Using the distance-based termination
check method, the iterative computation will be terminated
when the L1-Norm distance between two consecutive itera-
tion results is less than 0.1 (line 18).



4. DISCUSSION
In this section, we first discuss the optimal queue size.

We then consider an extension to PrIter that stores the
StateTable on disk. This will address the scalability of
PrIter.

4.1 Optimal Queue Size
As shown in Section 2, the iterative algorithms with prior-

itized execution converge faster than that without priority.
The size of the priority queue is critical in determining how
many computations are needed for algorithm convergence.
Intuitively, the shorter the queue is, the less computations
are needed to be performed. However, the shorter priority
queue results more overhead due to more frequent subpasses
and as result more frequent queue extractions. In this sec-
tion, we show how to derive the optimal queue size.

The iterative computation’s running time is composed of
two parts: the processing time corresponding to the number
of computations and the overhead time. We derive these two
parts as follows. First, let q be the queue size and f(q) be the
total workload needed for convergence when the queue size
is set to be q. The workload is reflected by the total num-
ber of nodes activations (i.e., map operations) during the
iterative process. Let Tproc be the average processing time
of each node activation, including the time for computation
and the time for communication. Thus, the total time spent
on processing nodes for all subpasses is f(q) ·Tproc. Second,
the overhead occurs in each subpass, and the overhead time
is dominated by the time incurred for extracting nodes from
the StateTable to the priority queue, which is linear in the
StateTable size, N (see Section 3.3). Let Tovhd be the av-
erage time for scanning a record in the StateTable. Thus,

the total overhead time for all subpasses is f(q)
q
·N · Tovhd,

where f(q)
q

is the number of subpasses.
Therefore, we have the total running time shown as fol-

lows:

min
q

{
f(q) · Tproc +

f(q)

q
·N · Tovhd

}
, (9)

where Tproc and Tovhd are related to the cluster environ-
ments. We want to minimize it by choosing the optimal q,
and function f(q) is the key for finding the optimal q.

We estimate f(q) for different algorithms with a series of
real data sets. The real data sets are described in Section 5.1.
Figure 5 shows f(q), where q and f(q) are normalized for
comparison purpose. We can see that f(q) can be estimated
with a linear function of q. That is, f(q) = α · q + β.

Given the linear function of q, we consider the optimiza-
tion problem shown in Equation (9). Since only q is a vari-
able, the problem becomes the following minimization prob-
lem:

min
q

{
α · Tproc · q +

β ·N · Tovhd

q

}
. (10)

Then we have the optimal q∗:

q∗ =

√
β ·N · Tovhd

α · Tproc
. (11)

To sum up, the optimal queue size depends on a series
of factors, i.e., α, β, N , Tproc and Tovhd. We only know

the StateTable size N . Given the queue size linear in
√
N ,

we can explore different settings of q√
N

to select the optimal

f(
q

)

q

SSSP facebook
SSSP livejnl

PageRank berkstan
PageRank notredame

Adsorption amazon
Adsorption youtube

Figure 5: Function f for real graphs.

queue size. In PrIter, we set q√
N

to be 100 by default. As will

be shown in Section 5, the default setting gives competitive
performance. Additionally, we will compare the different
settings of q√

N
to see the performance difference in Section

5.5.
Alternatively, we can decide the optimal queue size dy-

namically by estimating all the factors. Tproc and Tovhd can
be estimated by some online measurement method. At the
same time, α and β can be estimated by online analysis. For
PageRank example, we can use the similar sampling method
in Section 3.3 to approximate the current ∆R’s distribution,
which reflects f(q). That means, α and β can be approx-
imated by restoring f(q). Nevertheless, realizing dynamic
queue size is challenging. This is because estimating these
factors accurately in real time is intractable. Moreover, the
online measurement will bring implementation complexities
and will impact system performance.

4.2 On-Disk Extension
Although PrIter’s StateTable is maintained in memory,

it is possible to maintain the StateTable on disk. Suppose
the number of the cluster workers is fixed, if the input graph
becomes huge, the StateTable with billions of records cannot
be loaded into memory. Hence, the on-disk extension will
be helpful to scale PrIter.

The key problem of on-disk StateTable is the lack of ran-
dom access support, such that it is not practical to update
a specified StateTable entry in the UpdateState function.
However, we are inspired by the same idea of MapReduce
to solve this problem, where MapReduce realizes grouping
keys by pre-sorting. In the map output files, the 〈key, value〉
pairs are sorted in the natural order of keys. Then, through
a single pass of these map output files, the 〈key, value〉 pairs
from various map output files are grouped by key for the
reduce operation.

The on-disk version of PrIter can be implemented as shown
in Figure 6. The StateTable is stored in a file with all the
〈nodeid, priority, iState, cState〉 tuples sorted in the nature
order of nodeids. Meanwhile, the 〈nodeid, value〉s in the
map output file are also sorted in the same order. As all the
map output files are collected, we move the cursors (top-
down) in these map output files and in the StateTable file
to match the tuples that have the same nodeid. The tuples
with the same nodeid are grouped together and passed to the
UpdateState/DecidePriority function to update state and to
decide priority value. The updated 〈nodeid, priority, iState,
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Figure 6: The data flow of the on-disk version of
PrIter.

cState〉 tuples are written to another file storing the up-
dated StateTable. Note that, during the StateTable update,
the sampling process for estimating the enqueue threshold
(Section 3.3) proceeds simultaneously. Given the enqueue
threshold, the updated StateTable file is then parsed by a
compare function, by which the records whose priority val-
ues are larger than the enqueue threshold are written to the
priority queue file for the next subpass.

Basically, comparing with MapReduce, there are two ad-
ditional read passes of the StateTable file and one additional
write of the priority queue file. We expect these additional
local disk I/Os would not downgrade the performance se-
riously. The significant benefit from prioritized execution
easily compensates for the performance losses. Therefore,
this method can be feasible to scale PrIter.

5. EVALUATION
In this section, we evaluate our prototype implementation

of PrIter. Our prototype is implemented based on Hadoop
[2]. We have made our implementation available at [3]. Any
Hadoop program can be implemented with PrIter. Users
have the option to turn on/off the prioritized execution.
In order to see the performance improvement from priori-
tized execution, we compare the priority-on PrIter with the
priority-off PrIter. We also compare PrIter implementations
with Hadoop implementations.

5.1 Experiment Setup
The experiments are performed on a cluster of local ma-

chines, and a large cluster of 100 medium instances on Ama-
zon EC2 Cloud [1]. The local cluster consisting of 4 com-
modity machines is used to run small-scale experiments.
Each machine has Intel E8200 dual-core 2.66GHz CPU, 3GB
of RAM, and 160GB storage. These 4 machines are con-
nected through a switch with bandwidth of 1Gbps.

Four iterative algorithms described in Section 2 are im-
plemented: SSSP, PageRank, Adsorption, and Connected
Components (ConnComp). The data sets used for these al-
gorithms are described in Table 1. Most of them are down-
loaded from [4]. The graphs for the SSSP problem are di-
rected and weighted. Since the LiveJournal graph and the
roadCA graph are not originally weighted, we synthetically
assign a weight value to each edge, where the weight is gen-
erated based on a log-normal distribution. The log-normal
distribution parameters (µ = 0.4, σ = 1.2) are extracted
from the Facebook user interaction graph [28], where the
weight reflects user interaction frequency. The web graphs

for the PageRank computation are directed and unweighted.
Note that, we perform Personalized PageRank on these real
graphs, and 100 featured nodes in these graphs are randomly
selected for computing Personalized PageRank. For the
three graphs used in the Adsorption algorithm, the weight of
a node’s inbound links are normalized. The graphs for Con-
nected Components are made undirected simply through
adding an inverse direction for each directed link.

We prefer real graphs for performance evaluation since
they are better for illustrating the effect of prioritized itera-
tion in real life applications, even though they are relatively
small. In addition, in order to perform large-scale experi-
ments, we generate a large synthetic web graph for PageR-
ank computation. In the generated web graph, the in-degree
of each page follows a log-normal distribution, where the log-
normal parameters (µ = −0.5, σ = 2.3) are extracted from
the three real web graphs.

Table 1: Data Sets Summary
Algorithm Graph Nodes Edges

SSSP
Facebook 1,204,004 20,492,148

LiveJournal 4,847,571 68,993,773
roadCA 1,965,206 5,533,214

PageRank

Berk-Stan 685,231 7,600,595
Google 875,713 5,105,039

Notredame 325,729 1,497,134
Synth WEB 100,000,000 1,216,907,427

Adsorption
Facebook 1,204,004 20,492,148
Youtube 311,805 1,761,812
Amazon 403,394 3,387,388

ConnComp
Amazon 403,394 3,387,388
Wiki-talk 2,394,385 5,021,410

LiveJournal 4,847,571 68,993,773

5.2 Convergence Speed
PrIter prioritizes the computation by performing update

on the dominant data that contribute to the convergence the
most. As a result, the iterative algorithms approach to the
convergence point with less node activations, which means
less computation workload and less amount of network com-
munication. Therefore, the algorithms implemented with
prioritization will converge faster than that without priori-
tization.

To evaluate the effect of prioritized execution, we compare
the convergence rate by turning on and off the prioritized
execution. Additionally, we also compare PrIter with the
traditional Hadoop. We let PrIter generate a result snap-
shot every few seconds, and calculate its distance to the
final result, which has been pre-computed offline. For the
Hadoop implementations, we record the snapshot after com-
pleting each job and measure the distance to the convergence
point. The distance in SSSP/ConnComp is defined as the
number of nodes that have not yet finalized their shortest
distances/component ids. In PageRank/Adsorption, we use
L1-Norm distance between the current PageRank/label dis-
tribution vector and the final converged vector.

We perform the convergence speed experiment on our lo-
cal cluster. The experiment results are shown in Figure 7.
We can see that the PrIter implementations with prioritized
execution converge faster than that without prioritized ex-
ecution. Overall, the prioritized execution of PrIter speeds
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Figure 7: Convergence speed.
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Figure 8: Top record emergence time.

up the convergence by a factor of 2 to 8. Further, the con-
vergence speed of the PrIter implementations is much faster
than that of the Hadoop implementations, where a more
significant speedup ranging from 5x-50x is achieved.

5.3 Top Record Emergence Time
In reality, peoples are always interested in a small collec-

tion of more attractive records. For example, users always
care about the closest nodes in the shortest path problem,
and they are only interested in the first few pages of Google
search results. The time it takes to derive the top records
is critical for these applications. The speedup of the con-
vergence correspondingly reduces the top record emergence
time, so that users are able to obtain the top records online
even before the algorithm completely converges.

To illustrate this benefit experimentally, we analyze the
timely-generated snapshot results to record the time when
the top records are emerged. The top records are the web-
pages with the highest ranking scores or the nodes with the
shortest distance values, except that in the case of Con-
nected Components the top records are postulated as the
first nodes that have finalized their component ids. In the
case of Hadoop MapReduce, a series of MapReduce jobs are
used to perform the iterations, and the intermediate result
is accessible only after an iteration job is completed. Thus,
the emerging time of top-k records is recorded as the time
elapsed when the pre-computed correct top-k records emerge
after a certain iteration. In the case of PrIter, the top-k re-
sult snapshot is generated periodically. We compare these
top-k result snapshots with the pre-computed correct top-k
result to determine how many tops are emerged.

We perform the experiment on our local cluster. Figure
8 shows the top record emergence time of different algo-
rithms. PrIter with prioritized execution speeds up the top

record emergence time by a factor of 2 to 8 comparing with
the priority-off PrIter. Moreover, PrIter achieves up to 50x
speedup comparing with Hadoop.

5.4 Large Scale Experiment
To evaluate the performance of PrIter in a large scale envi-

ronment, we deploy PrIter on our Amazon EC2 Cluster that
involves 100 medium instances. We run PageRank and Per-
sonalized PageRank algorithms for Synthetic WEB graph
with PrIter, Hadoop, and iMapReduce [32]. iMapReduce
stores the intermediate iteration state in files rather than
store it in memory, and it supports iterative processing and
improves the performance mainly by eliminating the shuf-
fling of the static data.
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Figure 9: The convergence time on Amazon EC2.

Figure 9 shows the convergence time of PageRank and
Personalized PageRank, by using Hadoop, iMapReduce, priority-
off PrIter, and priority-on PrIter. We take the convergence
time of Hadoop as a point of reference. iMapReduce reduces
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).

the convergence time by 45%, which is achieved mainly by
the avoidance of shuffling static data. The priority-off PrIter
reduces the convergence time to about 35%, and it also im-
proves iMapReduce by about 40% primarily because of the
elimination of sort phase, which has been illustrated in pre-
vious work [24]. Moreover, the priority-on PrIter reduces the
convergence time of the priority-off PrIter by an additional
factor of 3 to 4, and the running time is reduced to only 10%
of the Hadoop’s running time. Additionally, since Person-
alized PageRank performs random walk from 100 randomly
selected starts (i.e., a smaller number of dominant nodes
with large initial ∆R), which is much smaller than that in
the standard PageRank (start from all nodes), the prioriti-
zation should have more positive effect on promoting con-
vergence. As expected, the results show better performance
on Personalized PageRank than on Pagerank.

5.5 Optimal Queue Size
As mentioned in Section 4.1, there is an optimal priority

queue size that results in the best performance, and it de-
pends on several factors. Since only the StateTable size N is
easy to obtain, we will set the queue size based on the factor
of the StateTable size. In other words, PrIter sets the queue
size q in proportion to

√
N . To see the effects of different

settings of q√
N

, we perform a series of experiments on our

local cluster, running each algorithm on three different real
graphs.

Figure 10 shows the convergence speedup results varying
algorithms and inputs. We can see that most of them reach
their optimal points when q√

N
is set to be between 50 and

200, which provides positive support to our default selection
( q√

N
= 100).

6. RELATED WORK
With the increasing popularity of MapReduce [10, 22]

and its open source implementation Hadoop [2], a series
of distributed computing frameworks have been proposed
these years, such as Dryad/DryadLINQ [13, 29], Hive [27],
Pig [21], and Comet [12]. These efforts directly promote
the development of cloud computing. However, these pro-
posed frameworks unanimously embraced a batch processing
model, which limits their potential to efficiently implement
iterative algorithms. To address this problem, there are
a number of efforts targeted on providing efficient frame-
works for the distributed implementations of iterative algo-
rithms [7, 32, 24, 30, 11, 19, 14, 17].

Shuffling static data during the iterative process incurs
significant communication overhead. HaLoop [7] takes ad-
vantage of the task scheduler to guarantee local access to
the static data. The task scheduler is designed to assign
tasks to the workers where the needed data locate. iMapRe-
duce [32] is a framework that supports iterative processing
and avoids the re-shuffling of static data without modifying
the task scheduler. With iMapReduce, static data are parti-
tioned and distributed to workers in the initialization phase.
By logically connecting reduce to map and the support of
persistent tasks, the iterated data are always hashed to the
workers where their corresponding static data are located.
As described in Section 3.1, PrIter integrates iMapReduce
to avoid the unnecessary static data shuffling.

Recently, a series of frameworks that maintain the itera-
tion state in memory have been proposed for iterative com-
putations. Piccolo [24] allows computation running on dif-
ferent machines to share distributed, mutable state via a
key-value table interface. This enables one to implement it-
erative algorithms that access in-memory distributed tables
without worrying about the consistency of the data. Per-
colator [23] provides distributed transaction support for the
BigTable datastore [8], which is used by Google to enable
incremental processing of web indexes. Spark [30] uses a
caching technique to improve the performance for repeated
operations. The main idea in Spark is the construction of
resilient distributed dataset (RDD), which is a read-only col-
lection of objects maintained in memory across iterations
and supports fault recovery. [17] presents a generalized ar-
chitecture for continuous bulk processing (CBP), which per-
forms iterative computations in an incremental fashion by
unifying stateful programming with a data-parallel opera-
tor. CIEL [20] supports data-dependent iterative or recur-
sive algorithms by building an abstract dynamic task graph.
Twister [11] employs a lightweight MapReduce runtime sys-
tem with all operations performed in memory cache and uses
publish/subscribe messaging system instead of a distributed
file system for data communication. These in-memory sys-
tems enhance the performance of data access, but do not
allow prioritized iterations.

Pregel [19] is another in-memory system, which provides
an expressive model for programming graph-based algorithms.
It uses a pure message passing model to process graphs,
and the iterative algorithms in Pregel are expressed as a se-
quence of supersteps. Basically, a node performs message
passing and votes to halt after finishing its computation in
a superstep. While the idea of prioritized execution can be
integrated into Pregel as well.



GraphLab [18] improves upon MapReduce abstraction by
compactly expressing asynchronous iterative algorithms with
sparse computational dependencies. The GraphLab data
model relies on shared memory and provides a shared data
table (SDT) to maintain vertex state and edge state, while
PrIter addresses distributed commodity machines exchang-
ing information through network message passing. In ad-
dition, the asynchronous programming model in GraphLab
requires data consistency models to prevent data-races, and
the asynchronous model can also lead to non-deterministic
behavior, which depends largely on the asynchronous up-
date order. PrIter proposes rearranging the update order
considering node state instead of blindly processing nodes in
a synchronous manner, which can be adopted by GraphLab
to support efficient asynchronous update.

PrIter accelerates the convergence of iterative algorithms
by the prioritized execution of iterative updates. A priority
value is assigned to each data point (represented by a key),
and only the high priority data points are executed in each
iteration. To the best of our knowledge, this is the first
work that supports the prioritized execution for iterative
computations.

7. CONCLUSIONS
Parsing massive data set iteratively is a time-consuming

process. In this paper, we argue that the prioritized exe-
cution of iterative computations accelerates iterative algo-
rithms. To support prioritized iteration, we propose PrIter,
a distributed framework for fast iterative computation run-
ning on a large cluster of commodity machines. Experiments
are performed in the context of various applications to evalu-
ate PrIter. The experimental results show that PrIter signif-
icantly improves performance over that achieved by Hadoop.

The key idea of PrIter is that, it enables selecting a sub-
set of data to perform updates in each pass of the data,
rather than performing updates on all data. In particular,
PrIter selects a subset of data that ensures fast convergence
of the iterative process. Therefore, each data point is given
a priority value to indicate the importance of the update
operation on that data point. PrIter extracts the subset of
data that have higher priority values to perform the itera-
tive updates. We show not only that PrIter is feasible for
iterative algorithms, but also that it is effective in a large
distributed environment.

PrIter reduces the amount of expensive data access by
performing much cheaper data operations. With the devel-
opment of powerful multi-core CPU and high-capacity RAM
memory, processing data is much faster than before, while
disk/network I/O becomes the bottleneck of computations
nowadays, especially under a distributed environment. In
our experimental EC2 cluster, we has the measurement that
the time spent on accessing 1010 bytes data (including net-
work I/O and disk I/O) is about 10000 times the time spent
on 1010 double format multiplications. Moreover, some in-
dustry colleagues complain the networking bandwidth bot-
tleneck in production clusters as well. PrIter is proposed to
balance the amount of data accesses and the amount of data
operations in a reasonable manner, which spends more on
data operations (extracting priority) to reduce the remote
data accesses (data shuffles), and the balance can be tuned
by controlling the size of the priority queue. We consider
that it should be a correct direction to shift more resources
from data accesses to data operations.
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APPENDIX
A. SELECTIVE INCREMENTAL PAGERANK

In this section, we prove the main theorem that Selective
Incremental PageRank converges to the same vector as nor-
mal Incremental PageRank. First, Incremental PageRank
converges to a vector

∞∑
l=0

(1− d)dlW lE = (1− d)E/(I − dW ), (12)

since W is a column normalized vector. Next, we show one
lemma that Selective Incremental PageRank vector at sub-
pass k should be smaller than Incremental PageRank vector
at iteration k. Correspondingly, we show another lemma
that there is always an subpass at which Selective Incre-
mental PageRank vector is larger than the vector derived
from Incremental PageRank at iteration k. Once we prove
the two lemmas, it is sufficient to establish the main theo-
rem that Selective Incremental PageRank converges to the
same vector as Incremental PageRank does.

Before we formally state and prove the main theorem, we
first establish the intuition behind the theorem. Imagine
that the PageRank score for a node represents the energy of
the node, we can liken the convergence process of the rank-
ing vector to energy propagation. Take Incremental PageR-
ank for example. Initially, each node is assigned with the
initial energy 1−d

|V | . At each node, the energy spreads to out-

going neighboring nodes equally with a damping factor d
and retains its energy 1−d

|V | . In the next iteration, each node

retains its energy with the received energy from the previ-
ous iteration, and spreads the same energy to the outgoing
neighboring nodes equally with a damping factor d. In other
words, the energy originated from each node is damped by
dk after k iterations, in the meantime the spread energy is
retained by its k hops away neighbors (The total energy re-
tained by the touched neighbors of a node within k hops is∑k

l=0
dl(1−d)
|V | ). This process goes on till there is no or little

energy to spread at each node, and the total retained energy
originated from each node is 1

|V | (total energy in graph is 1).

At this point, the energy retained at a node is the ranking
score of that node.

In the case of Selective Incremental PageRank, not all
nodes participate in the energy spread in each subpass. For
the node that does not participate in the energy spread, the
node accumulates its received energy till next time the node
is activated to spread its energy, and at that time the ac-
cumulated energy is also retained by the node. If any node
with the temporarily accumulated energy is eventually acti-
vated, the spread energy is never lost, and the energy orig-
inated from each node will be eventually spread along any
path. Therefore, Selective Incremental PageRank will even-
tually get the same ranking score as Incremental PageRank
does. Now, we proceed to formally establish the theorem.

In order to formally describe Selective Incremental PageR-
ank, we use activation sequence {S1, S2, . . . , Sk, . . .} to rep-
resent the series of the node sets that Selective Incremen-
tal PageRank activates. That is, Sk is a subset of nodes
to be activated in the kth subpass. Clearly, Incremental
PageRank is a special Selective Incremental PageRank, in
which the activation sequence is {V, V, . . .}. Note that since
we are interested in the convergence property of Selective



Incremental PageRank, we will mainly focus on the activa-
tion sequences that activate each node an infinite number of
times. That is, for any node j, there are an infinite number
of k such that j ∈ Sk.

Lemma 1. In Incremental PageRank, the ranking score of
any node j after k iterations is:

R
(k)
inc(j) =∆R

(0)
inc(j)+

k∑
l=1

{
dl

∑
{i0,...,il−1,j}∈P (j,l)

∆R
(0)
inc(i0)∏l−1

h=0 deg(ih)

}
,

(13)

where P (j, k) is a set of k-hop paths to reach node j.

Proof. In Incremental PageRank, each node is assigned

with an initial value ∆R
(0)
inc = 1−d

|V | . From Equation (3), we

have

R
(k)
inc = ∆R

(0)
inc + dW∆R

(0)
inc + . . .+ dkW k∆R

(0)
inc. (14)

Therefore, for each node j, we have the claimed equation.

Lemma 2. In Selective Incremental PageRank, following
an activation sequence {S1, S2, . . . , Sk}, the ranking score
of any node j after k subpasses is:

R
(k)
sel(j) =∆R

(0)
sel(j)+

k∑
l=1

{
dl

∑
{i0,...,il−1,j}∈P ′(j,l)

∆R
(0)
sel(i0)∏l−1

h=0 deg(ih)

}
,

(15)

where P ′(j, l) is a set of l-hop paths that satisfy the follow-

ing conditions. First, i0 ∈ Sl. Second, if l > 0, i1, . . . , il−1

respectively belongs to the sequence of the activation sets.
That is, there is 0 < m1 < m2 < . . . < ml−1 < k such that
ih ∈ Sml−h .

Proof. We can derive R
(k)
sel(j) from Equation (3).

Lemma 3. For any activation sequence, R
(k)
sel(j) ≤ R

(k)
inc(j)

for any node j at any subpass/iteration k.

Proof. Based on Lemma 1, we can see that, after k iter-
ations, each node receives the scores from its direct/indirect
neighbors as far as k hops away, and it receives the scores
originated from each direct/indirect neighbor once for each
path. In other words, each node propagates its own initial

value ∆R
(0)
inc (first to itself) and receives the scores from its

direct/indirect neighbors through a path once.
Based on Lemma 2, we can see that, after k subpasses,

each node receives scores from its direct/indirect neighbors
as far as k hops away, and it receives scores originated from
each direct/indirect neighbor through a path at most once.
At each subpass, a score is received from a neighbor only if
the neighbor is activated. If the neighbor is not activated,
its score is stored at the neighbor, and the node will not
receive the score until the neighbor is activated.

As a result, R
(k)
sel(j) receives scores through a subset of the

paths from j’s direct/indirect incoming neighbors within k

hops. In contrast, R
(k)
inc(j) receives scores through all paths

from j’s direct/indirect incoming neighbors within k hops.

Therefore, R
(k)
sel(j) ≤ R

(k)
inc(j).

Lemma 4. For any activation sequence that activates each
node an infinite number of times, given any iteration number

k, we can find a subpass number k′ such that R
(k′)
sel (j) ≥

R
(k)
inc(j) for any node j.

Proof. From the proof of Lemma 3, we know thatR
(k)
inc(j)

receives scores from all paths from direct/indirect neighbors

of j within k hops away to j. In order to let R
(k′)
sel (j) receives

all those scores, we have to make sure that all paths from
direct/indirect neighbors of j within k hops away to j are
activated by the activation sequence. Since the activation se-
quence activates each node an infinite number of times, we

can always find k′ such that {S1, S2, . . . , Sk′} contains all
paths from direct and indirect neighbors of j within k hops

away to j. Further, k′ satisfies that R
(k′)
sel (j) ≥ R(k)

inc(j).

Based on Lemma 4 and Lemma 3, we have the following
theorem.

Theorem 1. As long as each node is activated an infinite

number of times in the activation sequence, R
(∞)
sel = R

(∞)
inc .

B. PRIORITIZED INCREMENTAL PAGER-
ANK

In this section, we prove that Prioritized Incremental PageR-
ank will activate each node an infinite number of times. This
in turns shows that it will converge to the same ranking score
as PageRank does as mentioned in Section 2.2.

Lemma 5. Prioritized Incremental PageRank activates each
node an infinite number of times.

Proof. We prove the lemma by contradiction. Assume
there is a set of nodes, S, that is activated only before sub-
pass k. Then ||∆Rsel(S)||1 will not decrease after k sub-
passes, while ||∆Rsel(V − S)||1 decreases. Furthermore,
||∆Rsel(V − S)||1 should decrease “steadily”. After each of
nodes in V − S is activated once, ||∆Rsel(V − S)||1 should
be decreased by a factor of at least d. Therefore, eventually
at some point,

||∆Rsel(S)||1
|S| > ||∆Rsel(V − S)||1. (16)

That is,

max
j∈S

(∆Rsel(j)) > max
j∈V−S

(∆Rsel(j)). (17)

Since the node that has the largest ∆Rsel should be acti-

vated in a prioritized activation sequence, a node in S should
be activated at this point, which contradicts with the as-
sumption that any node in S is not activated after iteration
k.

Based on Lemma 5 and Theorem 1, we have the following
theorem.

Theorem 2. Prioritized Incremental PageRank converges

to R
(∞)
inc .


